
SoftTriple Loss: Deep Metric Learning Without Triplet Sampling

Qi Qian1 Lei Shang2 Baigui Sun2 Juhua Hu3 Hao Li2 Rong Jin1

1 Alibaba Group, Bellevue, WA, 98004, USA
2 Alibaba Group, Hangzhou, China

3 School of Engineering and Technology

University of Washington, Tacoma, WA, 98402, USA

{qi.qian, sl172005, baigui.sbg, lihao.lh, jinrong.jr}@alibaba-inc.com, juhuah@uw.edu

Abstract

Distance metric learning (DML) is to learn the embed-

dings where examples from the same class are closer than

examples from different classes. It can be cast as an opti-

mization problem with triplet constraints. Due to the vast

number of triplet constraints, a sampling strategy is essen-

tial for DML. With the tremendous success of deep learning

in classifications, it has been applied for DML. When learn-

ing embeddings with deep neural networks (DNNs), only a

mini-batch of data is available at each iteration. The set of

triplet constraints has to be sampled within the mini-batch.

Since a mini-batch cannot capture the neighbors in the orig-

inal set well, it makes the learned embeddings sub-optimal.

On the contrary, optimizing SoftMax loss, which is a clas-

sification loss, with DNN shows a superior performance in

certain DML tasks. It inspires us to investigate the formu-

lation of SoftMax. Our analysis shows that SoftMax loss is

equivalent to a smoothed triplet loss where each class has

a single center. In real-world data, one class can contain

several local clusters rather than a single one, e.g., birds

of different poses. Therefore, we propose the SoftTriple loss

to extend the SoftMax loss with multiple centers for each

class. Compared with conventional deep metric learning

algorithms, optimizing SoftTriple loss can learn the embed-

dings without the sampling phase by mildly increasing the

size of the last fully connected layer. Experiments on the

benchmark fine-grained data sets demonstrate the effective-

ness of the proposed loss function.

1. Introduction

Distance metric learning (DML) has been extensively

studied in the past decades due to its broad range of ap-

plications, e.g., k-nearest neighbor classification [29], im-

age retrieval [24] and clustering [31]. With an appropriate

distance metric, examples from the same class should be

FC in SoftMax FC in SoftTriple

Figure 1. Illustration of the proposed SoftTriple loss. In conven-

tional SoftMax loss, each class has a representative center in the

last fully connected layer. Examples in the same class will be col-

lapsed to the same center. It may be inappropriate for the real-

world data as illustrated. In contrast, SoftTriple loss keeps multi-

ple centers (e.g., 2 centers per class in this example) in the fully

connected layer and each image will be assigned to one of them.

It is more flexible for modeling intra-class variance in real-world

data sets.

closer than examples from different classes. Many algo-

rithms have been proposed to learn a good distance met-

ric [15, 16, 21, 29].

In most of conventional DML methods, examples are

represented by hand-crafted features, and DML is to learn a

feature mapping to project examples from the original fea-

ture space to a new space. The distance can be computed as

the Mahalanobis distance [11]

distM (xi,xj) = (xi − xj)
⊤M(xi − xj)

where M is the learned distance metric. With this formula-

tion, the main challenge of DML is from the dimensionality

of input space. As a metric, the learned matrix M has to be

positive semi-definite (PSD) while the cost of keeping the

matrix PSD can be up to O(d3), where d is the dimensional-

ity of original features. The early work directly applies PCA

to shrink the original space [29]. Later, various strategies

are developed to reduce the computational cost [16, 17].

Those approaches can obtain the good metric from the

16450

input features, but the hand-crafted features are task in-

dependent and may cause the loss of information, which

limits the performance of DML. With the success of deep

neural networks in classification [7], researchers consider

to learn the embeddings directly from deep neural net-

works [15, 21]. Without the explicit feature extraction,

deep metric learning boosts the performance by a large mar-

gin [21]. In deep metric learning, the dimensionality of in-

put features is no longer a challenge since neural networks

can learn low-dimensional features directly from raw mate-

rials, e.g., images, documents, etc. In contrast, generating

appropriate constraints for optimization becomes challeng-

ing for deep metric learning.

It is because most of deep neural networks are trained

with the stochastic gradient descent (SGD) algorithm and

only a mini-batch of examples are available at each itera-

tion. Since embeddings are optimized with the loss defined

on an anchor example and its neighbors (e.g., the active

set of pairwise [31] or triplet [29] constraints), the exam-

ples in a mini-batch may not be able to capture the overall

neighborhood well, especially for relatively large data sets.

Moreover, a mini-batch contains O(m2) pairs and O(m3)
triplets, where m is the size of the mini-batch. An effective

sampling strategy over the mini-batch is essential even for

a small batch (e.g., 32) to learn the embeddings efficiently.

Many efforts have been devoted to studying sampling an in-

formative mini-batch [19, 21] and sampling triplets within

a mini-batch [12, 24]. Some work also tried to reduce the

total number of triplets with proxies [14, 18]. The sampling

phase for the mini-batch and constraints not only loses the

information but also makes the optimization complicated.

In this work, we consider to learn embeddings without con-

straints sampling.

Recently, researches have shown that embeddings ob-

tained directly from optimizing SoftMax loss, which is pro-

posed for classification, perform well on the simple distance

based tasks [22, 30] and face recognition [2, 9, 10, 27, 28].

It inspires us to investigate the formulation of SoftMax loss.

Our Analysis demonstrates that SoftMax loss is equivalent

to a smoothed triplet loss. By providing a single center for

each class in the last fully connected layer, the triplet con-

straint derived by SoftMax loss can be defined on an orig-

inal example, its corresponding center and a center from

a different class. Therefore, embeddings obtained by op-

timizing SoftMax loss can work well as a distance metric.

However, a class in real-world data can consist of multi-

ple local clusters as illustrated in Fig. 1 and a single center

is insufficient to capture the inherent structure of the data.

Consequently, embeddings learned from SoftMax loss can

fail in the complex scenario [22].

In this work, we propose to improve SoftMax loss by

introducing multiple centers for each class and the novel

loss is denoted as SoftTriple loss. Compared with a single

center, multiple ones can capture the hidden distribution of

the data better due to the fact that they help to reduce the

intra-class variance. This property is also crucial to reserve

the triplet constraints over original examples while training

with multiple centers. Compared with existing deep DML

methods, the number of triplets in SoftTriple is linear in

the number of original examples. Since the centers are en-

coded in the last fully connected layer, SoftTriple loss can

be optimized without sampling triplets. Fig. 1 illustrates the

proposed SoftTriple loss. Apparently, SoftTriple loss has to

determine the number of centers for each class. To allevi-

ate this issue, we develop a strategy that sets a sufficiently

large number of centers for each class at the beginning and

then applies L2,1 norm to obtain a compact set of centers.

We demonstrate the proposed loss on the fine-grained vi-

sual categorization tasks, where capturing local clusters is

essential for good performance [17].

The rest of this paper is organized as follows. Section

2 reviews the related work of conventional distance metric

learning and deep metric learning. Section 3 analyzes the

SoftMax loss and proposes the SoftTriple loss accordingly.

Section 4 conducts comparisons on benchmark data sets.

Finally, Section 5 concludes this work and discusses future

directions.

2. Related Work

Distance metric learning Many DML methods have

been developed when input features are provided [29, 31].

The dimensionality of input features is a critical challenge

for those methods due to the PSD projection, and many

strategies have been proposed to alleviate it. The most

straightforward way is to reduce the dimension of input

space by PCA [29]. However, PCA is task independent and

may hurt the performance of learned embeddings. Some

works try to reduce the number of valid parameters with

the low-rank assumption [8]. [16] decreases the computa-

tional cost by reducing the number of PSD projections. [17]

proposes to learn the dual variables in the low-dimensional

space introduced by random projections and then recover

the metric in the original space. After addressing the chal-

lenge from the dimensionality, the hand-crafted features be-

come the bottleneck of performance improvement.

The forms of constraints for metric learning are also de-

veloped in these methods. Early work focuses on optimiz-

ing pairwise constraints, which require the distances be-

tween examples from the same class small while those from

different classes large [31]. Later, [29] develops the triplet

constraints, where given an anchor example, the distance

between the anchor point and a similar example should be

smaller than that between the anchor point and a dissimi-

lar example by a large margin. It is obvious that the num-

ber of pairwise constraints is O(n2) while that of triplet

constraints can be up to O(n3), where n is the number of

6451

original examples. Compared with the pairwise constraints,

triplet constraints optimize the geometry of local cluster and

are more applicable for modeling intra-class variance. In

this work, we will focus on the triplet constraints.

Deep metric learning Deep metric learning aims to learn

the embeddings directly from the raw materials (e.g., im-

ages) by deep neural networks [15, 21]. With the task

dependent embeddings, the performance of metric learn-

ing has a dramatical improvement. However, most of deep

models are trained with SGD that allows only a mini-batch

of data at each iteration. Since the size of mini-batch is

small, the information in it is limited compared to the orig-

inal data. To alleviate this problem, algorithms have to de-

velop an effective sampling strategy to generate the mini-

batch and then sample triplet constraints from it. A straight-

forward way is increasing the size of mini-batch [21]. How-

ever, the large mini-batch will suffer from the GPU mem-

ory limitation and can also increase the challenge of sam-

pling triplets. Later, [19] proposes to generate the mini-

batch from neighbor classes. Besides, there are various

sampling strategies for obtaining constraints [3, 12, 21, 24].

[21] proposes to sample the semi-hard negative examples.

[24] adopts all negative examples within the margin for each

positive pair. [12] develops distance weighted sampling that

samples examples according to the distance from the anchor

example. [3] selects hard triplets with a dynamic violate

margin from a hierarchical class-level tree. However, all of

these strategies may fail to capture the distribution of the

whole data set. Moreover, they make the optimization in

deep DML complicated.

Learning with proxies Recently, some researchers con-

sider to reduce the total number of triplets to alleviate the

challenge from the large number of triplets. [14] constructs

the triplet loss with one original example and two prox-

ies. Since the number of proxies is significantly less than

the number of original examples, proxies can be kept in

the memory that help to avoid the sampling over different

batches. However, it only provides a single proxy for each

class when label information is available, which is similar

to SoftMax. [18] proposes a conventional DML algorithm

to construct the triplet loss only with latent examples, which

assigns multiple centers for each class and further reduces

the number of triplets. In this work, we propose to learn the

embeddings by optimizing the proposed SoftTriple loss to

eliminate the sampling phase and capture the local geome-

try of each class simultaneously.

3. SoftTriple Loss

In this section, we first introduce the SoftMax loss and

the triplet loss and then study the relationship between them

to derive the SoftTriple loss.

Denote the embedding of the i-th example as xi and the

corresponding label as yi, then the conditional probability

output by a deep neural network can be estimated via the

SoftMax operator

Pr(Y = yi|xi) =
exp(w⊤

yi
xi)

∑C

j exp(w⊤
j xi)

where [w1, · · · ,wC] ∈ R
d×C is the last fully connected

layer. C denotes the number of classes and d is the dimen-

sion of embeddings. The corresponding SoftMax loss is

ℓSoftMax(xi) = − log
exp(w⊤

yi
xi)

∑

j exp(w
⊤
j xi)

A deep model can be learned by minimizing losses over

examples. This loss has been prevalently applied for classi-

fication task [7].

Given a triplet (xi,xj ,xk), DML aims to learn good em-

beddings such that examples from the same class are closer

than examples from different classes, i.e.,

∀i, j, k, ‖xi − xk‖
2
2 − ‖xi − xj‖

2
2 ≥ δ

where xi and xj are from the same class and xk is from a

different class. δ is a predefined margin. When each exam-

ple has the unit length (i.e., ‖x‖2 = 1), the triplet constraint

can be simplified as

∀i, j, k, x
⊤
i xj − x

⊤
i xk ≥ δ (1)

where we ignore the rescaling of δ. The corresponding

triplet loss can be written as

ℓtriplet(xi,xj ,xk) = [δ + x
⊤
i xk − x

⊤
i xj]+ (2)

It is obvious from Eqn. 1 that the number of total triplets

can be cubic in the number of examples, which makes sam-

pling inevitable for most of triplet based DML algorithms.

With the unit length for both w and x, the normalized

SoftMax loss can be written as

ℓSoftMaxnorm
(xi) = − log

exp(λw⊤
yi
xi)

∑

j exp(λw
⊤
j xi)

(3)

where λ is a scaling factor.

Surprisingly, we find that minimizing the normalized

SoftMax loss with the smooth term λ is equivalent to op-

timizing a smoothed triplet loss.

Proposition 1.

ℓSoftMaxnorm
(xi) = max

p∈∆
λ
∑

j

pjx
⊤
i (wj −wyi

) +H(p)

(4)

where p ∈ R
C is a distribution over classes and ∆ is the

simplex as ∆ = {p|
∑

j pj = 1, ∀j,pj ≥ 0}. H(p) de-

notes the entropy of the distribution p.

6452

Proof. According to the K.K.T. condition [1], the distribu-

tion p in Eqn. 4 has the closed-form solution

pj =
exp(λx⊤

i (wj −wyi
))

∑

j exp(λx
⊤
i (wj −wyi

))

Therefore, we have

ℓSoftMaxnorm
(xi) = λ

∑

j

pjx
⊤

i (wj −wyi) +H(p)

= log(
∑

j

exp(λx⊤

i (wj −wyi))) = − log
exp(λw⊤

yi
xi)∑

j
exp(λw⊤

j xi)

Remark 1 Proposition 1 indicates that the SoftMax loss

optimizes the triplet constraints consisting of an original ex-

ample and two centers, i.e., (xi,wyi
,wj). Compared with

triplet constraints in Eqn. 1, the target of SoftMax loss is

∀i, j, x
⊤
i wyi

− x
⊤
i wj ≥ 0

Consequently, the embeddings learned by minimizing Soft-

Max loss can be applicable for the distance-based tasks

while it is designed for the classification task.

Remark 2 Without the entropy regularizer, the loss be-

comes

max
p∈∆

λ
∑

j

pjx
⊤
i wj − λx⊤

i wyi

which is equivalent to

max
j

{x⊤
i wj} − xiwyi

Explicitly, it punishes the triplet with the most violation

and becomes zero when the nearest neighbor of xi is the

corresponding center wyi
. The entropy regularizer reduces

the influence from outliers and makes the loss more robust.

λ trades between the hardness of triplets and the regular-

izer. Moreover, minimizing the maximal entropy can make

the distribution concentrated and further push the example

away from irrelevant centers, which implies a large margin

property.

Remark 3 Applying the similar analysis to the Prox-

yNCA loss [14]: ℓProxyNCA(xi) = − log
exp(w⊤

yi
xi)

∑
j 6=yi

exp(w⊤
j
xi)

,

we have

ℓProxyNCA(xi) = max
p∈∆

λ
∑

j 6=yi

pjx
⊤
i (wj −wyi

) +H(p)

where p ∈ R
C−1. Compared with the SoftMax loss, it

eliminates the benchmark triplet containing only the cor-

responding class center, which makes the loss unbounded.

Our analysis suggests that the loss can be bounded as in

Eqn. 2: ℓ
hinge
ProxyNCA(xi) = [− log

exp(w⊤
yi

xi)
∑

j 6=yi
exp(w⊤

j
xi)

]+. Vali-

dating the bounded loss is out of the scope of this work.

Despite optimizing SoftMax loss can learn the meaning-

ful feature embeddings, the drawback is straightforward.

It assumes that there is only a single center for each class

while a real-world class can contain multiple local clusters

due to the large intra-class variance as in Fig. 1. The triplet

constraints generated by conventional SoftMax loss is too

brief to capture the complex geometry of the original data.

Therefore, we introduce multiple centers for each class.

3.1. Multiple Centers

Now, we assume that each class has K centers. Then,

the similarity between the example xi and the class c can

be defined as

Si,c = max
k

x
⊤
i w

k
c (5)

Note that other definitions of similarity can be applicable for

this scenario (e.g., minz∈RK ‖[w1
c , · · · ,w

K
c]z− xi‖2). We

adopt a simple form to illustrate the influence of multiple

centers.

With the definition of the similarity, the triplet constraint

requires an example to be closer to its corresponding class

than other classes

∀j, Si,yi
− Si,j ≥ 0

As we mentioned above, minimizing the entropy term H(p)
can help to pull the example to the corresponding center. To

break the tie explicitly, we consider to introduce a small

margin as in the conventional triplet loss in Eqn. 1 and de-

fine the constraints as

∀jj 6=yi
, Si,yi

− Si,j ≥ δ

By replacing the similarity in Eqn. 4, we can obtain the

HardTriple loss as

ℓHardTriple(xi) = max
p∈∆

λ

(

∑

j 6=yi

pj(Si,j − (Si,yi
− δ))

+ pyi
(Si,yi

− δ − (Si,yi
− δ))

)

+H(p)

= − log
exp(λ(Si,yi

− δ))

exp(λ(Si,yi
− δ)) +

∑

j 6=yi
exp(λSi,j)

(6)

HardTriple loss improves the SoftMax loss by providing

multiple centers for each class. However, it requires the max

operator to obtain the nearest center in each class while this

operator is not smooth and the assignment can be sensitive

between multiple centers. Inspired by the SoftMax loss, we

can improve the robustness by smoothing the max operator.

6453

Consider the problem

max
k

x
⊤
i w

k
c

which is equivalent to

max
q∈∆

∑

k

qkx
⊤
i w

k
c (7)

we add the entropy regularizer to the distribution q as

max
q∈∆

∑

k

qkx
⊤
i w

k
c + γH(q)

With a similar analysis as in Proposition 1, q has the closed-

form solution as

qk =
exp(1

γ
x
⊤
i w

k
c)

∑

k exp(
1
γ
x
⊤
i w

k
c)

Taking it back to the Eqn. 7, we define the relaxed similarity

between the example xi and the class c as

S ′
i,c =

∑

k

exp(1
γ
x
⊤
i w

k
c)

∑

k exp(
1
γ
x
⊤
i w

k
c)

x
⊤
i w

k
c

By applying the smoothed similarity, we define the Soft-

Triple loss as

ℓSoftTriple(xi)

= − log
exp(λ(S ′

i,yi
− δ))

exp(λ(S ′
i,yi

− δ)) +
∑

j 6=yi
exp(λS ′

i,j)
(8)

Fig. 2 illustrates the differences between the SoftMax

loss and the proposed losses.

Embedding FC layer

SoftMax

Embedding FC layer

SoftMax

Max Operator Embedding FC layer

SoftMax

SoftMax Operator

SoftMax Loss HardTriple Loss SoftTriple Loss

Figure 2. Illustration of differences between SoftMax loss and pro-

posed losses. Compared with the SoftMax loss, we first increase

the dimension of the FC layer to include multiple centers for each

class (e.g., 2 centers per class in this example). Then, we obtain

the similarity for each class by different operators. Finally, the

distribution over different classes is computed with the similarity

obtained from each class.

Finally, we will show that the strategy of applying cen-

ters to construct triplet constraints can recover the con-

straints on original triplets.

Theorem 1. Given two examples xi and xj that are from

the same class and have the same nearest center and xk

is from a different class, if the triple constant containing

centers is satisfied

x
⊤
i wyi

− x
⊤
i wyk

≥ δ

and we assume ∀i, ‖xi −wyi
‖2 ≤ ǫ, then we have

x
⊤
i xj − x

⊤
i xk ≥ δ − 2ǫ

Proof.

x
⊤
i xj − x

⊤
i xk = x

⊤
i (xj −wyi

) + x
⊤
i wyi

− x
⊤
i xk

≥ x
⊤
i (xj −wyi

) + x
⊤
i (wyk

− xk) + δ

≥ δ − ‖xi‖2‖xj −wyi
‖2 − ‖xi‖2‖wyk

− xk‖2

= δ − ‖xj −wyi
‖2 − ‖wyk

− xk‖2 ≥ δ − 2ǫ

Theorem 1 demonstrates that optimizing the triplets con-

sisting of centers with a margin δ can reserve the large mar-

gin property on the original triplet constraints. It also im-

plies that more centers can be helpful to reduce the intra-

class variance ǫ. In the extreme case that the number of

centers is equal to the number of examples, ǫ becomes zero.

However, adding more centers will increase the size of the

last fully connected layer and make the optimization slow

and computation expensive. Besides, it may incur the over-

fitting problem.

Therefore, we have to choose an appropriate number of

centers for each class that can have a small approxima-

tion error while keeping a compact set of centers. We will

demonstrate the strategy in the next subsection.

3.2. Adaptive Number of Centers

Finding an appropriate number of centers for data is

a challenging problem that also appears in unsupervised

learning, e.g., clustering. The number of centers K trades

between the efficiency and effectiveness. In conventional

DML algorithms, K equals to the number of original ex-

amples. It makes the number of total triplet constraints up

to cubic of the number of original examples. In SoftMax

loss, K = 1 reduces the number of constraints to be linear

in the number of original examples, which is efficient but

can be ineffective. Without the prior knowledge about the

distribution of each class, it is hard to set K precisely.

Different from the strategy of setting the appropriate K

for each class, we propose to set a sufficiently large K and

then encourage similar centers to merge with each other. It

can keep the diversity in the generated centers while shrink-

ing the number of unique centers.

For each center wt
j , we can generate a matrix as

M t
j = [w1

j −w
t
j , · · · ,w

K
j −w

t
j]
⊤

6454

If ws
j and w

t
j are similar, they can be collapsed to be the

same one such that ‖ws
j −w

t
j‖2 = 0, which is the L2 norm

of the s-th row in the matrix M t
j . Therefore, we regularize

the L2 norm of rows in M t
j to obtain a sparse set of centers,

which can be written as the L2,1 norm

‖M t
j‖2,1 =

K
∑

s

‖ws
j −w

t
j‖2

By accumulating L2,1 norm over multiple centers, we

can have the regularizer for the j-th class as

R(w1
j , · · · ,w

K
j) =

K
∑

t

‖M t
j‖2,1

Since w has the unit length, the regularizer is simplified as

R(w1
j , · · · ,w

K
j) =

K
∑

t=1

K
∑

s=t+1

√

2− 2ws⊤
j w

t
j (9)

With the regularizer, our final objective becomes

min
1

N

∑

i

ℓSoftTriple(xi) +
τ
∑C

j R(w1
j , · · · ,w

K
j)

CK(K − 1)
(10)

where N is the number of total examples.

4. Experiments

We conduct experiments on three benchmark fine-

grained visual categorization data sets: CUB-2011,

Cars196 and SOP. We follow the settings in other works [3,

14] for the fair comparison. Specifically, we adopt the In-

ception [25] with the batch normalization [5] as the back-

bone architecture. The parameters of the backbone are ini-

tialized with the model trained on the ImageNet ILSVRC

2012 data set [20] and then fine-tuned on the target data

sets. The images are cropped to 224 × 224 as the input of

the network. During training, only random horizontal mir-

roring and random crop are used as the data augmentation.

A single center crop is taken for test. The model is opti-

mized by Adam with the batch size as 32 and the number

of epochs as 50. The initial learning rates for the backbone

and centers are set to be 1e-4 and 1e-2, respectively. Then,

they are divided by 10 at {20, 40} epochs. Considering that

images in CUB-2011 and Cars196 are similar to those in

ImageNet, we freeze BN on these two data sets and keep

BN training on the rest one. Embeddings of examples and

centers have the unit length in the experiments.

We compare the proposed triplet loss to the normalized

SoftMax loss. The SoftMax loss in Eqn. 3 is denoted as

SoftMaxnorm. We refer the objective in Eqn. 10 as Soft-

Triple. We set τ = 0.2 and γ = 0.1 for SoftTriple. Besides,

we set a small margin as δ = 0.01 to break the tie explicitly.

The number of centers is set to K = 10.

We evaluate the performance of the learned embeddings

from different methods on the tasks of retrieval and clus-

tering. For retrieval task, we use the Recall@k metric as

in [24]. The quality of clustering is measured by the Nor-

malized Mutual Information (NMI) [13]. Given the clus-

tering assignment C = {c1, · · · , cn} and the ground-truth

label Ω = {y1, · · · , yn}, NMI is computed as NMI =
2I(Ω;C)

H(Ω)+H(C) , where I(·, ·) measures the mutual information

and H(·) denotes the entropy.

4.1. CUB­2011

First, we compare the methods on a fine-grained birds

data set CUB-2011 [26]. It consists of 200 species of birds

and 11, 788 images. Following the common practice, we

split the data set as that the first 100 classes are used for

training and the rest are used for test. We note that different

works report the results with different dimension of embed-

dings while the size of embeddings has a significant impact

on the performance. For fair comparison, we report the re-

sults for the dimension of 64, which is adopted by many

existing methods and the results with 512 feature embed-

dings, which reports the state-of-the-art results on most of

data sets.

Table 1 summarizes the results with 64 embeddings.

Note that Npairs∗ applies the multi-scale test while all other

methods take a single crop test. For SemiHard [21], we

report the result recorded in [23]. First, it is surprising

to observe that the performance of SoftMaxnorm surpasses

that of the existing metric learning methods. It is poten-

tially due to the fact that SoftMax loss optimizes the rela-

tions of examples as a smoothed triplet loss, which is an-

alyzed in Proposition 1. Second, SoftTriple demonstrates

the best performance among all benchmark methods. Com-

pared to ProxyNCA, SoftTriple improves the state-of-the-

art performance by 10% on R@1. Besides, it is 2% bet-

ter than SoftMaxnorm. It verifies that SoftMax loss cannot

capture the complex geometry of real-world data set with a

single center for each class. When increasing the number

of centers, SoftTriple can depict the inherent structure of

data better. Finally, both of SoftMax and SoftTriple show

the superior performance compared to existing methods. It

demonstrates that meaningful embeddings can be learned

without a sampling phase.

Table 2 compares SoftTriple with 512 embeddings to the

methods with large embeddings. HDC [32] applies the di-

mension as 384. Margin [12] takes 128 dimension of em-

beddings and uses ResNet50 [4] as the backbone. HTL [3]

sets the dimension of embeddings to 512 and reports the

state-of-the-art result on the backbone of Inception. With

the large number of embeddings, it is obvious that all meth-

ods outperform existing DML methods with 64 embeddings

6455

Figure 3. Comparison of the number of unique centers in each class on CUB-2011. The initial number of centers is set to 20.

Table 1. Comparison on CUB-2011. The dimension of the embed-

dings for all methods is 64.

Methods R@1 R@2 R@4 R@8 NMI

SemiHard [21] 42.6 55.0 66.4 77.2 55.4

LiftedStruct [24] 43.6 56.6 68.6 79.6 56.5

Clustering [23] 48.2 61.4 71.8 81.9 59.2

Npairs∗ [22] 51.0 63.3 74.3 83.2 60.4

ProxyNCA [14] 49.2 61.9 67.9 72.4 59.5

SoftMaxnorm 57.8 70.0 80.1 87.9 65.3

SoftTriple 60.1 71.9 81.2 88.5 66.2

in Table 1. It is as expected since the high dimensional

space can separate examples better, which is consistent with

the observation in other work [24]. Compared with other

methods, the R@1 of SoftTriple improves more than 8%
over HTL that has the same backbone as SoftTriple. It also

increases R@1 by about 2% over Margin, which applies a

stronger backbone than Inception. It shows that SoftTriple

loss is applicable with large embeddings.

Table 2. Comparison on CUB-2011 with large embeddings. “-”

means the result is not available.
Methods R@1 R@2 R@4 R@8 NMI

HDC [32] 53.6 65.7 77.0 85.6 -

Margin [12] 63.6 74.4 83.1 90.0 69.0

HTL [3] 57.1 68.8 78.7 86.5 -

SoftMaxnorm 64.2 75.6 84.3 90.2 68.3

SoftTriple 65.4 76.4 84.5 90.4 69.3

To validate the effect of the proposed regularizer, we

compare the number of unique centers for each class in

Fig. 3. We set a larger number of centers as K = 20 to

make the results explicit and then run SoftTriple with and

without the regularizer in Eqn. 9. Fig. 3 illustrates that the

one without regularizer will hold a set of similar centers. In

contrast, SoftTriple with the regularizer can shrink the size

of centers significantly and make the optimization effective.

Besides, we demonstrate the R@1 of SoftTriple with

varying the number of centers in Fig. 4. Red line denotes

SoftTriple loss equipped with the regularizer while blue

dashed line has no regularizer. We find that when increas-

ing the number of centers from 1 to 10, the performance

of SoftTriple is improved significantly, which confirms that

with leveraging multiple centers, the learned embeddings

can capture the data distribution better. If adding more cen-

ters, the performance of SoftTriple almost remains the same

and it shows that the regularizer can help to learn the com-

pact set of centers and will not be influenced by the initial

number of centers. On the contrary, without the regular-

izer, the blue dashed line illustrates that the performance

will degrade due to overfitting when the number of centers

are over-parameterized.

Figure 4. Illustration of SoftTriple with different number of centers

and the influence of the regularizer. With the proposed regularizer

as denoted by the red line, the performance is stable to the initial

number of centers K when it is sufficiently large.

Finally, we illustrate the examples of retrieved images

in Fig. 5. The first column indicates the query image. The

columns 2-4 show the most similar images retrieved accord-

ing to the embeddings learned by SoftMaxnorm. The last

four columns are the similar images returned by using the

embeddings from SoftTriple. Evidently, embeddings from

SoftMaxnorm can obtain the meaningful neighbors while

the objective is for classification. Besides, SoftTriple im-

proves the performance and can eliminate the images from

different classes among the top of retrieved images, which

are highlighted with red bounding boxes in SoftMaxnorm.

4.2. Cars196

Then, we conduct the experiments on Cars196 data

set [6], which contains 196 models of cars and 16, 185 im-

ages. We use the first 98 classes for training and the rest

for test. Table 3 summaries the performance with 64 em-

beddings. The observation is similar as for CUB-2011.

6456

Query SoftMaxnorm SoftTriple

Figure 5. Examples of retrieved most similar images with the

learned embeddings from SoftMaxnorm and SoftTriple. The im-

ages from the classes that are different from the query image are

highlighted by red bounding boxes.

SoftMaxnorm shows the superior performance and is 3%
better than ProxyNCA on R@1. Additionally, SoftTriple

can further improve the performance by about 2%, which

demonstrates the effectiveness of the proposed loss func-

tion.

Table 3. Comparison on Cars196. The dimension is 64.

Methods R@1 R@2 R@4 R@8 NMI

SemiHard [21] 51.5 63.8 73.5 82.4 53.4

LiftedStruct [24] 53.0 65.7 76.0 84.3 56.9

Clustering [23] 58.1 70.6 80.3 87.8 59.0

Npairs∗ [22] 71.1 79.7 86.5 91.6 64.0

ProxyNCA [14] 73.2 82.4 86.4 88.7 64.9

SoftMaxnorm 76.8 85.6 91.3 95.2 66.7

SoftTriple 78.6 86.6 91.8 95.4 67.0

In Table 4, we present the comparison with large dimen-

sion of embeddings. The number of embeddings for all

methods in the comparison is the same as described in the

experiments on CUB-2011. On this data set, HTL [3] re-

ports the state-of-the-art result while SoftTriple outperforms

it and increases R@1 by 3%.

Table 4. Comparison on Cars196 with large embeddings.

Methods R@1 R@2 R@4 R@8 NMI

HDC [32] 73.7 83.2 89.5 93.8 -

Margin [12] 79.6 86.5 91.9 95.1 69.1

HTL [3] 81.4 88.0 92.7 95.7 -

SoftMaxnorm 83.2 89.5 94.0 96.6 69.7

SoftTriple 84.5 90.7 94.5 96.9 70.1

4.3. Stanford Online Products

Finally, we evaluate the performance of different meth-

ods on the Stanford Online Products (SOP) data set [24].

It contains 120, 053 product images downloaded from

eBay.com and includes 22, 634 classes. We adopt the stan-

dard splitting, where 11, 318 classes are used for training

and the rest for test. Note that each class has about 5 im-

ages, so we set K = 2 for this data set and discard the regu-

larizer. We also increase the initial learning rate for centers

from 0.01 to 0.1.

We first report the results with 64 embeddings in Table 5.

In this comparison, SoftMaxnorm is 2% better than Prox-

yNCA on R@1. By simply increasing the number of cen-

ters from 1 to 2, we observe that SoftTriple gains another

0.4% on R@1. It confirms that multiple centers can help to

capture the data structure better.

Table 6 states the performance with large embeddings.

We can get a similar conclusion as in Table 5. Both

SoftMaxnorm and SoftTriple outperform the state-of-the-art

methods. SoftTriple improves the state-of-the-art by more

than 3% on R@1. It demonstrates the advantage of learning

embeddings without sampling triplet constraints.

Table 5. Comparison on SOP. The dimension is 64.

Methods R@1 R@10 R@100 NMI

SemiHard [21] 66.7 82.4 91.9 89.5

LiftedStruct [24] 62.5 80.8 91.9 88.7

Clustering [23] 67.0 83.7 93.2 89.5

ProxyNCA [14] 73.7 - - 90.6

SoftMaxnorm 75.9 88.8 95.2 91.5

SoftTriple 76.3 89.1 95.3 91.7

Table 6. Comparison on SOP with large embeddings.

Methods R@1 R@10 R@100 NMI

Npairs∗ [22] 67.7 83.8 93.0 88.1

HDC [32] 69.5 84.4 92.8 -

Margin [12] 72.7 86.2 93.8 90.7

HTL [3] 74.8 88.3 94.8 -

SoftMaxnorm 78.0 90.2 96.0 91.9

SoftTriple 78.3 90.3 95.9 92.0

5. Conclusion

Sampling triplets from a mini-batch of data can degrade

the performance of deep metric learning due to its poor cov-

erage over the whole data set. To address the problem, we

propose the novel SoftTriple loss to learn the embeddings

without sampling. By representing each class with mul-

tiple centers, the loss can be optimized with triplets de-

fined with the similarities between the original examples

and classes. Since centers are encoded in the last fully con-

nected layer, we can learn embeddings with the standard

SGD training pipeline for classification and eliminate the

sampling phase. The consistent improvement from Soft-

Triple over fine-grained benchmark data sets confirms the

effectiveness of the proposed loss function. Since SoftMax

loss is prevalently applied for classification, SoftTriple loss

can also be applicable for that. Evaluating SoftTriple on the

classification task can be our future work.

6457

References

[1] Stephen Boyd and Lieven Vandenberghe. Convex optimiza-

tion. Cambridge university press, 2004. 4

[2] Jiankang Deng, Jia Guo, and Stefanos Zafeiriou. Arc-

face: Additive angular margin loss for deep face recognition.

CoRR, abs/1801.07698, 2018. 2

[3] Weifeng Ge, Weilin Huang, Dengke Dong, and Matthew R.

Scott. Deep metric learning with hierarchical triplet loss. In

ECCV, pages 272–288, 2018. 3, 6, 7, 8

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016. 6

[5] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, pages 448–456, 2015. 6

[6] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.

3d object representations for fine-grained categorization. In

4th International IEEE Workshop on 3D Representation and

Recognition (3dRR-13), Sydney, Australia, 2013. 7

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.

Imagenet classification with deep convolutional neural net-

works. In NIPS, pages 1106–1114, 2012. 2, 3

[8] Daryl Lim, Gert R. G. Lanckriet, and Brian McFee. Robust

structural metric learning. In ICML, pages 615–623, 2013. 2

[9] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha

Raj, and Le Song. Sphereface: Deep hypersphere embedding

for face recognition. In CVPR, pages 6738–6746, 2017. 2

[10] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang.

Large-margin softmax loss for convolutional neural net-

works. In ICML, pages 507–516, 2016. 2

[11] Prasanta Chandra Mahalanobis. On the generalized distance

in statistics. National Institute of Science of India, 1936. 1

[12] R. Manmatha, Chao-Yuan Wu, Alexander J. Smola, and

Philipp Krähenbühl. Sampling matters in deep embedding

learning. In ICCV, pages 2859–2867, 2017. 2, 3, 6, 7, 8

[13] Christopher Manning, Prabhakar Raghavan, and Hinrich

Schütze. Introduction to information retrieval. Natural Lan-

guage Engineering, 16(1):100–103, 2010. 6

[14] Yair Movshovitz-Attias, Alexander Toshev, Thomas K. Le-

ung, Sergey Ioffe, and Saurabh Singh. No fuss distance met-

ric learning using proxies. In ICCV, pages 360–368, 2017.

2, 3, 4, 6, 7, 8

[15] Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman.

Deep face recognition. In BMVC, pages 41.1–41.12, 2015.

1, 2, 3

[16] Qi Qian, Rong Jin, Jinfeng Yi, Lijun Zhang, and Shenghuo

Zhu. Efficient distance metric learning by adaptive sampling

and mini-batch stochastic gradient descent (SGD). Machine

Learning, 99(3):353–372, 2015. 1, 2

[17] Qi Qian, Rong Jin, Shenghuo Zhu, and Yuanqing Lin. Fine-

grained visual categorization via multi-stage metric learning.

In CVPR, pages 3716–3724, 2015. 1, 2

[18] Qi Qian, Jiasheng Tang, Hao Li, Shenghuo Zhu, and Rong

Jin. Large-scale distance metric learning with uncertainty. In

CVPR, pages 8542–8550, 2018. 2, 3

[19] Oren Rippel, Manohar Paluri, Piotr Dollár, and Lubomir D.

Bourdev. Metric learning with adaptive density discrimina-

tion. ICLR, 2016. 2, 3

[20] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. International Journal of Computer Vision (IJCV),

115(3):211–252, 2015. 6

[21] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

Facenet: A unified embedding for face recognition and clus-

tering. In CVPR, pages 815–823, 2015. 1, 2, 3, 6, 7, 8

[22] Kihyuk Sohn. Improved deep metric learning with multi-

class n-pair loss objective. In NIPS, pages 1849–1857, 2016.

2, 7, 8

[23] Hyun Oh Song, Stefanie Jegelka, Vivek Rathod, and Kevin

Murphy. Deep metric learning via facility location. In CVPR,

pages 2206–2214, 2017. 6, 7, 8

[24] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio

Savarese. Deep metric learning via lifted structured feature

embedding. In CVPR, pages 4004–4012, 2016. 1, 2, 3, 6, 7,

8

[25] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, pages 1–9, 2015. 6

[26] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD Birds-200-2011 Dataset. Technical re-

port, 2011. 6

[27] Feng Wang, Jian Cheng, Weiyang Liu, and Haijun Liu. Ad-

ditive margin softmax for face verification. IEEE Signal Pro-

cess. Lett., 25(7):926–930, 2018. 2

[28] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong

Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface:

Large margin cosine loss for deep face recognition. In CVPR,

pages 5265–5274, 2018. 2

[29] Kilian Q. Weinberger and Lawrence K. Saul. Distance met-

ric learning for large margin nearest neighbor classification.

Journal of Machine Learning Research, 10:207–244, 2009.

1, 2

[30] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A

discriminative feature learning approach for deep face recog-

nition. In ECCV, pages 499–515, 2016. 2

[31] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart J.

Russell. Distance metric learning with application to cluster-

ing with side-information. In NIPS, pages 505–512, 2002. 1,

2

[32] Yuhui Yuan, Kuiyuan Yang, and Chao Zhang. Hard-aware

deeply cascaded embedding. In ICCV, pages 814–823, 2017.

6, 7, 8

6458

