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Abstract

In this work, we propose a novel depth-induced multi-

scale recurrent attention network for saliency detection. It

achieves dramatic performance especially in complex sce-

narios. There are three main contributions of our network

that are experimentally demonstrated to have significant

practical merits. First, we design an effective depth refine-

ment block using residual connections to fully extract and

fuse multi-level paired complementary cues from RGB and

depth streams. Second, depth cues with abundant spatial in-

formation are innovatively combined with multi-scale con-

text features for accurately locating salient objects. Third,

we boost our model’s performance by a novel recurrent at-

tention module inspired by Internal Generative Mechanism

of human brain. This module can generate more accu-

rate saliency results via comprehensively learning the in-

ternal semantic relation of the fused feature and progres-

sively optimizing local details with memory-oriented scene

understanding. In addition, we create a large scale RGB-D

dataset containing more complex scenarios, which can con-

tribute to comprehensively evaluating saliency models. Ex-

tensive experiments on six public datasets and ours demon-

strate that our method can accurately identify salient ob-

jects and achieve consistently superior performance over

16 state-of-the-art RGB and RGB-D approaches.

1. Introduction

Salient object detection (SOD) aims to identify regions

in a scene that visually attract human attention most [23,33,

44]. Recently, this fundamental task plays an important role

in various computer vision applications [15,21,29,37], e.g.,

visual tracking, image segmentation and object recognition.

In the past, most saliency methods [11,28,32,34,41,50]

focus on extracting hand-crafted features based on limited

domain-specific knowledge, which may limit their general-

ization ability in different scenarios. Recently, CNNs-based

methods have yielded a qualitative leap in performances due

∗Prof.Zhang is the corresponding author.
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Figure 1. Saliency maps of several state-of-the-art CNNs-based

methods in a complex scene. RGB-D methods are marked in bold.

to the powerful ability of CNNs [25] to hierarchically ex-

tract informative features. Many works [10,22,30,44,45,47]

focus on identifying saliency regions based on RGB images

and have achieved superior performance, yet they still re-

main challenging in some complex scenarios, such as simi-

lar foreground and background, low-intensity environment.

Depth information containing various depth cues such as

spatial structure and 3D layout has been demonstrated to

alleviate those issues in SOD [3, 4, 35]. In this paper, we

mainly focus on effectively using RGB-D data to enhance

model’s robustness especially in challenging scenes. As ex-

emplified in Fig. 1, RGB-D methods are superior to RGB

methods in terms of a complex scene, in which the salient

object shares similar appearance with its surroundings.

Nonetheless, previous works for RGB-D SOD share

some common limitations: 1) Most CNNs-based meth-

ods [4,18,35] generally fuse RGB and depth features by di-

rect concatenation or summation at a shallow or deep stage.

The complementarity of multi-level RGB and depth infor-

mation is not taken into account. Specifically, the deep fea-

tures can provide discriminative semantic information while

the shallow features also contain affluent local details for ac-

curately identifying salient objects. A recent work [3] con-

centrates on fusing multi-level information for prediction

and achieves better performance. 2) Multiple objects in a

scene have large variations in both depth and scale. Explor-
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ing the relationship between depth cues and objects with

different scales can further provide vital guidance cues for

accurately locating salient regions. However, to our best

knowledge, this relevance has never been researched in pre-

vious SOD works. 3) Studies show that people perceive

visual information using an Internal Generative Mechanism

(IGM) [17, 46]. In the IGM, saliency captured by human is

not a straight translation of the ocular input, but a result of a

series of active inferences of brains, especially in complex

scenes. However, the benefits of IGM for comprehensively

understanding a scene and capturing accurate saliency re-

gions have never been explored in previous works. Particu-

larly, the fused feature is directly used for prediction while

the internal semantic relation in the fused feature is ignored.

In order to address the aforementioned limitations, we

propose a depth-induced multi-scale recurrent attention net-

work (DMRANet) for saliency detection as illustrated in

Fig. 2. There are three main contributions of our DM-

RANet. First, we design an effective depth refinement

block (DRB) taking advantages of residual connections to

fully extract and fuse complementary RGB and depth fea-

tures in multiple levels. Second, we innovatively design a

depth-induced multi-scale weighting (DMSW) module. In

this module, the relationship between depth information and

objects with different scales is explored for the first time

in saliency detection task (see Fig. 4). Ablation analysis

shows that utilizing this relevance can improve detection

accuracy and facilitate the integration of RGB and depth

data. After the two procedures, a fused feature with abun-

dant saliency cues is generated. Third, we design a novel

recurrent attention module (RAM) inspired by the IGM of

human brain. Our RAM can iteratively generate more accu-

rate saliency results in a coarse-to-fine manner by compre-

hensively learning the internal semantic relation of the fused

feature. Specifically, when inferring the current result, our

RAM retrieves the previous memory to aid current decision.

This can progressively optimize local details with memory-

oriented scene understanding for generating the final opti-

mal saliency result. This module boosts our model’s perfor-

mance by a large margin. In addition, we also create a large

scale RGB-D dataset with 1200 paired images contain-

ing more complex scenarios, such as multiple or transpar-

ent objects, similar foreground and background, complex

background, low-intensity environment. This challenging

dataset can comprehensively evaluate saliency models and

contribute to further studies in saliency field.

Furthermore, extensive experiments on seven datasets

demonstrate that our method achieves consistently superior

performance over 16 state-of-the-art 2D and 3D approaches.

The code and results can be found at https://github.

com/OIPLab-DUT/DMRA_RGBD-SOD. Moreover, to

facilitate research in this field, all those partitioned datasets

we collected are shared in a ready-to-use manner.

2. Related work

RGB-D saliency detection. Although many works [10,

14, 22, 30, 44, 45, 47] have devoted to RGB saliency detec-

tion and have achieved appealing performance, they might

fail when coping with complex scenarios, such as multiple

or transparent objects, similar foreground and background,

complex background and low-intensity environment. Depth

cues with affluent spatial structure and 3D layout informa-

tion can contribute to handling those cases [3, 8, 11, 18, 32].

In our work, we mainly focus on RGB-D saliency detection

and intend to improve detector’s performance in complex

scenes.

Previous RGB-D saliency detection methods can be gen-

erally classified into two categories: (1) manually design-

ing hand-crafted features; (2) automatically extracting fea-

tures with CNNs. For the first category, [32] utilize a multi-

stage model combining RGB-produced saliency with new

depth-induced saliency for SOD. [16, 24] present saliency

methods based on anisotropic center-surround difference or

local background enclosure. [36] exploit the normalized

depth prior and the global-context prior for SOD. Those

methods, mainly relying on hand-crafted features and lack-

ing of high-level representations, are unadapted for under-

standing global context. Recently, CNNs have significantly

pushed the performance of vision tasks for its powerful abil-

ity in hierarchically extracting informative features. [35]

use hand-crafted features to train a CNN-based model and

achieve significant improvements over traditional methods.

[4, 18] utilize two-stream CNNs-based models but perform

fusion by directly concatenating or adding paired features

at shallow or deep layers. [48] propose a prior-model

guided depth-enhanced network for SOD. Those fusion

strategies do not take full advantage of multi-level com-

plementary cues. A recent work [3] designs a fusion net-

work, in which cross-level features are progressively com-

bined, and achieves better performance. Besides, we ob-

serve that some schemes [4, 18, 48] adopt extra pre-training

or post-processing operations for improving model’s perfor-

mance, which entangles the training process to some extent,

whereas our network is trained in an end-to-end manner.

3. The proposed method

We first describe the overall architecture briefly in

Sec. 3.1. Then, we discuss our multi-level fusion strategy

and its key component-DRB in Sec. 3.2 and give a detailed

depiction of our DMSW module in Sec. 3.3. Finally, we

elaborate on the RAM which significantly improves the per-

formance in Sec. 3.4.

3.1. The overall architecture

Our network architecture, shown in Fig. 2, follows a two-

stream model. The two streams have the same structure,
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Figure 2. The overall architecture of our DMRANet.

where 5 convolutional blocks of VGG-19 [39] are main-

tained and the last pooling and fully-connected layers are

discarded for making a better fit with our task. The only

difference between two streams is that the depth stream is

further processed to learn a depth vector. We refine and fuse

paired side-out features in multiple layers by employing the

proposed DRB. Then, the depth vector and the fused feature

are fed into a DMSW module, in which multi-scale features

generated from the fused feature are integrated based on the

guidance from the depth vector. Moreover, we boost our

model’s performance by a novel RAM which ably combines

the attention mechanism and ConvLSTM [38]. Finally, the

saliency maps are supervised by the ground truths. Our net-

work is trained in an end-to-end manner.

3.2. Multi­level Fusion Module

Considering the complementarity between paired depth

and RGB cues in multiple layers, we design a simple yet ef-

fective DRB using residual connections [20] to fully extract

and fuse multi-level paired complementary information.

Depth refinement block. As illustrated in Fig. 3, the in-

puts fRGB
i and f

depth
i represent the side-out features from

the RGB and depth streams in the i-th level respectively.

We feed f
depth
i into a series of weight layers Ψ(·) con-

taining two convolutional layers and two PReLU activa-

tion functions [19] to learn a depth residual ∆depthi =

Ψ(fdepth
i ). Then, the depth residual is added to the RGB

feature by residual connection to learn a fused feature

f
fuse
i = fRGB

i + ∆depthi. In this way, complementary

clues in the i-th level are fused effectively. Then, we re-

shape (i.e., up-sample with bilinear interpolation or down-

sample with max-pooling operation) f
fuse
i to the same

resolution. A conventional residual unit [20] ℜ(·) is fol-

lowed for re-scaling feature values and then a 1×1 con-

volution operation Wi is used to adjust the channel di-

mension. The final feature in the i-th level is defined as

fi = Wi ∗ ℜ(reshape(ffuse
i )), which is 1/4 of the input
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Figure 3. Detailed diagram of Depth Refinement Block (DRB).

spatial resolution with 64 channels. Finally, all features fi
in multiple layers are summated as Ffuse =

∑N
i=1

fi in an

element-wise manner, where N=5 denotes the total num-

ber of convolutional blocks. In this way, discriminative

multi-level RGB and depth features are effectively learned

and fused. This fusion strategy enables our model to pro-

duce more accurate saliency results because of the compre-

hensive combination of both local spatial details and global

semantic information.

3.3. Depth­induced Multi­scale Weighting Module

Considering that an image consists of multiple distinct

objects with different sizes, scales and laid across different

spatial locations in numerous layouts, we propose a depth-

induced multi-scale weighting (DMSW) module. In this

module, depth cues are further connected with multi-scale

features to accurately locate salient objects.

As shown in Fig. 4, depth cues with abundant spatial in-

formation are further processed to learn a depth vector to

guide the weight allocation of multi-scale features. To be

specific, in order to capture multi-scale context features, we

impose a global pooling layer and several parallel convolu-

tional layers with different kernel sizes and different dila-

tion rates on the input feature Ffuse. In this way, six multi-

scale features Fm ( m = 1, 2, . . . , 6) with the same resolution

but different contexts are generated. Detailed parameters

are shown in Fig. 4. Compared with classic convolution

operation, dilated convolution can increase the size of the
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Figure 4. Detailed diagram of DMSW and RAM sub-modules. In RAM, (b) is the details of RAM and (a) is the details of attention block.

receptive field without sacrificing image resolution and re-

dundant computation [5–7, 43]. Meanwhile, in order to ob-

tain the corresponding depth vector, a global average pool-

ing layer and a convolutional layer are imposed on Fconv5 4

in the depth stream. Then we use a softmax function δ to

obtain the depth vector Vdepth ∈ R
1×1×M , which can act

as the scale factor for weighting each multi-scale feature

Fm, where M responds to the maximum of m. Finally, all

multi-scale features Fm are weighted based on depth vec-

tor Vdepth and then summated to form the final output FΣ.

Formally, the DMSW module can be defined as:

Vdepth = δ(Wb ∗AvgPooling(Fconv5 4)), (1)

Fm = ξ(Ffuse; θm), (2)

FΣ =

M∑

m=1

V m
depth × Fm, (3)

where ∗ and Wb denote convolution operation and corre-

sponding parameters. δ(·) represents the softmax function.

ξ(·) denotes those parallel convolution or pooling opera-

tions and θm is the parameters to be learned in the m-th

branch. V m
depth represents the weight of the corresponding

multi-scale feature Fm and × means the feature-wise mul-

tiplication.

In summary, it is beneficial to introduce depth cues to

learn the contribution of multi-scale features for determina-

tion of salient objects especially when objects of different

sizes appear at different depths. This module can also be

regarded as a deeper fusion of RGB and depth information.

3.4. Recurrent Attention Module

Note that our model has outperformed all other state-of-

the-art methods almost across all datasets by directly using

the fused feature FΣ for prediction, as described in ablation

analysis. However, we claim that exploring the semantic re-

lation inside the fused feature is essential, motivated by the

Internal Generative Mechanism (IGM) [17] in human visual

system. In this section, we boost our model’s performance

by a novel recurrent attention module (RAM). This mod-

ule, drawing core ideas from the IGM, can comprehensively

understand a scene and learn the internal semantic relation

of the fused feature. To be specific, in order to infer con-

spicuous objects, the IGM recurrently deduces and predicts

saliency based on memory stored in the brain, while uncer-

tain information that is not important will be discarded.

Inspired by the IGM, we propose the RAM by ably com-

bining attention mechanism and ConvLSTM [38]. In this

way, the RAM can retrieve the previous memory to aid

current decision when inferring the current result. It it-

eratively learns the spatio-temporal dependencies between

different semantics and progressively optimizes detection

details with memory-oriented scene understanding. Con-

cretely, for the attention block (see Fig. 4(a)), ht stands for

the previous memory for scene understanding and FΣ is the

input feature. The subscript t denotes time steps in Con-

vLSTM. Both ht and FΣ are followed by a convolutional

layer and then we merge the output features by element-

wise summation. Then, a global average pooling and a soft-

max function are used to generate the channel-wise atten-

tion map Attc(ht, FΣ) ∈ R
1×1×C , in which C denotes the

number of channels of FΣ. By performing element-wise

multiplication on Attc(ht, FΣ) and FΣ, a more informative

feature F̃Σ,t is produced. This procedure can be defined as:

Attc(ht, FΣ) = δ(AvgPooling(W0∗ht+W1∗FΣ)), (4)

F̃Σ,t = Attc(ht, FΣ)⊗ FΣ, (5)
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where W∗ are convolution parameters. ⊗ means element-

wise multiplication. Next, in Fig. 4(b), F̃Σ,t is fed into Con-

vLSTM to further learn the spatial correlation between dif-

ferent semantic features. The ConvLSTM is calculated by

it = σ(Wxi ∗ F̃Σ,t +Whi ∗ ht−1 +Wci◦ct−1 + bi),

ft = σ(Wxf ∗ F̃Σ,t +Whf ∗ ht−1 +Wcf◦ct−1 + bf ),

ct = ft◦ct−1 + it◦ tanh(Wxc ∗ F̃Σ,t +Whc ∗ ht−1 + bc),

ot = σ(Wxo ∗ F̃Σ,t +Who ∗ ht−1 +Wco◦ct−1 + bo),

ht = ot◦ tanh(ct),
(6)

where ◦ denotes the Hadamard product and σ(·) is sigmoid

function. it, ft and ot stand for input, forget and output

gates, respectively. ct stores the earlier information. All

W∗ and b∗ are model parameters to be learned. h0 and c0
are initialized to 0. After N steps, where we set N = 3 in

this work, a channel-refined feature Fc = hN is generated.

In addition, we add a common spatial attention block

to emphasize the contribution of each pixel for the final

saliency prediction. We first learn a spatial-wise attention

map Atts(Fc) = σ(Ws ∗ Fc), where ∗ and Ws represent a

1× 1 convolution operation and corresponding parameters,

respectively. Then Atts(Fc) ∈ R
W×H×1 and Fc are mul-

tiplied in an element-wise manner to get a spatial weighted

feature Fcs = Atts(Fc)⊗ Fc.

Eventually, Fcs is followed by a 1 × 1 convolution layer

and up-sample operation to get the final saliency map Smap.

4. Experiments

4.1. Dataset

We evaluate the effectiveness of our network on our pro-

posed dataset and other six public datasets.

NJUD [24]: contains 1985 images (the latest version),

which are collected from the Internet, 3D movies and pho-

tographs taken by a Fuji W3 stereo camera. NLPR [32]:

includes 1000 images captured by Kinect. LFSD [27]: con-

tains 100 images captured by Lytro camera. STEREO [31]:

contains 797 stereoscopic images downloaded from the In-

ternet. RGBD135 [8]: contains 135 images captured by

Kinect. SSD [26]: contains 80 images picked up from three

stereo movies.

Ours: Compared to other datasets, ours is more challenging

containing many complex scenes (e.g., multiple or transpar-

ent objects, similar foreground and background, complex

background and low-intensity environment). The bottom

five rows marked in Fig. 5 show some representative scenes

in our dataset. Our dataset contains 800 indoor and 400 out-

door scenes paired with corresponding depth maps [40] and

ground truths. This challenging dataset can contribute to

comprehensively evaluating saliency models. More details

about this dataset can de found at the github page.

Training and test: Our dataset is randomly divided into

two parts: 800 images for training and the rest 400 for test-

ing. For other datasets, we adopt the same splitting way

as [3, 4, 18] to guarantee a fair comparison. We split 1485

samples from NJUD and 700 samples from NLPR for train-

ing. The remaining images in these two datasets and other

four datasets are all for testing to verify the generalization

ability of saliency models. To prevent overfitting, we aug-

ment the training set by flipping, cropping and rotating.

4.2. Experimental setup

Evaluation metrics. For comprehensively evaluating var-

ious methods, we adopt five evaluation metrics including

precision-recall (PR) curve, F-measure (Fβ) [1], mean ab-

solute error (MAE) [2] and recently proposed S-measure

(Sλ) [12] and E-measure (Eγ) [13]. Concretely, saliency

maps are binarized using a series of thresholds and then

pairs of precision and recall are computed to plot the PR

curve. The F-measure can evaluate the overall performance.

The MAE represents the average absolute difference be-

tween the saliency map and ground truth. The S-measure

can evaluate the spatial structure similarities and the E-

measure can jointly capture image level statistics and local

pixel matching information. For MAE, lower value is better

and for others, higher is better.

Implementation details. Our method is implemented with

pytorch toolbox and trained on a PC with GTX 1080 GPU

and 16 GB memory. The input image is uniformly resized

to 256×256. The momentum, weight decay and learning

rate are set as 0.9, 0.0005 and 1e-10, respectively. During

training, we use softmax entropy loss and the network con-

verges after 50 epochs with mini-batch size 2.

4.3. Comparison with state­of­the­art

We compare our method with 16 state-of-the-art ones,

including 5 latest CNNs-based RGB-D methods: PCA [3],

PDNet [48], MMCI [4], CTMF [18], DF [35]; 5 tradi-

tional RGB-D methods: MB [49], CDCP [50], NLPR [32],

DES [8], DCMC [9]; 6 top ranking CNNs-based RGB

methods: PiCANet [30], PAGRN [47], R3Net [10],

Amulet [44], UCF [45], DSS [22]. For fair comparisons, we

use the released code and their default parameters to repro-

duce those methods. In terms of methods without released

source code, we use their published results for comparisons.

Quantitative Evaluation. Tab. 1 and Tab. 2 show the

validation results in terms of four evaluation metrics on

seven datasets. We can see that our model achieves sig-

nificant outperformance over all other methods. The PR

curves in Fig. 6 also consistently demonstrate the superior

performance of our method. Especially, ours outperforms

all other methods by a dramatic margin on our proposed

dataset, NLPR and STEREO, where the images are com-

parably complicated. It further indicates that our model is
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Figure 5. Comparisons of ours with state-of-the-art CNNs-based methods. Those methods are top ranking ones in quantitative evaluation.

Obviously, our results are more consistent with the ground truths (‘GT’), especially in complex scenes, such as cluttered background (5th

and 6
th rows), low-contrast (11th row), transparent object (9th and 12

th rows) as well as multiple and small objects (10th row).

more powerful in dealing with the complex scenes.

Qualitative Evaluation. We also visually compare our

method with the most representative methods as shown in

Fig. 5. From those results, we can observe that our saliency

maps are closer to the ground truths. For example, other

methods are difficult to distinguish salient objects in com-

plex environments (see the 5th and 6th rows), while ours

can precisely identify the whole object. And our DMRANet

can more accurately locate and detect the entire conspicu-

ous objects with sharp details than others in more challeng-

ing scenes such as low-contrast, transparent object as well

as multiple and small objects (see the 9th-12th rows). Those

results further verify the effectiveness and robustness of our

proposed DMRANet.

4.4. Ablation analysis

In this section, we perform ablation analysis over each

component of the DMRANet and further investigate their

relative importance and specific contribution.

Performance of DRB. In order to verify the effective-

ness of the proposed multi-level fusion strategy, we eval-

uate the performance of a common fusion strategy (see

Fig. 7 (a)) and our DRB fusion strategy (denoted as ‘Base-

line’ and ‘+DRB’, respectively). As shown in Tab. 3 and

Fig. 8, ‘+DRB’ consistently outperforms ‘Baseline’ across

all datasets. The predictions produced by our DRB con-

tain more local details than ‘Baseline’ in Fig. 9. This ad-

vance further confirms the superiority of our DRB in ef-

fectively and abundantly extracting and fusing multi-level

paired complementary information.

Performance of DMSW module. One of our core claims

is that incorporating depth cues with multi-scale features

can help locate saliency regions. To give evidence for this

claim, we add the DMSW module (‘+DMSW’) to previ-

ous ‘+DRB’ model. Results in Tab. 3 and Fig. 8 show that

our DMSW module achieves impressive accuracy gains on
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Ours NJUD NLPR STEREO

* Eγ Sλ Fβ MAE Eγ Sλ Fβ MAE Eγ Sλ Fβ MAE Eγ Sλ

Ours 0.927 0.888 0.883 0.048 0.908 0.886 0.872 0.051 0.942 0.899 0.855 0.031 0.920 0.886

PCA 0.858 0.801 0.760 0.100 0.896 0.877 0.844 0.059 0.916 0.873 0.794 0.044 0.905 0.880

PDNet 0.861 0.799 0.757 0.112 0.890 0.883 0.832 0.062 0.876 0.835 0.740 0.064 0.903 0.874

MMCI 0.855 0.791 0.753 0.113 0.878 0.859 0.813 0.079 0.871 0.855 0.729 0.059 0.890 0.856

CTMF 0.884 0.834 0.792 0.097 0.864 0.849 0.788 0.085 0.869 0.860 0.723 0.056 0.870 0.853

DF 0.842 0.730 0.748 0.145 0.818 0.735 0.744 0.151 0.838 0.769 0.682 0.099 0.844 0.763

PiCANet 0.895 0.832 0.826 0.080 0.880 0.847 0.806 0.071 0.895 0.834 0.761 0.053 0.904 0.868

PAGRN 0.883 0.831 0.836 0.079 0.882 0.829 0.827 0.081 0.907 0.844 0.795 0.051 0.900 0.851

R3Net 0.833 0.819 0.781 0.113 0.838 0.837 0.775 0.092 0.788 0.798 0.649 0.101 0.856 0.855

Amulet 0.880 0.846 0.803 0.083 0.859 0.843 0.798 0.085 0.852 0.848 0.722 0.062 0.897 0.881

UCF 0.848 0.833 0.766 0.108 0.830 0.829 0.758 0.109 0.835 0.837 0.701 0.082 0.874 0.867

DSS 0.831 0.767 0.732 0.127 0.853 0.807 0.776 0.108 0.879 0.816 0.755 0.076 0.885 0.841

MB 0.691 0.607 0.577 0.156 0.643 0.534 0.492 0.202 0.814 0.714 0.637 0.089 0.693 0.579

CDCP 0.794 0.687 0.633 0.159 0.751 0.673 0.618 0.181 0.785 0.724 0.591 0.114 0.801 0.727

NLPR 0.767 0.568 0.659 0.174 0.722 0.530 0.625 0.201 0.772 0.591 0.520 0.119 0.781 0.567

DES 0.733 0.659 0.668 0.280 0.421 0.413 0.165 0.448 0.735 0.582 0.583 0.301 0.451 0.473

DCMC 0.712 0.499 0.406 0.243 0.796 0.703 0.715 0.167 0.684 0.550 0.328 0.196 0.838 0.745

Table 1. Quantitative comparison of E-measure, S-measure, F-measure and MAE on our proposed dataset and six widely-used RGB-D

datasets. The best three results are shown in boldface, red, and green fonts respectively. Our method ranks first on all datasets and

evaluation metrics. From top to bottom: CNNs-based RGB-D methods, the latest RGB methods and traditional RGB-D methods.

STEREO LFSD RGBD135 SSD

* Fβ MAE Eγ Sλ Fβ MAE Eγ Sλ Fβ MAE Eγ Sλ Fβ MAE

Ours 0.868 0.047 0.899 0.847 0.849 0.075 0.945 0.901 0.857 0.029 0.892 0.857 0.821 0.058

PCA 0.845 0.061 0.846 0.800 0.794 0.112 0.909 0.845 0.763 0.049 0.883 0.843 0.786 0.064

PDNet 0.833 0.064 0.872 0.845 0.824 0.109 0.915 0.868 0.800 0.050 0.813 0.802 0.716 0.115

MMCI 0.812 0.080 0.840 0.787 0.779 0.132 0.899 0.847 0.750 0.064 0.860 0.814 0.748 0.082

CTMF 0.786 0.087 0.851 0.796 0.781 0.120 0.907 0.863 0.765 0.055 0.837 0.776 0.709 0.100

DF 0.761 0.142 0.801 0.685 0.566 0.130 0.801 0.685 0.566 0.130 0.802 0.742 0.709 0.151

PiCANet 0.835 0.062 0.806 0.761 0.730 0.134 0.928 0.854 0.797 0.042 0.882 0.832 0.775 0.068

PAGRN 0.856 0.067 0.831 0.779 0.786 0.117 0.919 0.858 0.834 0.044 0.862 0.793 0.762 0.088

R3Net 0.800 0.084 0.771 0.797 0.791 0.141 0.868 0.847 0.728 0.066 0.833 0.815 0.747 0.095

Amulet 0.842 0.062 0.863 0.827 0.817 0.101 0.866 0.842 0.725 0.070 0.843 0.828 0.756 0.087

UCF 0.808 0.083 0.816 0.811 0.773 0.138 0.854 0.835 0.717 0.089 0.807 0.795 0.693 0.117

DSS 0.814 0.087 0.778 0.718 0.694 0.166 0.855 0.763 0.697 0.098 0.834 0.786 0.752 0.116

MB 0.572 0.178 0.631 0.538 0.543 0.218 0.798 0.661 0.588 0.102 0.633 0.499 0.414 0.219

CDCP 0.680 0.149 0.737 0.658 0.634 0.199 0.806 0.706 0.583 0.119 0.714 0.604 0.524 0.219

NLPR 0.716 0.179 0.742 0.558 0.708 0.211 0.850 0.577 0.857 0.097 0.726 0.562 0.551 0.200

DES 0.223 0.417 0.475 0.440 0.228 0.415 0.786 0.627 0.689 0.289 0.383 0.341 0.073 0.500

DCMC 0.761 0.150 0.842 0.754 0.815 0.155 0.674 0.470 0.228 0.194 0.790 0.706 0.684 0.168

Table 2. Continuation of Table 1.

all datasets by comparing ‘+DMSW’ and ‘+DRB’. From

Fig. 9, we can see ‘+DMSW’ can identify more saliency

regions compared with ‘+DRB’. Those results demonstrate

the advantage of our DMSW module in sufficiently utiliz-

ing depth cues and multi-scale information. Moreover, we

also verify the benefits of utilizing the relationship between

depth cues and multi-scale features by performing a new

model, in which features at multiple scales are integrated

by a 1×1 convolution operation instead of depth cues (de-

noted as ‘+DMSW (w/o d)’). Results in Tab. 3 and Fig. 8

show that removing depth guidance degrades performance

to some extent. Those results also demonstrate that the com-

bination of depth information and multi-scale features can

improve the detection accuracy. In addition, it is important

to note that our model has outperformed all other methods

almost across all datasets at this stage. This fact further ver-

ifies the strength of our proposed module.

Performance of RAM. In this section, we evaluate the

performance of our RAM. By comparing visual results in

Fig. 9, we observe our RAM can further suppress back-

ground irritations and substantially optimize detection de-

tails. In addition, we replace the RAM with a basic channel-

spatial attention block [42] (denoted as ‘+Att(common)’) in

Fig. 7 (b). Results in Tab. 3 suggest that our RAM is su-

perior to ‘+Att(common)’ and boosts model’s performance

by a large margin. We attribute this advance to its power-
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Figure 6. The PR curves of the proposed method and other state-of-the-art approaches across four datasets.

Ours NJUD NLPR STEREO LFSD RGBD135 SSD

* Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

Baseline 0.828 0.070 0.820 0.068 0.758 0.051 0.822 0.067 0.822 0.094 0.780 0.047 0.758 0.081

+DRB 0.839 0.065 0.828 0.064 0.774 0.046 0.828 0.064 0.825 0.090 0.792 0.043 0.768 0.076

+DMSW(w/o d) 0.855 0.061 0.844 0.062 0.805 0.044 0.837 0.061 0.836 0.087 0.823 0.042 0.774 0.076

+DMSW 0.861 0.057 0.850 0.059 0.801 0.042 0.852 0.057 0.836 0.086 0.828 0.040 0.783 0.075

+Att(common) 0.869 0.054 0.860 0.055 0.827 0.036 0.859 0.053 0.847 0.081 0.842 0.032 0.809 0.064

+RAM(Ours) 0.883 0.048 0.872 0.051 0.855 0.031 0.868 0.047 0.849 0.075 0.857 0.029 0.821 0.058

Table 3. Ablation analysis on seven datasets. Obviously, each component of our DMRANet can provide additional accuracy gains.
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Figure 7. Diagrams of ablation analysis. (a) Baseline. ‘C’ means

concatenation operation. (b) Att(common).
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Figure 8. Histograms of F-measure and MAE on four datasets.

ful ability in progressively optimizing detection details with

memory-oriented scene understanding.

5. Conclusion

In this work, our proposed ‘DMRANet’ enhances the

performance of saliency detection from three aspects: 1)

fully extracts and fuses multi-level paired complementary

features by using a simple yet effective DRB; 2) innova-

tively combines depth cues with multi-scale information to

accurately locate and identify salient objects; 3) progres-

sively generates more accurate saliency results through a

novel recurrent attention model. In addition, we build a

large scale RGB-D saliency dataset with 1200 paired im-

RGB

Depth

GT

Baseline

+RAM / Ours

+DMSW

+DRB

Figure 9. The visual results of ablation analysis.

ages containing more challenging scenes. We comprehen-

sively validate the effectiveness of each component of our

network and show the accumulated accuracy gains gradu-

ally. Experiment results also demonstrate that our method

achieves new state-of-the-art performance on seven RGB-D

datasets.
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