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Abstract

In this paper, we formulate a generic non-minimal

solver using the existing tools of Polynomials Optimization

Problems (POP) from computational algebraic geometry.

The proposed method exploits the well known Shor’s or

Lasserre’s relaxations, whose theoretical aspects are also

discussed. Notably, we further exploit the POP formulation

of non-minimal solver also for the generic consensus max-

imization problems in 3D vision. Our framework is simple

and straightforward to implement, which is also supported

by three diverse applications in 3D vision, namely rigid

body transformation estimation, Non-Rigid Structure-from-

Motion (NRSfM), and camera autocalibration. In all three

cases, both non-minimal and consensus maximization are

tested, which are also compared against the state-of-the-art

methods. Our results are competitive to the compared meth-

ods, and are also coherent with our theoretical analysis.

The main contribution of this paper is the claim that a

good approximate solution for many polynomial problems

involved in 3D vision can be obtained using the existing the-

ory of numerical computational algebra. This claim leads

us to reason about why many relaxed methods in 3D vision

behave so well? And also allows us to offer a generic re-

laxed solver in a rather straightforward way. We further

show that the convex relaxation of these polynomials can

easily be used for maximizing consensus in a deterministic

manner. We support our claim using several experiments

for aforementioned three diverse problems in 3D vision.

1. Introduction

Robust model estimation in 3D vision usually involves

two sub-problems: inlier detection and model computa-

tion. Faithful methods, already existing in many cases, have

offered an unparalleled success of 3D vision applications

from 3D scene reconstruction to 6DoF camera localization.

In general, the task of inlier detection is performed by maxi-

mizing the consensus among measurements. Measurements

that agree with some parameter of the known model are

treated as inliers. Customarily, model parameters are es-

timated from randomly selected minimal number of mea-

surements – using the so-called minimal solver methods.

These parameters then seek for the maximum consensus,

within the framework of Random Sampling and Consensus

(RANSAC). Parameters that maximize the consensus are

further refined with respect to all the inlier measurements

– using the so-called non-minimal solver methods.

Global methods for consensus maximization have gath-

ered significant attention [27, 5, 16, 10, 37, 46, 33], mainly

because RANSAC is non-deterministic and provides no

guarantee for optimality. Although the consensus maxi-

mization problem has proven to be NP-hard [14], global

methods with convex model representations have shown

promising results both in terms of speed and optimality [42,

16]. Therefore, existing methods offer satisfactory solutions

only for convex models. In the case of non-convex models,

some methods introduce linearized auxiliary model param-

eters with additional convex constraints [43, 42]. There do

exist methods for non-convex models which explore the ex-

act parameters [46, 37, 33]. However, all methods designed

for non-convex problems are specific to the problems at

hand. These methods therefore do not generalize for other

non-convex models. Consequently, a generic framework for

deterministic consensus maximization of non-convex mod-

els, beyond simple linearization, is highly desirable.

Unlike consensus maximization, non-minimal solvers

have gathered comparatively little attention. In practice,

the need of optimal non-minimal solvers is usually over-

looked. Instead, a local refinement on some geometric cost

derived for all inliers is performed as a surrogate method,

starting from the model parameters obtained by maximiz-

ing consensus. This however entails the risk of falling

into local minima traps of the global cost function result-

ing in inadequate solutions, which has been demonstrated

for various problems [8, 32, 22, 9, 39, 18, 23]. More

specifically, non-minimal solvers have been devised sepa-

rately for 3D rotations [18], 3D rigid body transformation

in [8, 32, 39, 23], perspective-n-point in [22], and two-view

relative pose in [9]. On the one hand, these solvers are very
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specific to their own addressed problems, and only [32] pro-

vides the theoretical optimality guarantee owing to the used

Branch-and-Bound (BnB) search paradigm. On the other

hand, methods in [22, 8, 9] are fast and also achieve a-

posteriori certificate, with an open question for theoretical

proof, of the global optimality. One notable work [21], pro-

vides convex relaxations for multiple computer vision prob-

lems while primarily focusing on the task of geometric error

minimization, where the addressed problems are often lin-

ear with respect to the algebraic error minimization.

In fact, minimization of cost functions defined by poly-

nomials, the global cost function in the non-minimal case,

is a long standing problem in algebraic geometry. Most no-

tably, one can use the Sum-of-Squares (SoS) methods to

minimize such polynomials using Semi-Definite Program-

ming (SDP). The theoretical optimality in this process can

be guaranteed, when a hierarchy of SoS polynomials as

constraints [36] is enforced. In this context, many meth-

ods in 3D vision make use of the SoS hierarchy; among

which are non-rigid 3D reconstruction [34, 4], camera auto-

calibration [11, 33], 3D-3D registration [33], and 3D mod-

eling [1], to name a few. The SoS hierarchy is also known

as the Lasserre’s hierarchy of relaxations in SDP [25]. The

first term of Lasserre’s relaxations is indeed the so-called

Shor’s relaxation, a well known result from the 80’s [40],

which is also known to be tight for quadratic polynomial

optimization [6]. Therefore, it is not very surprising that

the non-minimal solvers of [8, 9], which use Shor’s relax-

ation with additional problem specific constraints, are fast

and accurate. Moreover, in the context of non-minimal

solvers, where one is offered sufficiently many polynomi-

als, the tightness obtained using only the Shor’s relaxation

may not be an issue. Motivated by these observations, we

are interested to study the behaviour of SoS hierarchy for

both consensus maximization and non-minimal problems.

In this paper, we formulate a generic non-minimal

solver using the existing tools of Polynomials Optimiza-

tion Problems (POP) from computational algebraic geom-

etry. We also provide theoretical insights for using Shor’s

or Lasserre’s relaxation, and support them by synthetic and

real data experiments. More precisely, we suggest that

Shor’s relaxation can very often offer satisfactory solutions

when the models can be expressed as quadratic polynomi-

als. Furthermore, we show that higher order of Lasserre’s

relaxation is required for non-minimal solvers for higher de-

gree polynomials in the case of challenging non-rigid 3D

reconstruction. More interestingly, we successfully apply

the same formulation used for non-minimal solvers also in

the consensus maximization context. It then becomes obvi-

ous to make these relaxations tighter by adding more terms

of Lasserre’s relaxation, as one desires. However, we argue

that one may not always need to use higher order relaxation

when seeking for consensus among polynomials.

Our framework is simple and straightforward to imple-

ment, which is supported by three diverse applications in

3D vision, namely rigid body transformation estimation,

non-rigid reconstruction, and camera autocalibration. In all

three cases, both non-minimal and consensus maximization

are tested. We further show that the suggested relaxations

work satisfactorily even for the minimal problem setup. All

of our experiments are compared against the leading state-

of-the-art methods. Our results are competitive to the com-

pared methods, both in speed and accuracy, which are also

coherent with our theoretical analysis.

2. Background and Notations

We denote matrices with upper case letters and their el-

ements by double-indexed lower case letters: A = (aij).
Similarly, vectors are indexed: a = (ai). We write A ≻ 0

(resp. A ⪰ 0) to denote that the symmetric matrix A is posi-

tive definite (resp. positive semi-definite). Let IR[x] be the

ring of polynomials parametrized by variables x ∈ IRn, and

zd(x) be a vector of monomials, on the entries of x, ascend-

ing in degree up to d. Any polynomial p(x) ∈ IR[x] can be

represented using zd(x) and the Gram matrix.

Definition 2.1 (Gram matrix [38]) For a degree ≤ 2d

polynomial p(x) ∈ IR[x], the symmetric matrix G such that

p(x) = zd(x)⊺Gzd(x) is a Gram matrix of p(x).

One is often interested on solving the following general

non-convex polynomial optimization problem.

Problem 2.2 (Polynomial optimization problem [24])

For a set of general non-convex polynomials

pi(x), i = 0, . . . ,m, the Polynomial Optimization Problem

(POP) is given by,

min
x

{p0(x)∣ pi(x) ≥ 0, i = 1, . . . ,m}. (1)

In the following, we first focus on the cases when p(x)
is quadratic before diving into higher degree polynomials.

Notice that for quadratic polynomials, z1(x) is the homo-

geneous representation of x. In such case, a relaxed convex

solution can be obtained using the Shor’s method.

Definition 2.3 (Shor’s relaxation [41]) For general non-

convex quadratic polynomials pi(x), i = 0, . . . ,m, the POP

of (1) is equivalent to the following problem.

min
Y⪰0
{tr(G0Y)∣ rk(Y) = 1, tr(GiY) ≥ 0, i = 1, . . . ,m}, (2)

for rank and trace operators rk(.) and tr(.), respectively.

A convex relaxation of (2) can be obtained by dropping the

rank-1 constraint on Y∶ = z1(x)z1(x)⊺.
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It is well known that the Shor’s relaxation is tight for the

setup of (2) [6, 26]. Therefore, the solution of (1) is very

well approximated by such relaxation. Although, we de-

velop most of the theory using the quadratic polynomials

with Shor’s relaxation, we also address the case of higher

degree polynomials with tighter relaxations. In the latter,

we make use of a relaxation based on Lasserre’s hierar-

chy [25], similar to the Shor’s relaxation for quadratic case.

Now, we briefly present the theory behind Lasserre’s re-

laxation. In particular, we discuss the case when the highest

order of relaxation is 2n. For a vector of relaxed variables

w, the truncated moment matrix of order 2n is M2n(w) =
W =W⊺ such that wαβ = wα+β where α,β ∈ INn. By con-

struction, any lower order moment matrix is a submatrix

of W where Mn(w) = Y∶ = zd(x)zd(x)⊺ and M0(w) = 1.

Lasserre’s method derives a hierarchy of constraints using

the so-called Localizing matrices.

Definition 2.4 (Localizing matrix [25]) The localizing

matrix for polynomial p(x) and relaxation order s ≤ n is a

matrix Ms(p(x)w) given by,

Ms(p(x)w) = L(tr(GY)Ms(w)), (3)

where the Riesz function L(.) maps the bilinear terms on Y

and W to the corresponding terms of W. Note that Ms(w)
is a submatrix of Y for s ≤ n. Therefore, Ms(p(x)w) can

be expressed linearly on W in this case.

Definition 2.5 ( Lasserre’s relaxation [25]) An efficient

relaxed solution of Problem 2.2 of general non-convex

polynomials can be obtained by solving a Semi-Definite

Program (SDP) of a hierarchy of relaxations. For the

relaxation order of 2n and i = 1, . . . ,m, it is given by,

min
W⪰0
{tr(G0M

n(w))∣ tr(Ms(pi(x)w)) ⪰ 0}. (4)

The Lasserre’s relaxation is known to be tighter than Shor’s

relaxation, which also provides the certificate of finite con-

vergence when s ≥ n [25]. In fact, the Lasserre’s relaxation

includes the Shor’s relaxation as a special case when s = 0
because M0(pi(x)w) = tr(GiY) and Mn(w) = Y. Need-

less to say that the Lasserre’s relaxation is also applicable

to quadratic polynomials at the cost of a higher computa-

tion. However, for the non-minimal problems of quadratic

polynomials, our experiments show that the Lasserre’s re-

laxation is not really necessary.

3. Non-minimal Problem of Polynomials

In this section, we formulate the non-minimal problem of

polynomials. We first propose a solution to this problem for

general quadratic polynomials using the Shor’s relaxation

method. Later, the proposed solution will be generalized for

the case of higher degree polynomials using the Lasserre’s

method of relaxation.

Problem 3.1 For x ∈ IR
n

and m ≥ n, the non-minimal

problem of polynomials pi(x) ∈ IR[x], i = 1, . . . ,m, is,

min
x,ǫi
{∑

i

ǫi∣ ǫi ≥ ∣pi(x)∣, i = 1, . . . ,m}. (5)

The problem of 3.1 is in fact the L1 minimization prob-

lem over polynomials. One is often interested to minimize

such objective because in many 3D vision problems ǫ is a

geometric measure (such as point-to-line distance for two-

view epipolar constraint using Essential matrix). Depend-

ing upon application, one may be interested to minimize L2

(or L∞ for that matter). This nonetheless, is not really a

problem. For the sake of simplicity, we first present the the-

ory using the L1 formulation. Its extension to Lp − norm

is discussed in Section 6. Non-minimal problems are the

outcome of over-detemined systems. The solution we are

seeking is the one that agrees with all polynomials with

minimum cumulative error, unlike the exact solution of the

minimal case. Note when n =m, the non-minimal problem

becomes a minimal problem.

3.1. Quadratic Polynomials

Proposition 3.2 For a set of non-convex quadratic polyno-

mials {pi(x)}mi=1, the Shor’s relaxation provides a convex

relaxation of the non-minimal Problem 3.1 as,

min
Y⪰0,ǫi

{∑
i

ǫi∣ ǫi ≥ ∣tr(GiY)∣, i = 1, . . . ,m}. (6)

Proof Here, we provide the intuition behind the proof.

Note that the problem of (6) is equivalent to (5) for quadratic

polynomials {pi(x)}mi when rk(Y) = 1. Therefore (6) can

directly be obtained by dropping the rank constraint, similar

as in the Shor’s relaxation 2.3. In fact, a rigorous proof can

be obtained using the POP formulation of Section 2. Please,

refer to the supplementary for the alternative proof.

The relaxed convex problem (6) is an SDP. This can be

solved efficiently using the interior point method [7]. Ide-

ally, the rank of Y is expected to be of rank-1. However, this

is not usually the case. Therefore, we recover the primal so-

lution x ∈ IRn after enforcing the rank-1 constraint using

Singular Value Decomposition (SVD). In fact, the princi-

pal singular-vector Y is the homogeneous representation of

x ∈ IRn+1. Recall that the dual relaxed variable Y encodes

the primal solution in the form Y∶ = z1(x)z1(x)⊺.
3.2. General Polynomials

Proposition 3.3 For a set of non-convex general polynomi-

als {pi(x)}mi=1 of degree ≤ d, the Lasserre’s relaxation with

order s ≤ n ∈ IN provides a convex relaxation of the non-

minimal Problem 3.1 as,

min
W⪰0,ǫi

{∑
i

ǫi∣ ǫi ≥ ∣tr(Ms(pi(x)w))∣, i = 1, . . . ,m}. (7)
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Proof The proof is similar to the Proposition 3.2. Please,

refer the supplementary material for the details.

The optimal primal solution x ∈ IRn can be recovered from

W using SVD, similar to that of (6) discussed above.

4. Consensus Maximization Problem

The non-minimal method presented in the previous sec-

tion assumes that the polynomials may be corrupted by the

noise. Therefore, a solution that minimizes the cumulative

error of all polynomials is searched. In the presence of noise

and outliers, we wish to solve the following Problem.

Problem 4.1 Given a set S = {pi(x)}mi=1 and a threshold ǫ,

max
x,ζ⊆S

{∣ζ ∣, ǫ ≥ ∣pi(x)∣, ∀pi(x) ∈ ζ}. (8)

The consensus maximization problem seeks for a feasible

solution that results the largest inlier set – a set of polynomi-

als with residual smaller than ǫ. This problem, however, is

difficult to solve and known to be NP-hard [14], even when

p(x) is a linear function on x. In this work, we approach this

problem using the Branch-and-Bound search paradigm.

4.1. BranchandBound Method

Our Branch-and-Bound(BnB) search is performed by

branching on the space of binary assignment variables, one

for each member in S . During the BnB process, we seek for

a feasible x using the mixed-integer programming method.

Definition 4.2 (Mixed-Integer Programming, MIP)

For a set of binary variables Z ∈ {0,1}m representing

the inlier/outlier assignments, a given set of polyno-

mials S = {pi(x)}mi=1 and a threshold ǫ, the consensus

maximization Problem 4.1 is equivalent to,

min
x,zi∈Z

{
m

∑
i=1

zi∣ ziM + ǫ ≥ ∣pi(x)∣, Z ∈ {0,1}m}, (9)

where M is a sufficiently large positive scalar constant,

commonly used in optimization to ignore invalid con-

straints [17]. If the binary variable zi = 0, the polynomial

pi(x) is an inlier. Otherwise, it is an outlier.

4.2. Consensus using MISDP

We formulate the consensus maximization problem by

using the polynomial relaxations within the framework of

Mixed-Integer Semi-Definite Programming (MI-SDP), for

two different cases. First, we use Shor’s relaxation of (2)

with MI-SDP for solving the consensus maximization prob-

lem of quadratic polynomials. Later, the Lasserre’s relax-

ation of (4) is used within the same framework, for the con-

sensus maximization of more general polynomials.

Corollary 4.3 (Quadratic case) Given a set of non-convex

quadratic polynomials S = {pi(x)}mi=1 and a threshold ǫ,

the consensus maximization Problem 4.1 can be solved us-

ing the following Mixed integer semi-definite program,

min
Y⪰0,zi∈Z

{
m

∑
i=1

zi∣ ziM + ǫ ≥ ∣tr(GiY)∣, Z ∈ {0,1}m}. (10)

The MI-SDP of (10) can be solved efficiently using off-

the-self optimization toolboxes. The MI-SDP solution pro-

vides us the optimal set of inlier polynomials, together with

a feasible x. These inlier polynomials are then used to solve

the non-minimal problem of (6), to obtain an optimal so-

lution x. A similar MI-SDP formulation for the consensus

maximization among general polynomials is given below.

Corollary 4.4 (General case) Given a set of non-convex

general polynomials S = {pi(x)}mi=1 and a threshold ǫ, the

consensus maximization Problem 4.1 for assignments Z ∈
{0,1}m can be solved using the following MI-SDP,

min
W⪰0,zi∈Z

{
m

∑
i=1

zi∣ ziM + ǫ ≥ ∣tr(Ms(pi(x)w))∣}. (11)

5. 3D Vision Problems

We present three examples of 3D vision problems for

both consensus maximization and non-minimal problems.

We start by a generic formulation of consensus maximiza-

tion for all three problems. The inlier set of consensus max-

imization are then used to solve a non-minimal problem for

the optimal set of parameters. During both of these stages,

we also introduce problem specific polynomial constraints.

Let us consider a set of vectorized polynomials

{Pi(x)}mi=1, possibly from many outlier measurements, is

given to us. In the first step, we are interested in solving the

following consensus maximization problem,

min
x,zi∈Z

{
m

∑
i=1

zi∣ ziM+ǫ ≥ ∣Pi(x)∣, x ∈ K,Z ∈ {0,1}m}, (12)

where x ∈ K represents problem specific constraints and

Z measures inlier/outlier assignments, and ′′ ≥′′ represents

one-to-many elementwise inequality. We solve (12) using

our Corollary 4.3/4.4 for x and Z . Once the inlier/outlier

assignments, i.e. Z , is obtained, we solve the following

non-minimal problem using our Proposition 3.2/3.3.

min
x,ǫi
{

m

∑
i=1

ǫi∣ ziM + ǫi ≥ ∣Pi(x)∣, x ∈ K}. (13)

5.1. Rigid Body Transformation

We consider correspondences between two point clouds

that differ by a 3D rigid body transformation. Let {u, v} be

euclidean coordinates of a pair of corresponding points such
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that v = Ru + t, for rotation matrix R ∈ SO(3) and transla-

tion t ∈ IR
3. For quaternions q ∈ IR

4, we represent the

rotation matrix as R(q) with entries quadratic in q. Given

a set of correspondences {ui, vi}mi=1, we solve consensus

maximization and non-minimal problems, respectively of

(12) and (13), for variable x = (q⊺, t⊺)⊺ and polynomials

Pi(x) = vi − R(q)ui − t, with K = {x ∣ ∥q∥2 = 1}.

5.2. Camera Autocalibration

From a set of given Fundamental matrices {Fi}mi=1, we

wish to estimate the camera intrinsic matrix K. Here, we

assume that the camera intrinsic is constant across all the

images involved during Fundamental matrix estimation. Let

ω be the Dual Image of Absolute Conic (DIAC) expressed

in K as ω = KK⊺. The simplified Kruppa’s equation [28]

allows us to express ω in the form of polynomials using

Fundamental matrices Fi. Let Fi = UiDiVi be the singu-

lar value decomposition, with D = diag([ri, si,0]). For

Ui = [ui1∣ui2∣ui3] and Vi = [vi1∣vi2∣vi3], two independent

polynomials of simplified Kruppa’s equations are,

Pi1(ω) = (risiv⊺i1ωvi2)(u⊺i2ωui2) + (r2i v⊺i1ωvi1)(u⊺i1ωui2),
Pi2(ω) = (risiv⊺i1ωvi2)(u⊺i1ωui1) + (s2i v⊺i2ωvi2)(u⊺i1ωui2).

(14)

We parameterize ω using x ∈ IR5 because ω is a 3 × 3 ma-

trix with ω = ω⊺ and ω(3,3) = 1. Given a set of Funda-

mental matrices {Fi}mi=1, we solve consensus maximization

and non-minimal problems of (12) and (13), for x ∈ IR5,

Pi(x) = (Pi1(ω), Pi2(ω))⊺, and K = {x∣ω ⪰ 0}. The intrin-

sic K is recovered using the Cholesky decomposition on ω.

5.3. NonRigid StructurefromMotion (NRSfM)

Method in [34] proposes a framework of modeling

NRSfM as a POP using the geometric prior of isometry.

It models the rest shape as a Riemannian manifold and the

deformed shapes as isometric mappings of the rest shape.

The isometric deformation prior is then expressed by relat-

ing the metric tensor, the Christoffel symbols parametrized

by k1, k2 ∈ R and the inter-image registration warps in cam-

era coordinates. We borrow the notations and definitions of

the Christoffel symbol parameterization from the original

problem formulation [34]. As in [34], we summarize the

resulting system of polynomials as,

Pi(x) = P(x) − {P1i(x)}ni=2 (15)

(15) is in fact a system of n − 1 independent quartic poly-

nomials for n images that relates the point-wise inter-image

warp measurements qni=2 to the Christoffel symbols param-

eterized by x = [k1 k2]⊺. Solving (15) amounts to solving

the isometric NRSfM problem as k1, k2 can be used to ob-

tain the Jacobian of each shape with respect to the reference

image coordinates in the camera frame. One can then com-

pute the surface normal at each corresponding point of the

n shapes. We solve consensus maximization and the non-

minimal problem of (15) to solve the NRSfM problem.

6. Discussion

The L1 constraint of (5) (and the ones that follow) can

be extended to L∞ by replacing all ǫi variables by a sin-

gle variable ǫ, which is a common practice in convex op-

timization [7]. Similarly, L2 norm can also be minimized

by imposing the conic constraints on stacked linear vector

of polynomials vi(x) = [trace(G1iY), . . . , trace(GmiY)]⊺
of (6) (resp. of (7)) for m polynomials of the ith measure-

ment such that ∥vi(x)∥2 ≤ ǫi. In this process, we introduce

one variable for each measurement, therefore the time com-

plexity of our method is expected to be linear on the number

of measurements. Although these auxiliary variables may

seem to introduce overhead, they are in fact helpful. These

variables allow us to express the non-minimal problems as

an SOCP. The SOCP constraints enable us to easily extend

our non-minimal formulation to that of consensus maxi-

mization, where variables ǫi naturally turn into inlier thresh-

old. Alternatively for non-minimal problems, one could

choose to minimize ∑i ∥vi(x)∥2 (or even ∑i pi(x)2) di-

rectly, using the standard SOS optimization methods. Such

formulation not only compromises the flexibility, but also

adds burden by increasing the degree of polynomials.

7. Experiments

We conducted several experiments with synthetic and

real datasets. The synthetic data was generated using the

toolbox of [8], in the very similar setups, whereas, the

real datasets used are Fountain and Herz-Jesu [44], and

Flag [45], Hulk and Tshirt [34]. In the case of real datasets,

only the outliers were synthetically generated for quantita-

tive evaluations. All our results for non-minimal solvers are

generated after the consensus maximization, except for the

minimimal case. Our framework is implemented in MAT-

LAB2015a and all the optimization problems are solved

using MOSEK [29]. All experiments were carried out on

a 16GB RAM Pentium i7/3.40GHz. Some qualitative re-

sults obtained for different applications, discussed later, are

shown in Figure 1.

7.1. Rigid Body Transformation

We conducted a large amount of synthetic experiments to

explore the behaviours of the proposed framework on rigid

body transformation estimation, both for non-minimal and

consensus maximization problems. This is mostly because

there exists three different non-minimal solvers, namely

Briales’17 [3], Olsson’08 [31] and Olsson-BnB [32], com-

parison against them is one of our interests. In the first ex-
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Data

Model

GT

recon-lass

Figure 1: Non-minimal results obtained using our frame-

work. From left to right: rigid registration (model: green;

data: red) on the public dataset [15]; 3D reconstruction of

the Fountain sequence obtained using the estimated camera

intrinsics; non-rigid 3D reconstruction (ground truth: green;

reconstruction: red) of tshirt with Lasserre’s relaxation.
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Figure 2: Results for minimial (3 points) rigid body trans-

formation estimation. Left to right: noise vs. errors in rota-

tion angles and translation for four different methods.

periment, we tested performance of different methods in the

minimial setup with varying levels of noise. The obtained

results are reported in Figure 2. Note that the problem of

rigid body transformation is a 3-point problem. One can

observe for Figure 2 that our method performs very com-

petitively compared to the globally optimal method Olsson-

BnB in terms of estimating rotation and translation param-

eters, whereas, our method is very competitive in terms of

time, shown in Figure 3 (left), with Briales’17. Experi-

ments with Olsson’08 shows that this method does not sup-

port the minimal setup.

Experiments for non-minimal setups were also con-

ducted, to report similar measures as that of minimal case,

by varying the number of points for fixed noise level. Re-

sults of these experiments are reported in Figure 4. Here

we can observe that our method still behaves very similar

to Olsson-BnB in terms of accuracy. Note that the time,

shown in Figure 3 (right), for our method increases linearly

with the number of points. The reason behind this has al-

ready been discussed in Section 6, where we also suggest

techniques to speed up by compromising the flexibility. Un-

like the minimal case, Olsson’08 performs very similar to

Olsson-BnB and Briales’17.
Using the flexibility offered by our method, we con-

ducted experiments with increasing amount of outliers and

report the experiments in Figure 5. Our framework pro-

vides consistent results even when outliers are present in the

measurements, as it passes through the process of consensus

0 2 4 6

Noise (%)

10
0

10
1

T
im

e
 (

s
e

c
)

Briales'17

Olsson'08

Olsson-BnB

Our method

0 10 20 30

Number of points

10
0

10
1

T
im

e
 (

s
e

c
)

Briales'17

Olsson'08

Olsson-BnB

Our method

Figure 3: Time taken for minimal case (3 points) with noise

and non-minimal case (of fixed 1.0% noise) with number

points. Results for rigid body transformation estimation.
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Figure 4: Non-minimal (1.0% noise) results for rigid body

transformation estimation. Errors in rotation angles and

translation vs. increasing number of points.

maximization. Although it is unfair to compare with non-

minimal solver against a framework that offers both con-

sensus maximization and non-minimal solution, Figure 5

shows the impact of outliers when only non-minimal solvers

are used. Note that our method performs well, even when

the data is contaminated with 90% outliers (10 inliers and

90 outliers). As expected, the non-minimal solvers remain

consistent in time with the increase of outliers, of which

they are indifferent, as shown in Figure 6 (left). On the other

hand, our framework filters outliers prior to solving the non-

minimal problem. Our method was also compared with

a global consensus maximization Speciale’17 [42], where

both methods perform very similarly in terms of optimal-

ity, whereas, Speciale’17 performs faster due to its problem

specific constraints. The time comparison with increasing

number of outliers is shown in Figure 6 (right).
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Figure 5: Our framework vs. other non-minimal solvers

with increasing outliers (and fixed 10 inlier correspon-

dences) for rigid body transformation estimation. Errors in

rotation and translation estimation with increasing outliers.
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(right), with increasing outliers (and fixed 10 inlier corre-

spondences) for rigid body transformation estimation.

7.2. Camera Autocalibration

We conducted experiments for camera autocalibration on

two real datasets: Fountain and Herz-Jesu from [44]. The

results obtained by our framework is compared against that

of three existing global methods for autocalibration: LMI

direct method from [20], Rank-3 direct method from [12],

and a Stratified method from [13]. All of these three meth-

ods assume that the projective motion required for autocal-

ibration is free of outliers, and minimize the global cost

in an optimal manner. Therefore, they can be thought as

some kind of non-minimal solvers. The projective recon-

struction required for [20], [12] and [13] were obtained

using [30]. We also compared our method with two local

methods for camera calibration, namely Practical form [19]

and Simplified-Kruppa from [28]. We provide the quanti-

tative results for calibration accuracy, by computing errors

on the camera intrinsic parameters. Three different error

measurement metrics are used: errors in focal length ∆f ,

principal point ∆uv, skew ∆s. Obtained results by all six

methods are reported in Table 1.

For the experiments of consensus maximization, we syn-

thetically introduced the outlier Kruppa’s equations. The

ourliers are added in an increasing manner upto 80%. Our

consensus maximization method, with Shor’s relaxation,

is able to detect all inliers and outliers correctly for both

datasets. We tracked the number of pessimistic and opti-

mistic inliers for increasing BnB iterations, which is shown

in the Figure 7 (left). The consensus maximization experi-

ments are compared with a global consensus maximization

method for autocalibration, namely Paudel’18 from [37].

For a fair comparison, the constraint on the bounds of the

DIAC are chosen as in [37]. We therefore assume that the

focal length lies within [1 10] interval relative to the im-

age size, aspect ratio lies between 0.7-1.25, principal points

lie around the image center within a radius of (1
4
)th of the

image size, and the skew is close to zero. With these as-

sumptions, we derive bounds on DIAC using the interval

analysis arithmetic [2], similarly for the corresponding vari-

able X in (10). Note that these are valid assumption in most

cases for camera calibration. The results obtained by our

Dataset Method ∆f ∆uv ∆s Time(s)

Practical [19] 0.0117 0.0149 0.0037 0.36

Stratified [13] 0.0777 0.0969 0.0125 388.24

Fountain Rank-3 Direct [12] 0.0100 0.0147 0.0044 5.75

(11-views) LMI Direct [20] 0.0506 0.0269 0.0024 156.88

Simplified-Kruppa [28] 2.93e-05 0.0069 3.23e-05 1.88

Ours 0.0060 0.0061 6.46e-04 0.83

Practical [19] 0.0017 0.0113 0.0068 0.36

Stratified [13] 0.7231 0.4462 0.3232 380.72

Herz-jesu Rank-3 Direct [12] 0.0026 0.0096 0.0069 1 6.54

(8-views) LMI Direct [20] 0.0138 0.0086 0.005 115.61

Simplified-Kruppa [28] 4.46e-05 0.0069 3.40e-05 0.53

Ours 0.0128 0.0220 8.77e-04 0.81

Table 1: Our framework vs. two local [19, 28] and three

global [13, 12, 20] methods in non-minimal setup of cam-

era autocalibration on two real datasets. Views-1 are the

number of measurements used in all the experiments.
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Figure 7: Left: convergence graph for Fountain dataset.

Right: time taken and inliers detected by our method and

[37], with increasing outliers and fixed inliers on Herz-jesu.

framework as well that of Paudel’18 are reported in Fig-

ure 7 (right) for increasing outliers, showing the detected

inliers and time taken by both methods. These results also

show that our framework can greatly benefit if the bounds

on the sought parameters are also known. In fact, this may

very often be the case in many 3D vision problems.

7.3. NonRigid StructurefromMotion

Experiments with NRSfM were conducted in the simi-

lar setup of Parashar’18 [35]. From N images, 2N − 2

polynomials of 2 variables on Christoffel symbols k1 and

k2, i.e. (15), were extracted using the theory presented in

Section 5.3. For these polynomials, we first computed the

non-minimal solution using the proposed framework with

Shor’s relaxation. However, the Shor’s relaxation alone did

not provide us satisfactory solutions. Note that (15) are ex-

pressed using the second-order measurements of the local

correspondences, therefore their coefficients are very sen-

sitive to noise. Moreover, polynomials of (15) are solved

for each point independently. In such cases, non-minimal

solvers are very valuable, where the over-determined sys-

tem of quartic polynomials are provided by multiple mea-

surements across views. Therefore, the method of [35] uses

the hierarchy of SOS relaxations to obtain the desired so-

lution. In this context, we observed that the Lasserre’s re-

laxation is indeed necessary, because the non-minimal solu-

tions obtained using Shor’s relaxation were not on par with

that of SOS method. Therefore, we show the difference
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Figure 8: Results for non-minimal isometric non-rigid re-

construction. Left to right: depth and normal errors for flag

dataset, depth errors of three methods on different datates.

between Shor’s and Lasserre’s relaxations for NRSfM. In

previous two problems, their differences were not very sig-

nificant in terms of accuracy, but only in terms of speed.

We use the datasets, Flag [45], Hulk and Tshirt [34] to

evaluate our non-minimal solver. Our obtained solutions

are compared with the baseline Parashar’18 [35] in Fig-

ure 8 for the non-minimal case, where the reconstructed

depth error is shown across views on the left, and across

datasets on the right. Note from Figure 8 that the base-

line method performs significantly better compared to only

the Shor’s relaxations-based method. However, when we

use Lasserre’s relaxation of order one (i.e. s = 1 in (4)),

the solution becomes very competitive to that of the hierar-

chy of SOS relaxations used in [35]. This shows that the

higher order relaxations do not offer significant improve-

ments at least for this particular formulation of NRSfM. In

fact, it is generally agreed that NRSfM is a very challeng-

ing problem in 3D vision. Our observation from real dataset

shows that higher order relaxations may not be necessary,

in a wide range of applications, including the case of iso-

metric NRSfM. Of course, our observation may be biased

from only three problems that we have tested. Especially,

second degree polynomials for rigid body transformation

and camera calibraion, and degree four polynomials that in-

volve only two unknown variables at a time in the case of

NRSfM. Nevertheless, one needs to be aware that lower or-

der relaxations could be tried first, before divulging into the

higher ones. If the lower order relaxations already offer sat-

isfactory solutions, this not only allows one to obtain non-

minimal solutions faster but also allows to use rather non

obvious polynomial problems within the global framework

of consensus maximization by using the BnB paradigm.

To support our claim that even the lower degree relax-

ations are sufficient for consensus maximization, we con-

ducted several experiments with various amount of syn-

thetic outliers on aforementioned real datasets. For the

setup of NRSfM we were able to detect almost all outliers

when outliers upto 70% were introduced. Results for one

such instance of consensus maximization, with 50% outliers

views, are reported in Figure 9, for all three datasets. In Fig-

ure 9, we show the estimated depth error across inlier views

on the left. As expect, results with Lasserre’s relaxations are

significantly better than that of the Shor’s relaxation. Never-

theless, Shor’s relaxation still shows its expected behaviour.

Although, it may not be very interesting to compare the re-

sults of a non-minimal solver, i.e. Parashar’18, against

that of a consensus maximization method in general, it is

somehow different in this case. One aspect that we have

not yet discussed is the power of SOS methods. It is gen-

erally known that the SOS solvers are robust to noise [36],

SOS solver appears to be relatively stable even in the pres-

ence of outliers. In the first glance, we thought this could be

because of the iterative refinement of outliers within the al-

gorithm of Parashar’18. This turns out not to be the case.

The SOS method consistently performed reasonably well,

even when the iterative refinement process was removed.

This is because of two reasons: one is the robustness of

SOS methods towards a moderate amount of outliers; other

is the failure to obtain a valid solution means in some sense

the detection of outliers. Such outlier detection is specific to

the problem formation of [35] because the POP in this case

is defined point-wise.
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Figure 9: Consensus maximization results for isometric

non-rigid reconstruction. Left to right: depth and normal

errors for flag dataset, depth errors of three methods on dif-

ferent datasets with 50% synthetically added outliers.

8. Conclusion

In this paper, we demonstrated that a proper usage of the

existing tools in numerical algebraic geometric POP can be

used in a straightforward way in many 3D vision problems.

This is achieved by using the known “good approximate so-

lutions” expressed as convex SDP formulation. On the one

hand, we argue that the existing solutions can be used in

their current form to solve many 3D vision problems, espe-

cially for which the optimal non-minimal solvers have not

been devised yet. We also discussed about a good practice

to formulate POP. Using our theoretical reasoning, we made

suggestions for a generic relaxed non-minimal solver that is

suitable for may 3D vision problems. We further argued that

the standard method for polynomial relaxations are indeed

powerful, which can also be used for consensus maximiza-

tion in a deterministic manner. We have supported our sug-

gestions/claims using several experiments of three diverse

problems in 3D vision. We reach to this conclusion mainly

because many polynomials in 3D vision problems are inher-

ently of low degrees with limited variables.
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