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Abstract

We propose an end-to-end trainable network that can si-

multaneously detect and recognize text of arbitrary shape,

making substantial progress on the open problem of reading

scene text of irregular shape. We formulate arbitrary shape

text detection as an instance segmentation problem; an at-

tention model is then used to decode the textual content of

each irregularly shaped text region without rectification. To

extract useful irregularly shaped text instance features from

image scale features, we propose a simple yet effective RoI

masking step. Additionally, we show that predictions from

an existing multi-step OCR engine can be leveraged as par-

tially labeled training data, which leads to significant im-

provements in both the detection and recognition accuracy

of our model. Our method surpasses the state-of-the-art

for end-to-end recognition tasks on the ICDAR15 (straight)

benchmark by 4.6%, and on the Total-Text (curved) bench-

mark by more than 16%.

1. Introduction

Automatically detecting and recognizing text in images

can benefit a large number of practical applications, such as

autonomous driving, surveillance, or visual search and can

increase the environmental awareness of visually impaired

people [44].

Traditional optical character recognition (OCR) pipeline

methods usually partition the scene text reading task into

two sub-problems, scene text detection and cropped text

line recognition. Text detection methods try to spot text

instances (words or lines) in the input image, while text

recognition models take a cropped text patch and decode

its textual content. Since most scene text detection methods

are unable to directly predict the correct text reading direc-

tion, an additional direction identification step is necessary

for successful OCR engines [56].

Despite their long history and great success, the use of

multiple models within an OCR pipeline engine has sev-

eral disadvantages: errors can accumulate in such a cascade

which may lead to a large fraction of garbage predictions.
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Figure 1. Our end-to-end model can predict the locations and tran-

scriptions of text with arbitrary shape in a single forward pass.

Furthermore, each model in the pipeline depends on the out-

puts of the previous step, which makes it hard to jointly

maximize the end-to-end performance, and fine-tune the en-

gine with new data or adapt it to a new domain. Finally,

maintaining such a cascaded pipeline with data and model

dependencies requires substantial engineering effort.

End-to-end OCR models overcome those disadvantages

and thus have recently started gaining traction in the re-

search community [42, 54, 37, 24, 32]. The basic idea be-

hind end-to-end OCR is to have the detector and recognizer

share the same CNN feature extractor. During training, the

detector and recognizer are jointly optimized; at inference

time, the model can predict locations and transcriptions in

a single forward pass. While producing superior accuracy

in straight text reading benchmarks, these methods struggle

to generalize and produce convincing results on more chal-

lenging datasets with curved text, which arise naturally and

frequently in everyday environments (see Figure 1 for two

such examples). Handling arbitrary shaped text is a crucial

open problem in order for OCR to move beyond its tradi-

tional straight text applications.

In this paper, we propose a simple and flexible end-to-

end OCR model based on a Mask R-CNN detector and a

sequence-to-sequence (seq2seq) attention decoder [3]. We

make no assumptions on the shape of the text: our model

can detect and recognize text of arbitrary shape, not just the

limited case of straight lines. The key idea underlying our

model is to skip the feature rectification step between the

detector and the recognizer, and directly feed cropped and
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masked text instance features to the decoder. We show that

our model is able to recognize text in different orientations

and even along curved paths. Our model learns where to

start decoding, and how to update the attention weights to

follow the unrectified text path. Our detector is based on

Mask R-CNN: for each text instance, it predicts an axis-

aligned rectangular bounding box and the corresponding

segmentation mask. Using these, our model works seam-

lessly on both straight and curved text paths.

Typically the recognizer requires far more data to train

than the detector. Unlike the case of multi-step OCR mod-

els where cropped text lines (easier to collect and synthe-

size) are used to train the recognizer, previous end-to-end

models demand fully labeled images as training data. This

makes end-to-end training challenging due to the short of

fully annotated images. Furthermore, by the time the rec-

ognizer has converged, the detector is often substantially

overfitted. In this work, we solve both issues by adding ad-

ditional large scale partially labeled data which is automat-

ically labeled by an existing multi-step OCR engine 1 [4].

If an input training sample is partially annotated, only the

recognizer branch is trained. We find that this significantly

boosts the performance of our model.

Our method surpasses the previous state-of-the-art re-

sults by a large margin on both straight and curved OCR

benchmarks. On the popular and challenging ICDAR15

(straight) dataset, our model out-performs the previous

highest by 4.6% on end-to-end F-score. On the Total-Text

(curved) dataset, we significantly increase the state-of-the-

art by more than 16%.

In summary, the contributions of this paper are three-

fold:

• We propose a flexible and powerful end-to-end OCR

model which is based on Mask R-CNN and atten-

tion decoder. Without bells and whistles, our model

achieves state-of-the-art results on both straight and

curved OCR benchmarks.

• We identify feature rectification as a key bottleneck

in generalizing to irregular shaped text, and introduce

a simple technique (RoI masking) that makes recti-

fication unnecessary for the recognizer. This allows

the attention decoder to directly operate on arbitrarily

shaped text instances.

• To the best of our knowledge, this is the first work

to show that end-to-end training can benefit from par-

tially labeled data bootstrapped from an existing multi-

step OCR engine.

1Publicly available via Google Cloud Vision API.

2. Related Work

In this section, we briefly review the existing text detec-

tion and recognition methods, and highlight the differences

between our method and current end-to-end models. For a

more detailed review, the reader is referred to [40].

Scene Text Detection: Over the years, the traditional slid-

ing window based methods [28, 8, 62] and connected-

component based methods [5, 26, 46, 45, 13, 47] have

been replaced by deep learning inspired methods with a

simplified pipeline. These newer methods have absorbed

the advances from general object detection[36, 50, 49] and

semantic segmentation [39, 7] algorithms, adding well-

designed modifications specific to text detection. Mod-

ern scene text detection algorithms can directly predict ori-

ented rectangular bounding boxes or tighter quadrilaterals

via either single-shot [33, 61, 22, 38], or two-stage models

[29, 34, 43, 48].

Recently, detecting curved text in images has become an

emerging topic: a new dataset containing curved text was

introduced in [11] which provides tight polygon bounding

boxes and ground-truth transcriptions. In [12], Dai et al.

formulate text detection as an instance segmentation prob-

lem, and in [41], the authors proposed representing a text

instance as a sequence of ordered, overlapping disks, which

is able to cover curved cases. Despite the success in de-

tecting curved text, reading the curved text is an unsolved

problem.

Scene Text Recognition: The goal of scene text recog-

nition algorithms is to decode the textual content from

cropped text patches. Modern scene text recognition meth-

ods can be grouped into two main categories, CTC (Con-

nectionist Temporal Classification [19]) based methods [52,

23, 14] and attention based methods [57, 9, 10, 16, 31, 53].

Most scene text recognition methods from both categories

assume the input text is rectified (straight line, read from left

to right): the input is first resized to have a constant height,

then fed to a fully convolutional network to extract features.

To capture long range sequence context, some CTC-based

architectures stack an RNN on top of a CNN, while oth-

ers use stacked convolution layers, with a large receptive

field. Finally, each feature column predicts a symbol and

duplicated symbols are removed to produce the final pre-

diction. In attention models, RNN is often used to predict

one symbol per step based on the prediction at the previous

step, the hidden state, and a weighted sum of the extracted

image features (context). The process stops when the end-

of-sequence symbol is predicted, or the maximum number

of iterations is reached.

End-to-End OCR: The work from Li et al. [32] is the first

successful end-to-end OCR model which only supports hor-

izontal text. The multi-oriented end-to-end OCR architec-

tures of Liu et al. [37], He et al. [24] and Sun et al. [54]

share a common idea: they feed rectified text region fea-
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Figure 2. Overall architecture of our end-to-end OCR model.

tures to the recognizer to enable end-to-end training. In

[37], the model outputs rotated rectangles in the detection

stage, and used a CTC-based recognizer which can not gen-

eralize to curved cases. In [54], the detector outputs quadri-

laterals and an attention-based model is used to decode the

textual content. In contrast, our detector produces rectangu-

lar bounding boxes and the corresponding instance segmen-

tation masks, which is a more general way to represent text

in arbitrary shape. In addition, we remove the feature recti-

fication step which is designed for straight text, and let the

attention decoder directly operates on cropped and masked

text instance features. This leads to better flexibility and

performance in curved text.

Lyu et al. [42] proposed an end-to-end OCR engine

which is based on Mask R-CNN. They adopted a simple

recognition by detection scheme: in order to recognize

the text, all the characters are detected individually. This

method is not ideal because much of the sequential infor-

mation is lost. Furthermore, detecting individual character

can be difficult or even impossible in many cases. And even

if all the characters are correctly detected, it is highly un-

clear how to link them into a correct sequence. In [42], the

authors simply group characters from left to right, which

precludes correct recognition of text in non-traditional read-

ing directions. On the other hand, by leveraging sequential

information, our method is able to correctly recognize text

in more challenging situations and non-traditional reading

directions.

3. Model Architecture and Training

Figure 2 shows the design of our end-to-end OCR model.

The detector part of the model is based on Mask R-CNN

which has been widely used in instance segmentation and

other related tasks. For each text region (word or text

line), Mask R-CNN can predict an axis-aligned rectangu-

lar bounding box and the corresponding instance segmen-

tation mask. For the straight text case, the final detection

results are obtained by fitting a min-area rotated rectangle

to each segmentation mask, while a general polygon is fit-

ted to each mask for the curved text case. By using Mask

R-CNN as the detector, our model works seamlessly with

straight and curved text paths.

A novel feature of our architecture is that we do not rec-

tify the input to the recognizer. This renders traditional

CTC-based decoders unsuitable. Instead, we use a seq2seq

model (with attention) as recognizer. At each step, the de-

coder makes the prediction based on the output and state

from the previous step, as well as a convex combination

of the text instance features (context). In order to extract

arbitrary shaped text instance features from image level

features, we introduce RoI masking which multiplies the

cropped features with text instance segmentation masks.

This removes neighboring text and background, and ensures

that the attention decoder will focus only on the current text

instance.

3.1. Feature Extractor

We explore two popular backbone architecture, ResNet-

50[21] and Inception-ResNet [55]; the latter model is far

larger, and consequently yields better detection and recog-

nition results. Scene text usually has large variance in scale;

in order to capture both large and tiny text, the backbone

should provide dense features while maintaining a large re-

ceptive field. To achieve this, we follow the suggestions

from [25]: both backbones are modified to have an effec-

tive output stride of 8. In order to maintain a large receptive

field, atrous convolutions are used to compensate for the re-

duced stride.

For ResNet-50, we modified the conv4 12 layer to have

stride 1 and use atrous convolution for all subsequent lay-

ers. We extract features from the output of the third stage.

The Inception-ResNet is modified in a similar way to have

output stride 8, taking the output from the second repeated

2Our naming convention follows [25].
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block (layer PreAuxLogits).

3.2. Detector

We follow the standard Mask R-CNN implementation.

In the first stage, a region proposal network (RPN) is used

to propose a number of candidate text regions of interest

(RoIs). In the second stage, each RoI is processed by three

prediction heads: a class prediction head to decide if it is

text or not, a bounding box regression head to predict an

axis-aligned rectangular box, and finally a mask predic-

tion head to predict the corresponding instance segmenta-

tion mask.

The RPN anchors span four scales (64, 128, 256, 512)

and three aspect ratios (0.5, 1.0, 2.0); using more scales and

aspect ratios may increase the model’s performance at the

cost of longer inference time. Non-maximum suppression

(NMS) is used to remove highly overlapping proposals with

intersection-over-union (IoU) threshold set to 0.7. The top

300 proposals are kept. In the second stage, features from

each RoI are cropped and resized to 28 × 28 followed by a

2× 2 max pooling, which lead to 14× 14 features for each

RoI. At training time, RoIs are grouped into mini batches of

size 64, and then fed to a class prediction head and bounding

box refinement head. A second NMS is performed on top

of refined boxes (IoU is set to 0.7). During inference time,

the top 100 regions are sent to the mask prediction head.

The final detection output is obtained after the final NMS

step, which computes the IoU based on the mask instead of

bounding boxes like the first two NMS steps.

3.3. MultiScale Feature Fusion and RoI Masking

In our experiments, we found that stride 8 features and

multi-scale anchors are sufficient for the text detection task

for both large and small text. However, for text recognition,

a finer-grained task, denser features are needed. Inspired by

the feature pyramid network [35], we gradually upsample

lower resolution, but context rich features, and fuse them

with higher resolution features from earlier CNN layers us-

ing element-wise addition. A 1 × 1 convolution (with 128

channels) is applied to all features to reduce dimension-

ality, and to ensure uniform shapes, before element-wise

addition. This produces a dense feature map which en-

codes both local features and longer range contextual in-

formation, which can improve recognition performance es-

pecially for small text. In practice, we find that fusing fea-

tures with stride 8 and 4 leads to the best results. More

specifically, for ResNet-50, we use features after the first

(stride 4), second (stride 8) and third stage (stride 8); the

corresponding receptive field sizes are 35, 99 and 291 re-

spectively. For Inception-ResNet, we use features after

layer Conv2d 4a 3x3 (stride 4), Mixed 5b (stride 8) and

PreAuxLogits (stride 8), the corresponding receptive field

sizes are 23, 63 and 2335 respectively.
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Figure 3. Our seq2seq based recognizer.

In multi-step OCR engines, each text instance is cropped

out from the input image before being fed to the recognizer.

In contrast, in end-to-end models, instead of cropping out

the image patch, a more involved method is used to ex-

tract text instance features from the image level features

output by the backbone CNN. For object detection mod-

els, axis-aligned bounding boxes are used to crop out fea-

tures [17]. For text, the work in [37] and [54] proposed RoI

rotate and perspective RoI transforms to compute rectified

text instance features using rotated rectangles or quadrilat-

erals. This works well for straight text but fails in the curved

text case. In this work, we propose a simple and more gen-

eral way to extract text instance features that works for any

shape, called RoI masking: first the predicted axis-aligned

rectangular bounding boxes are used to crop out features,

and then we multiply by the corresponding instance seg-

mentation mask. Since we do not know the reading direc-

tion of the text at this point, features from each region are

resized so that the shorter dimension is equal to 14 while

maintaining the overall aspect ratio. RoI masking filters out

the neighboring text and background, ensuring that the at-

tention decoder will not accidentally focus on areas outside

the current decoding region. Our ablation experiments in

Section 4.3 show that RoI masking substantially improves

the recognizer’s performance.

3.4. Recognizer

The recognizer is a seq2seq model with Bahdanau-style

attention proposed in [3], shown in Figure 3. At the first

step, the model takes a START symbol and zero LSTM

initial state; we then produce symbols until the End-of-

Sequence (EOS) symbol is predicted. At each step, the final

predicted distribution over possible symbols is given by:

p(yi|y1, ..., yi−1, h) = softmax(Wooi + bo) (1)

Where yi is the predicted character, oi is the LSTM out-

put at time step i respectively, and h represents the flattened

extracted text instance features. At each step, the LSTM

takes the prediction of the previous step yi−1, the previous

hidden state si−1 and a weighted sum of the image feature

ci (context) to compute the output oi and new state vector

si.
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(oi, si) = LSTM(yi−1, si−1, ci) (2)

At each step, the decoder is able to pay attention to some

specific image region and use the corresponding image fea-

tures to help make the right prediction. The context vector

ci is a weighted sum of the flattened image feature h and

learned weight vector αi: ci =
∑

j αijhj . The weight vec-

tor αi is defined as:

αij =
exp(eij)∑
k exp(eik)

(3)

eij = V T tanh(Wssi−1 +Whhj). (4)

The attention weight for each feature position is deter-

mined by image feature (h) and previous LSTM state (si−1)

which encode the shift of the attention mask. This enables

the recognizer to follow arbitrary shaped text lines.

By feeding the predicted symbol to the next step, the

model can learn an implicit language model. At inference

time, the predicted symbol is fed to the next step while the

ground-truth one is used during training (i.e., teacher forc-

ing).

3.5. Joint Training and Loss Function

We observe that the recognizer requires far more data

and training iterations in comparison to the detector; this

makes joint training difficult as the existing public datasets

are not large enough to train a high performance attention

decoder, especially when the input features are not recti-

fied. Furthermore, if we train long enough to achieve con-

vergence in the recognizer, there is a strong risk of over-

fitting the detector. In this work, we solve both issues by

adding additional large scale partially labeled data which is

automatically labeled by an existing multi-stage OCR en-

gine from Google Cloud Vision API. If the input training

sample is fully labeled, we update the weights of both de-

tector and recognizer. If it has been automatically annotated

by an OCR engine (and thus may have unlabeled text), only

the recognizer branch is trained. Thus the total multitask

loss is defined as:

L = δ(Lrpn + αLrcnn + βLmask) + γLrecog. (5)

Here, δ is 1 if the input is fully labeled, 0 otherwise. In

our implementation, both α, β and γ are set to 1.0. Adding

machine labeled, partially labeled data ensures that the rec-

ognizer “sees” enough text while preventing the detector

from overfitting. For the machine labeled data, since the

detection of all the text is not required, we could increase

the confidence threshold to filter out noisy low confidence

outputs.

The detection losses are the same as the original Mask

R-CNN paper [20]. The recognizer loss Lrecog is the cross

entropy loss with label smoothing set to 0.9, as suggested by

[57]. During training, the ground-truth boxes and masks are

used for RoI cropping and RoI masking while the predicted

ones are used at inference time. We also tried to use pre-

dicted bounding boxes and masks during training but found

no improvement.

3.6. Implementation Details

The data used to train our model contains images from

the training portion of popular public datasets, includ-

ing SynthText, ICDAR15, COCO-Text, ICDAR-MLT and

Total-Text. The number of images we used from each

dataset are 200k, 1k, 17k, 7k and 1255 respectively. Be-

sides public datasets, we also collected 30k images from

the web and manually labeled each word, providing ori-

ented rectangular bounding boxes and transcriptions. The

number of fully labeled real images is too low to train a

robust end-to-end OCR model. To solve this issue, as men-

tioned in Section 3.5, we run an existing OCR engine on

one million images with text and use the predictions (ori-

ented rectangles and transcriptions) as the partially labeled

ground-truth. Our experiments (see Section 4.3) show this

can significantly improve the end-to-end performance. To

prevent the large volumes of synthetic and partially labeled

data from dominating the training data, extensive data aug-

mentations are applied to fully labeled real images. First,

the shorter dimension of input image is resized from 480

to 800 pixels, then random rotation, random cropping and

aspect ratio jittering are used.

We adopt a single-step training strategy. The backbone

CNN is pre-trained on ImageNet; the detector and recog-

nizer are jointly optimized using both fully and partially

annotated images. Our ablation experiment (see Section

4.3) shows that this achieves better accuracy than a two-step

training strategy, where we first use all the fully labeled data

to train the detector and then jointly fine-tune the detector

and recognizer using both fully and partially labeled data.

We train our model with asynchronous SGD with momen-

tum of 0.9. The initial learning rate depends on the back-

bone network, 10−3 for Inception-ResNet and 3× 10−4 for

ResNet-50. We reduce the learning rate by a factor of 3

every 2M iterations, with a total number of 8M iterations.

During training, each GPU takes a single training sample

per iteration, and 15 Tesla V100 GPUs are used. We im-

plement the model using TensorFlow [1], the training pro-

cess takes about three days to finish. In the recognizer, we

use a single layer LSTM with 256 hidden units. Recurrent

dropout [15] and layer normalization [2] are used to reduce

overfitting. The total number of symbols are 79, which in-

cludes digits, upper and lower cases of English characters

as well as several special characters.
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Method
Detection

Method
End-to-End

P R F S W G

SSTD [22] 80.23 73.86 76.91 Stradvision [30] 43.70 - -

EAST [61] 83.27 78.33 80.72 TextProposals+DictNet [18, 27] 56.0 52.3 49.7

TextSnake [41] 84.9 80.4 82.6 HUST MCLAB [51, 52] 67.86 - -

RRD MS [34] 88 80 83.8 E2E-MLT [6] - - 55.1

Mask TextSpotter [42] 91.6 81.0 86.0 Mask TextSpotter [42] 79.3 73.0 62.4

TextNet [54] 89.42 85.41 87.37 TextNet [54] 78.66 74.90 60.45

He et al. [24] 87 86 87 He et al. [24] 82 77 63

FOTS [37] 91.0 85.17 87.99 FOTS [37] 81.09 75.90 60.80

FOTS MS [37] 91.85 87.92 89.84 FOTS MS [37] 83.55 79.11 65.33

Ours (ResNet-50) 89.36 85.75 87.52 Ours (ResNet-50) 83.38 79.94 67.98

Ours (Inception-ResNet) 91.67 87.96 89.78 Ours (Inception-ResNet) 85.51 81.91 69.94

Table 1. Comparison on ICDAR15. “MS” represents multi-scale testing. “P”, “R” and “F” stand for precision, recall, and F-score re-

spectively. In the end-to-end evaluation, F-score under three lexicon settings are shown. “S” (strong) means 100 words, including the

ground-truth, are given for each image. For “W” (weak), a lexicon includes all the words appeared in the test set is provided. For “G”, a

generic lexicon with 90k words is given, which is not used by our model.

4. Experiments

We evaluate the performance of our model on the IC-

DAR15 benchmark [30] (straight text) and recently intro-

duced Total-Text [11] (curved text) dataset.

4.1. Straight Text

We show the superior performance of our model on de-

tecting and recognizing oriented straight text using the IC-

DAR15 benchmark introduced in Challenge 4 of the IC-

DAR 2015 Robust Reading Competition. The dataset con-

sists of 1000 training images and 500 testing images. Im-

ages in this dataset are captured by wearable cameras, with-

out intentional focus on text regions. There are large varia-

tions in text size, orientation, font, and lighting conditions.

Motion blur is also common. In this dataset, text instances

are labeled at the word level. Quadrilateral bounding boxes

and transcriptions are provided. For detection evaluation, a

prediction is counted as a true positive if the IoU with the

closest ground-truth is larger than 0.5. For end-to-end eval-

uation, the predicted transcription needs to be identical to

the corresponding ground-truth in order to be considered as

a true positive. Some unreadable words are marked as “do

not care”. The Evaluation metrics of interest are precision

(true positives count over detection count), recall (true posi-

tives count over ground-truth count), and F-score (harmonic

mean of precision and recall).

The results are summarized in Table 1. At inference

time, the shorter dimension of the image is resized to 900

pixels. Note we only use a single scale input. In the

detection only task, our method (with Inception-ResNet

backbone) surpasses the best single scale model (FOTS)

by 1.8%. For end-to-end performance, our method out-

performs the highest single scale model (He et al.) by about

7%. Compared to the multi-scale version of the FOTS

Method
Detection E2E

P R F None

Baseline [11] 40.0 33.0 36.0 -

Textboxes [33] 62.1 45.5 52.5 36.3

TextSnake [41] 82.7 74.5 78.4 -

MSR [60] 85.2 73.0 78.6 -

TextField [59] 81.2 79.9 80.6 -

FTSN [12] 84.7 78.0 81.3 -

Mask TextSpotter [42] 69.0 55.0 61.3 52.9

TextNet [54] 68.21 59.45 63.53 54.0

Ours (ResNet-50) 83.3 83.4 83.3 67.8

Ours (Inc-Res public) 86.8 84.3 85.5 63.9

Ours (Inc-Res) 87.8 85.0 86.4 70.7

Table 2. Results on Total-Text. No lexicon is used in end-to-

end evaluation. “Inc-Res” stands for Inception-Resnet. “Inc-Res

public” represents our model with Inception-ResNet backbone,

trained using only public datasets.

model, the current state-of-the-art, our method matches the

detection performance while still achieving 4.6% higher

end-to-end F-score.

4.2. Curved Text

The biggest advantage of our method is the outstanding

performance on irregular shaped text. We conducted an

experiment on the recently introduced curved text dataset

called Total-Text [11]. Total-Text contains 1255 images for

training and another 300 for testing, with a large number of

curved text. In each image, text is annotated at word level,

each word is labeled by a bounding polygon. Ground truth

transcriptions are provided. The evaluation protocol for de-

tection is based on [58], the one for end-to-end recognition

is based on ICDAR15’s end-to-end evaluation protocol (the

evaluation script is modified to support general polygons).
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Figure 4. Qualitative results of our method on ICDAR15 (first two columns) and Total-Text (last two columns) datasets. In the bottom right

image, prediction errors are shown in blue, some predictions are skipped for better visualization. All the skipped predictions are correctly

predicted by our method.

During training, we pre-train the model on straight text

and fine-tune it using only images from the training portion

of the Total-Text dataset. At inference time, the shorter di-

mension of each image is resized to 600 pixels. We compare

the results of our model with both backbones against previ-

ous work in Table 2. We also list results trained using only

publicly available datasets for the Inception-ResNet back-

bone. Our method out-performs the previous state-of-the-

art by a large margin in both detection and end-to-end evalu-

ations. Specifically, for detection, our best model surpasses

the previous highest by 5.1%. In the end-to-end recognition

task, our best model significantly raises the bar by 16.7%.

In the absence of our internal fully labeled data and partially

machine annotated data, our method still achieves far better

performance in both the detection and recognition tasks, at

+4.2% and +9.9% respectively.

Several qualitative examples are shown in Figure 4 (third

and fourth column). Our method produces high quality

bounding polygons and transcriptions. Surprisingly, we find

that our method can also produce reasonable predictions in

partially occluded cases (top right image, “ANTIONE”) by

utilizing visible image features and the learned implicit lan-

guage model from the LSTM. In the bottom right image,

we show some failure cases, where the text is upside down

and read from right to left. These cases are very rare in the

training data, we believe more aggressive data augmenta-

tion may mitigate these issues.

We can visualize the attention weight vector at each step

by reshaping it to 2D and projecting back to image coordi-

nates. This provides a great tool to analyze and debug the

model performance. In Figure 5, we find that the seq2seq

model focuses on the right area when decoding each sym-

bol and is able to follow the shape of the text. In the middle

row (last image), we show the attention mask correspond-

ing to the EOS symbol. The attention is spread across both

the start and end positions.

4.3. Ablation Experiments

We conduct a series of ablation experiments to better un-

derstand our end-to-end OCR model. In this section, we

report average precision (AP) score, which is often a better

evaluation metric than F-score (which display sensitivity to

a specific threshold). We use the ICDAR15 test set in this

section. Table 3 summarizes the experimental results.

Baselines: We build a detection-only baseline (first row in

Table 3) and an end-to-end baseline (third row in Table 3).

In the detection-only baseline, we train a model with only

the detection branch. In the end-to-end baseline, we train

a model with both detection and recognition branches, but

do not use partially labeled data or RoI masking, and adopt

a single-step training strategy (described in Section 3.6).

The end-to-end baseline exhibits stronger detection results

than the detection-only baseline (with a ResNet-50 back-

bone, the improvement is 1.6%) despite being trained on

exactly the same data. This suggests that training a recog-

nizer improves the feature extractor for the detection task.

Backbones: From Table 3 we find that on the detection

task, the more powerful Inception-ResNet backbone consis-

tently out-performs ResNet-50. On the end-to-end task, our

model with the ResNet-50 backbone actually achieves bet-

ter performance when the training data is limited (without

large scale partially labeled data). For our full end-to-end

model, the Inception-ResNet backbone achieves marginal

improvement on end-to-end AP score (59.5% vs. 59.0%).

Partially Labeled Data: The use of partially labeled data

provides significant improvements in end-to-end perfor-

mance across all configurations of our model (row 4 vs. row

6, or row 3 vs. row 5). Interestingly, it also improves the de-
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Figure 5. Visualization of the attention weights. Some steps are skipped for better visualization.

PD Mask
ResNet-50 Inc-Res

APDet APE2E APDet APE2E

Two-step
Det-baseline 85.5 - 88.2 -

E2E-full X X 86.9 55.3 89.1 57.4

Single-step

E2E-baseline 87.1 52.8 88.2 51.7

+ Mask X 86.7 53.9 88.9 53.1

+ PD X 87.5 55.7 89.9 58.7

E2E-full X X 87.2 59.0 90.8 59.5

Table 3. Results on the ICDAR15 test set under different model

configurations and training strategies. AP numbers are reported.

“PD”, “Mask” and “Inc-Res” stand for partially labeled data, RoI

masking and Inception-ResNet respectively. “Det-baseline” refers

to the first step (training the detector using fully labeled data) of

the “two-step” training process.

tector without training the detection branch directly (Sec-

tion 3.5). Once again, this suggests that we can improve the

feature extractor by receiving training signal through recog-

nition branch.

RoI Masking: In Table 3, we show the effectiveness of

RoI masking (row 3 vs. row 4, or row 5 vs. row 6). Higher

end-to-end AP scores are consistently achieved in the pres-

ence of RoI masking (e.g. +3.3% AP with the ResNet-50

backbone when using partially labeled data). This demon-

strates that the recognizer benefits from RoI masking. The

improvement is more significant for a lighter weight back-

bone with smaller receptive field. For detection perfor-

mance, we observe mixed results: a marginal improvement

for the Inception-ResNet backbone, and some degradation

when using ResNet-50.

Training Strategy: Row 2 and row 6 of Table 3 compare

the effect of single-step and two-step training strategies as

described in Section 3.6. In single-step training, we jointly

optimize the detector and recognizer together using both

fully and partially labeled data. In two-step training, we first

train the detection-only baseline, and then add a recognizer

into joint training. We find that single-step training consis-

tently out-performs two-step training in both detection and

end-to-end evaluations. Single step training is far simpler,

and makes it easier to apply automatic hyperparameter tun-

ing and neural architecture search, which we will study in

future work.

4.4. Speed

For images from the ICDAR15 dataset (with resolution

1280×720), the end-to-end inference time is 210 ms for the

ResNet-50 backbone and 330 ms for the Inception-ResNet

backbone (on a Tesla V100 GPU). If we only run the detec-

tion branch, the corresponding inference time are 180 ms

and 270 ms respectively. Thus, for scene text images, the

computational overhead of the recognition branch is quite

small. Sharing the same CNN feature extractor makes end-

to-end model more computationally efficient than two-step

methods.

5. Conclusion

In this paper, we present an end-to-end trainable network

that can simultaneously detect and recognize text in arbi-

trary shape. The use of Mask R-CNN, attention decoder and

a simple yet effective RoI masking step leads to a flexible

and high performance model. We also show that end-to-end

training can benefit from partially machine annotated data.

On the ICDAR15 and Total-Text benchmarks, our method

significantly surpasses previous methods by a large margin

while being reasonably efficient.
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