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Abstract

This paper presents a novel Hierarchical Self-
Attention Network (HISAN) to generate spatial-
temporal tubes for action localization in videos. The
essence of HISAN is to combine the two-stream convolu-
tional neural network (CNN) with hierarchical bidirec-
tional self-attention mechanism, which comprises of two
levels of bidirectional self-attention to efficaciously cap-
ture both of the long-term temporal dependency infor-
mation and spatial context information to render more
precise action localization. Also, a sequence rescoring
(SR) algorithm is employed to resolve the dilemma of
inconsistent detection scores incurred by occlusion or
background clutter. Moreover, a new fusion scheme is
invoked, which integrates not only the appearance and
motion information from the two-stream network, but
also the motion saliency to mitigate the effect of cam-
era motion. Simulations reveal that the new approach
achieves competitive performance as the state-of-the-art
works in terms of action localization and recognition
accuracy on the widespread UCF101-24 and J-HMDB
datasets.

1. Introduction

Owing to its vast potential applications in video con-
tent analysis such as video surveillance [1] and video
captioning [2], action localization, which performs ac-
tion classification and generates sequences of bounding
boxes related to the locations of the actors, has received
much research attention over the past few years. Ac-
tion localization, however, encounters not only common
issues in action recognition such as background clutter,
occlusion, intraclass variation, and adverse camera mo-
tion, but also the challenging issues that the videos may
be untrimmed and have multiple action instances.

A variety of algorithms has been proposed for ac-
tion recognition and localization [4-7]. For instance,
Zolfaghari et al. [5] utilized a markov chain model to
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Figure 1: Examples of the impact of self-attention on
the group action scenario: (a) initial localization before
employing spatio-temporal attention; (b) the attention
weight scores are at the top of the bounding boxes; (c)
the final localization supervised by the attention, where
the localization and the ground truth are in green and
red, respectively.

aggregate multi-stream features. Alwando et al. [6]
considered an efficient dynamic programming (DP) ap-
proach to search for multiple action paths and used an
iterative refinement algorithm to obtain more precise
bounding boxes. Singh et al. [8] incorporated a sin-
gle shot multi-box detector (SSD) with an incremental
DP scheme to generate action tubes with low complex-
ity. The aforementioned methods [4-8], however, con-
sider each frame separately without using the temporal
relationship information across the frames, and thus is
usually unable to detect actions that contain a sequence
of sub-actions such as cricket bowling and basketball.
To address this issue, Yang et al. [9] proposed a cas-
caded proposal generation scheme with a location antic-
ipation network to leverage the sequential information
across the adjacent frames. Hou ez al. [10] trained a 3D
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Flgure 2: The pipeline of the proposed architecture that comprises of five main steps: First, action detection is con-
ducted using faster R-CNN [3]. Next, HISAN provides spatio-temporal attention to improve the localization accuracy,
followed by an SR scheme to rectify low detection scores. The fourth step is a new fusion scheme including motion
saliency to reinforce motion information. The last step is action tube generation.

convolutional network to exploit the temporal informa-
tion from the adjacent frames. Kaloigeton et al. [11]
proposed a tubelet detector, which can simultaneously
produce a sequence of bounding boxes and their detec-
tion scores from multiple frames. However, [10, 11] call
for high training complexity compared to the 2D con-
volutional networks. He et al. [12] employed a long
short-term memory (LSTM) to model the temporal in-
formation within action tubes. Li et al. [13] considered
a recurrent detection network that made use of multi-
context from multiple frames to localize actions. How-
ever, LSTM processes the information sequentially so
in general it has difficulty in learning temporal depen-
dency at distant positions [14]. Gu et al. [15] utilized
a two-stream inflated 3D ConvNet (I3D) [16] to pre-
serve the temporal information of the two-stream faster
R-CNN [6,7]. Recently, a 3D generalization of capsule
network, which can learn different characteristics of ac-
tions without using region proposal network (RPN), was
proposed in [17]. However, both [15] and [17] have high
computational complexity and require a large volume of
training data to fully converge.

This paper presents a novel Hierarchical Self-
Attention Network (HISAN) to produce spatial-
temporal tubes for action localization in videos. The
essence of HISAN is to combine the two-stream con-
volutional neural network (CNN) with the newly de-
vised hierarchical bidirectional self-attention mecha-
nism, which comprises of two levels of bidirectional
self-attention to efficaciously capture not only the long-
term temporal dependency information but also the spa-
tial context information, to render more precise local-
ization. As shown in Fig. 1, HISAN can learn the
structure relationship of key actors to improve the lo-
calization accuracy when dealing with the group action
scenario, which is difficult to recognize with only a sin-
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gle frame. Also, a sequence rescoring (SR) algorithm is
employed to resolve the dilemma of inconsistent detec-
tion scores incurred by occlusion or background clutter.
Moreover, a new fusion scheme is invoked, which in-
tegrates both of the appearance and motion information
from the two-stream network, and the motion saliency
to mitigate the effect of camera motion that obscures
the motion information. Simulations reveal that the new
approach achieves competitive performance compared
with the state-of-the art works in terms of action lo-
calization and recognition accuracy on the widespread
UCF101-24 and J-HMDB datasets.

The main contributions of this work are as follows:
(i) a two-stream CNN with innovative hierarchical bidi-
rectional self-attention is presented, where both of the
spatio-temporal attention and spatial context informa-
tion are employed to boost the localization accuracy.
To the authors’ knowledge, it is the first time that self-
attention is utilized for action localization; (ii) an SR
algorithm, which can rectify the inconsistent detection
scores, is employed to reduce the adverse effect of
occlusion and background clutter; (iii) a new fusion
scheme, which incorporates the motion saliency, is ad-
dressed to alleviate the influence of camera motion.

2. Related Works

A vast amount of CNN object detectors has been ad-
dressed for action localization [6-9, 11, 13]. The current
object detectors can be categorized as either proposal-
based [3, 18] or proposal-free [19-21]. Ren et al. [3]
considered a region proposal network (RPN) to lower
the training cost in generating the region proposals.
Dai et al. [18] developed a position-sensitive region-of-
interest (Rol) pooling to resolve the problem of transla-
tion invariance in detection. Even though this approach
is faster than [3], the detection accuracy is inferior. Red-
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Figure 3: Bidirectional self-attention network.

mon et al. [21] designed a fully convolutional network to
run multi-scale training with low complexity. SSD [19]
used a fixed number of anchors as [3], and multi-scale
feature maps to handle objects with different sizes and
ratios. Both approaches [19, 21] trade accuracy with
complexity and can not locate small-scale objects well
[22].

Miscellaneous CNN architectures have been focusing
on how to integrate information from multiple modali-
ties to boost the action recognition and localization ac-
curacy. For instance, Simonyan et al. [23] developed a
two-stream CNN with a late fusion strategy to aggre-
gate the spatial and motion information. Ji et al. [24]
replaced the conventional 2D-CNN with a 3D ConvNet
to capture temporal information from multiple adjacent
frames. A markov chain model was employed in [5] to
fuse multi-stream features. Choutas et al. [25] proposed
a stream of human joint information to complement the
two-stream architecture.

Attention mechanism has shown to be effective to
enhance the performance of CNN when learning fine-
grained action in videos [26-29]. Girdhar et al. [26] pro-
posed top-down and bottom-up attention to replace the
conventional CNN pooling approach. Fang et al. [27]
built an attention model that focused on correlation of
crucial body parts to recognize human-object interac-
tions. Actor-attention regularization was developed in
[28] to supervise the spatio-temporal attention on impor-
tant action regions surrounding the actors. Li et al. [29]
devised a spatio-temporal attention with diversity regu-
larization to learn various human body parts to identify
a person from several different view points.

Temporal dependency has been extensively investi-
gated to obtain more discriminative CNN descriptors.
A common solution is to combine recurrent neural net-
work (RNN) or its variant, LSTM, with CNN architec-
tures. For instance, Li et al. [30] considered a convo-
lutional soft-attention LSTM to guide motion-based at-
tention around the location of actions. Li et al. [13] in-
tegrated a two-stage detection network with LSTM to
produce more accurate detection. Shi et al. [31] replaced
the traditional RNN kernels with radial basis function to
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predict future actions. Recently, a non-local neural net-
work was proposed in [32], which fused temporal de-
pendency information into CNN architectures for video
classification. In contrast to the above approaches, our
work combines the strength of self-attention [14,33] in
learning temporal dependency with CNN-based object
detectors to obtain more precise action localization.

3. Methodology

In this section, we begin with a brief introduction of
the action detection network in Sec. 3.1. Our focus
is then on three main parts. First, a hierarchical self-
attention network is described in Sec. 3.2. An effective
SR algorithm to resolve the problem of inconsistent de-
tection scores is considered in Sec. 3.3. Finally, a new
fusion scheme that incorporates the motion saliency is
addressed in Sec. 3.4. For easy reference, the proposed
architecture is illustrated in Fig. 2.

3.1. Detection Network

We use faster R-CNN [3] that consists of spatial and
motion CNNs, each of which includes two stages, re-
gion proposal generation, and bounding box regression
and classification, as our action detection network. First,
RPN generates a prescribed number of region proposals,
which are likely to contain actions. Thereafter, softmax
action scores are given to each region proposal based on
the CNN features of the corresponding regions. As [4],
the action detection network is built on top of VGG-16.
The spatial-CNN takes RGB images as input while the
motion-CNN works on optical flow images generated
by [34]. The optical flow images are created by stacking
the flows in the horizontal and vertical directions.

3.2. Hierarchical Self-Attention Network

This subsection describes the proposed HISAN that
provides spatio-temporal attention to rectify inaccurate
bounding boxes from the detection network. HISAN
consists of several bidirectional self-attention units to
model the long-term temporal dependency information.

3.2.1 Bidirectional Self-Attention Unit

We consider the bidirectional self-attention network,
as depicted in Fig. 3, that integrates both of the past
and future context information to resolve the ambigu-
ity when different videos contain similar movement pat-
terns in the first few frames [33, 35]. Bidirectional self-
attention calculates the response of a position in a se-
quence by relating it to all of the other positions without
causality restriction [33]. Since the number of frames
in each video may be different, we divide every video
into a number of video units with a fixed length of



Tr. Given a sequence of features from a video unit
V = [vi, -+ ,vy,] € REXTL where C is the feature
length, the self-attention output at position %, q;, is de-
fined as [14]

i = e(vi) + Zg; S fvov) ()
vk

where e(+) is a linear embedding layer, d(-) is a normal-

ization term, and the pairwise function f(v;, vy) com-

putes the dot product between the features at positions ¢

and k.

To imbue the pairwise function with temporal align-
ment information, here, inspired by [14, 33], we modify
(1) by adding positional masks. The positional masks
are imposed on the self-attention function using either a
positional forward mask M/ or a backward mask M?,

which are defined respectively as

f o .
{ M, =0, i<k )
—00, otherwise
b _ .
{ M’i,k == 0, 1 > k (3)
—00, otherwise.

Thereby, (1), including the positional masks, is now
given by

al =e(vi) + Zgzi D oM+ f(visvi)) - @)
v vk

Q@ = e(vi) + Zg; S oM+ f(vivi) (5)
' vk

where o(-) is a sigmoid function [36]. For each direc-
tion, we simultaneously apply the self-attention function
on P parallel heads across the feature subspace of di-
mension C' [14], say the feature representation with the

forward mask is Qf = [Qf,---,Q], where Q) =
[q{’p7... 7q§“’f]T c RTLX(C/P)’p — 1’ 7P' After-
ward, to effectively aggregate the features from these

two directions, we combine them together by
Q=(w;1")0Q + (w170 Q" (6

in which o is an element-wise multiplication [37] and
1 € R€ is an all-ones vector. All of the weights w rand
wp € RTL are updated in the same manner, e.g. Wy is
computed as

f b
(Q ;L Q )we) )

wi=o0 (be@ +

where b, w, € R are weight vectors optimized dur-
ing the training. Note that such a new combination re-
quires about the same complexity as the original trans-
former encoder.
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3.2.2 Hierarchical Architecture

As shown in Fig. 2, HISAN, which can produce
two levels of information, is designed to learn the lo-
cations of key actors. The first level aggregates multiple
person-object interactions and the context information
while the second level integrates the first-level features
over time to locate the action. The first level consists
of two bidirectional self-attention units, where the first
unit processes the spatio-temporal features from multi-
ple bounding boxes while the other one takes the contex-
tual features from video frames. The spatial location is
represented by a bounding box x; ; and a feature vector
u; ;, obtained from a fully connected layer of faster R-
CNN, where 7 and 7 are indices for frames and bounding
boxes, respectively. The spatio-temporal features can be
expressed as a weighted sum of the feature vectors as

N
bi({vij b Amiih) =D mij X wi ®)
=1

where N is the maximum number of bounding boxes in
each frame and 7); ; is the soft attention weight for the
bounding box x; ;. The attention weights are normal-

ized such that Zjvzl n;,; = 1. The attention weights
are updated based on the output of the first bidirectional
self-attention unit as follows:

n=QW,, + ¢W,, 9)

where 7 = [1,1,- -,y N @ = @1, o1, |T €
RT:XC and Wy, and W, € RE*N are linear weights.

In the second level, the bidirectional representation
and the attention weights from the spatial and motion
networks are averaged and then propagated to another
bidirectional self-attention network. A softmax classi-
fier is then employed to obtain the class probabilities.
Note that the hierarchical self-attention network com-
putes not only the attention weights but also the classi-
fication score y; ; = {y{;,---,y’*}, where cls is the
number of classes and y? ; is the background score in-
dicating the probability of no action existing in frame
i. We use the classification score y; ; and the attention
weight n; ; to adjust the detection score for a specific
class c by

init

Sc(xi,j) =S (Xi’j) X Mi,5 X yﬁj (10)

where si""(x; ;) is the initial detection score from the
detection network.
3.3. Sequence Rescoring

In our framework, the frame-level detection is linked
together with a DP algorithm which gives penalty to
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Figure 4: Overview of the SR algorithm, which consists
of three stages: the selection, linking and rescoring of
the bounding boxes.

Figure 5: Overview of the motion saliency: (a) the key
actor inside the yellow box; (b) the bounding boxes from
the motion-CNN; (c) the salient region in white.

bounding boxes that do not overlap in time. However,
in some cases, the detection score is low due to occlu-
sion or background clutter. In this scenario, even though
the overlap is high, the bounding box may not be linked
to the correct path because of the low detection score.
To overcome this setback, we devise an SR algorithm
succeeding the output of HISAN.

This algorithm is divided into three stages, as de-
picted in Fig. 4. First, a non-maximum suppression
(NMS) [38] is invoked to reduce the number of bound-
ing boxes to Np,,s < N in every frame of a sequence
of frames, which span an interval from 75 to T.. Af-
terward, every bounding box is linked together with the
bounding box with the maximum overlap in the adjacent
frames. If the overlap is below a prescribed threshold,
the link is terminated. In the last stage, the bounding
box in the current frame is then rescored by

S Se(Xit1,)
T, —T,+1

Sc(xi:Ts7j) = max( 75c(XTs,j)> 1D

where [; = argmax IoU(X;41,,Xi,_,), ¢ > Ts, and
!
XT, 17, = X7,,5, in which IoU denotes the intersection-

over-union [4]. Based on (11), the low detection score
due to occlusion and background clutter can be en-
hanced so the bounding box can be linked to the correct
path.

3.4. Fusion Strategy

We consider a new fusion scheme, which incorpo-
rates motion saliency, to highlight the motion informa-
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Table 1: Parameter settings for training the faster R-
CNN and HISAN.

Faster R-CNN

ImageNet [40]

Log + smooth L1 [3]

SGD

0.001

0.9

0.0005

320k (UCF101-24), 180k (J-HMDB)

HISAN

Pre-trained model
Loss Function
Optimizer
Learning rate
Momentum
Decay

Iterations

Cross entropy [41]
Adam (81 = 0.9, 2 = 0.0009 )
0.0001

0.01
120k

tion. The motion saliency is included based on the
consideration that false detection may occur from the
motion-CNN due to small camera movement. As an ex-
ample, given an RGB image in Fig. 5 (a), the moving
actor cannot be distinguished based on the motion-CNN
scores, as shown in Fig. 5 (b). On the contrary, the mo-
tion saliency, as shown in Fig. 5 (c), captures the correct
region associated with the moving actor.

Suppose f is the magnitude of the optical flow in
frame ¢ and I; is the entire region in this frame. If G
is a region in frame i, then g’ (G) = |T1:\ Swea i (w)
indicates how motion salient GG is. G is considered mo-
tionless if g% (G) < &, where § is a prescribed threshold.
Let H denote the entire set of salient regions defined by
H = {Gl|g!,(G) > 6,G € I;}. A collection of uncon-
nected regions {H1,--- ,Hs,} C H are labelled from
the region H based on 8-connected pixel connectivity.
The motion saliency score of the bounding box x; ; is
thus defined as

|xi,; N Ho|

max 12)
oe{l,---,sp} |Xi,j U H0| (

w(xij) = px
where | - | denote the cardinality of a set of pixels. Note
that the motion saliency in (12) is different from the
ones addressed in [6, 39]. Compared with [6], (12) is
more amenable to multiple action instances because ev-
ery bounding box is associated with at most one salient
region. Also, in [39], H is employed directly to filter
motionless proposals, so it is likely to yield more false
negatives. Based on (12), if the bounding box x; ; has a
larger saliency score, it is more probable that it encom-
passes a moving actor.
Given the bounding boxes from the spatial-CNN and
the motion-CNN, {x; ;}, 7 = 1,--- , 2Ny, the final
detection score of each bounding box is then given by

se(Xi5) se(Xi,j) +w(xi z) (13)

3.5. Action Tube Generation

After the fusion, the frame-level detection boxes are
linked together to generate action tubes. Note that action
localization and multi-object tracking are two different
problems since the former requires action classification



to link actions across frames. Also, as opposed to multi-
object tracking, in general only key actors are localized
in the action localization problems [39]. Therefore, we
opt to use a lightweight DP algorithm instead of a more
sophisticated multi-object tracking algorithm [42, 43],
which uses a data association algorithm to link trackers
with detections. Denote a set of video paths in a video
with M frames as T and a set of bounding boxes {x; ; }
along with the final detection scores {s}(x; ;)} obtained
from the fusion scheme discussed in Sec. 3.4. From T,
we attempt to find sets of bounding boxes from i = 1
to ¢+ = M, which are likely to contain a single action
instance. These sets are termed action tubes. Follow-
ing [6], the action tubes are found by maximizing the
accumulative score given by

M—1
Z Z Ac(xi,jaxi+1,g)a (14)
Ty ToNpy s =1
where  Ac(xij, Xit1,9) se(Xit1,9) + @ X

loU(x;,j,Xi+1,4), in which j and g are ordered by
the paths {7},}2Y¥7™+ and « is a weighting parameter.
The optimization problem can be solved using the
multiple path search algorithm [6] that simultaneously
finds all possible paths within one iteration.

In an untrimmed video, an action usually occupies
only a fraction of the entire video duration. Conse-
quently, it is required to find the temporal duration of
the action within the action tube. To do so, we use the
same algorithm as [4], which uses DP to solve the tube
energy maximization with the restriction of smoothness
of scores across consecutive frames.

4. Experimental Results
4.1. Datasets

The experiments are conducted using two widespread
action localization datasets: UCF101-24 [44] and J-
HMDB [45], both of which have a variety of charac-
teristics, to validate our approach.

UCF101-24 dataset [8,44]: This dataset contains 3194
annotated videos and 24 action classes. It encompasses
several viewpoints of actors, illumination conditions,
and camera movements. Most of the videos in this
dataset are untrimmed.

J-HMDB dataset [45]: This dataset is composed of 928
trimmed videos and 21 action classes. Several chal-
lenges encountered in this dataset include occlusion,
background clutter, and high inter-class similarity.

4.2. Experimental Settings

The learning process consists of training faster R-
CNN and HISAN, which are conducted separately. The
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Table 2: Action localization results on UCF101-24 with
various combinations of strategies.

Strategy Video mAP Frame mAP
HISAN SR Motion Saliency | 0.2 0.5 0.75  0.5:0.95 0.5
7296 43.69 1583  19.02 63.80
v 7835 47.28 2176  23.30 70.47
v v 79.05 4844 2187 2371 71.03
v v v 80.42 49.50 2235 24.05 73.71

Table 3: Action localization results on J-HMDB with
various combinations of strategies.

Strategy Video mAP Frame mAP
HISAN SR Motion Saliency | 0.2 0.5 0.75  0.5:0.95 0.5
7250 7124 4352 42.09 60.21
v 84.09 8298 4878  48.56 76.04
v v 84.30 83.27 4892  49.02 76.53
v v v 8597 84.02 5276  50.50 76.72

faster R-CNN is trained without feature sharing [4]. For
easy reference, Table 1 summarizes the hyperparame-
ters of these training procedures. All of the experiments
are based on the same protocols provided by UCF101-
24 [4,44] and J-HMDB [4,45]. We use a video unit with
length T, = 30 and 15 for UCF101-24 and J-HMDB,
respectively, which is decided by the minimum length
of the videos in the datasets. We choose the feature di-
mension, C' = 4096, as the dimension of the fc7 of the
detection network. We set the number of heads as P = §
and a dropout rate = 0.1 as suggested in [14, 33].

We apply box voting scheme [46] to the bounding
boxes from faster R-CNN with a prescribed IoU thresh-
old = 0.5. Following [6], the parameters « and § are de-
termined via the grid search with cross-validation, and a
5 x b spatial window is used to construct R. The length
of the SR interval is set as 15 and the parameter pu as
0.7. We use NMS with threshold = 0.3 and set N,,,,,s as
5 to have the same number of bounding boxes per frame
as [8]. The widespread video and frame mean-average
precision (mAP) are employed as metrics of accuracy
for the spatio-temporal action tube detection. Follow-
ing [7,8,10], we assess the classification accuracy based
on the action tube with the largest accumulated score.

4.3. Ablation Studies

e Impact of Hierarchical Bidirectional Self-
Attention: First, we inspect the performance im-
provement with the spatio-temporal attention generated
by HISAN on UCF101-24 and J-HMDB, as shown
respectively in Tables 2 and 3, from which we can
note that with the incorporation of this mechanism, the
video mAP of the two-stream CNN can be improved
by about 2.5% to 5% and 5% to 12% on UCF101-24
and J-HMDB, respectively. Also, the frame mAP can
be enhanced by about 6% and 16% on UCF101-24 and
J-HMDB, respectively. This is because this mechanism



Figure 6: Some action localization results with and with-
out HISAN are in blue and green, respectively, while the
ground truth is in red.

Figure 7: Example cases where the new fusion helps
the localization: (a) the detection by the spatial-CNN;
(b) the detection by the motion-CNN; (c) the motion-
saliency boxes.

exploits temporal dependency to guide the attention
on the location of the action. The improvement on
J-HMDB is more significant than that on UCF101-24,
as the former has many action classes with similar
sequences of sub-actions, as depicted in Fig. 6, which
requires more temporal dependency information to
classify the actions. The effect of the spatio-temporal
attention is also illustrated in Fig. 1, from which we
can see that self-attention can help locate the actions,
especially in the group action scenario that is difficult to
recognize with only the information of a single frame.

e Impact of SR: Next, we scrutinize the effect of the SR
algorithm, which is devised to handle the inconsistent
detection scores due to occlusion. As shown in Tables
2 and 3, together with SR the video mAP can be fur-
ther boosted by about 0.3% to 1.5% and 0.2% to 0.4%
on UCF101-24 and J-HMDB, respectively. Moreover,
the frame mAP can be improved by about 0.5% on both
datasets. The improvement on J-HMDB is less because
there is only a single action instance in all videos, so
there is less occlusion in this dataset.

o Impact of the New Fusion: Finally, we examine the
new fusion scheme, which incorporates motion saliency
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to diminish the effect of small camera motion. We can
notice from Tables 2 and 3 that the new scheme im-
proves the video mAP by about 1.1% to 2.3% and 0.7%
to 1.7% on UCF101-24 and J-HMDB, respectively. Fur-
thermore, the frame mAP can be boosted by about 2%
and 0.2% on UCF101-24 and J-HMDB, respectively.
The improvement on UCF101-24 is more substantial,
as the videos in this dataset contain more camera mo-
tion. As an illustration, some cases where the motion
saliency helps action localization are depicted in Fig. 7,
from which we can see that the saliency maps contain
the true region with actions so the low detection scores
from both of the spatial-CNN and motion-CNN can be
bolstered with the motion-saliency score via (13).

Based on the observations from the above simu-
lations, to attain superior performance, the proposed
HISAN is equipped with the SR algorithm and the new
fusion in the following simulations.

4.4. Comparison with State-of-the-Art Works

This section compares our method, which uses either
VGG-16 backbone or more sophisticated ResNet101 +
FPN [47], with some recently proposed approaches for
action localization and for action recognition.

First, we consider action localization problem. The
comparison with ten baselines, including Zolfaghari et
al. [5], Alwando et al. [6], Singh et al. [8], CPLA [9],
T-CNN [10], ACT [11], TPN [12], RTP + RTN [13],
Gu et al. [15], and Duarte et al. [17], in terms of video
mAP for different IoU’s on UCF101-24 is shown in Ta-
ble 4, from which we can note that CPLA [9] provides
better performance than [5, 10, 12] with the incorpora-
tion of an anticipation network that reuses the detection
in the previous frames to rectify inaccurate detection
in the current frame. By using an iterative refinement
scheme, [6] consistently outperforms [9] for all IoU’s.
ROAD [8] incorporates SSD to obtain competitive lo-
calization performance with low complexity. ACT [11]
utilizes a multi-frame object detector to simultaneously
regress the bounding boxes from a sequence of frames.
A combination of recurrent and multi-context informa-
tion is explored in [13] to enhance the detection ac-
curacy. Gu et al. [15] integrates the two-stream 13D
and faster R-CNN to attain more accurate localization.
Duarte et al. [17], which considers a capsule network, at-
tains the best results. However, capsule networks call for
high complexity due to a routing-by-agreement mecha-
nism. Apart from [15, 17], our approach outperforms all
of the aforementioned methods by incorporating the hi-
erarchical bidirectional self-attention to boost the detec-
tion accuracy and employing a new fusion scheme with
motion saliency to leverage the motion information.












