
Deep End-to-End Alignment and Refinement for Time-of-Flight RGB-D Module

Di Qiu1,2∗ Jiahao Pang1∗ Wenxiu Sun1 Chengxi Yang1

1 SenseTime Research 2 The Chinese University of Hong Kong

sylvesterqiu@gmail.com, jpang@connect.ust.hk, {sunwenxiu,yangchengxi}@sensetime.com

Abstract

Recently, it is increasingly popular to equip mobile RGB

cameras with Time-of-Flight (ToF) sensors for active depth

sensing. However, for off-the-shelf ToF sensors, one must

tackle two problems in order to obtain high-quality depth

with respect to the RGB camera, namely 1) online calibra-

tion and alignment; and 2) complicated error correction

for ToF depth sensing. In this work, we propose a frame-

work for jointly alignment and refinement via deep learning.

First, a cross-modal optical flow between the RGB image

and the ToF amplitude image is estimated for alignment.

The aligned depth is then refined via an improved kernel

predicting network that performs kernel normalization and

applies the bias prior to the dynamic convolution. To enrich

our data for end-to-end training, we have also synthesized

a dataset using tools from computer graphics. Experimen-

tal results demonstrate the effectiveness of our approach,

achieving state-of-the-art for ToF refinement.

1. Introduction

Nowadays, RGB-D camera modules based on Time-

of-Flight (ToF) sensors are becoming increasingly popu-

lar for mobile devices. At an affordable cost, it provides

portable active depth measurements. In general, compared

to monocular or stereo camera modules [12, 18, 22, 29, 30],

ToF sensors provide higher precision depth values for short-

range distance sensing [16]. However, off-the-shelf ToF

RGB-D camera modules have two problems:

(i) Perspective difference: The depth measurements are

initially defined from the perspective of the ToF sen-

sor, thus alignment between the depth images and

RGB images is necessary;

(ii) Erroneous measurements: depth measurements of

ToF sensors suffer from different types of error such

as multi-path interference, noise, etc.

∗Both authors contributed equally. Jiahao Pang is the corresponding

author, this work was done while he was with SenseTime.

(a) Unaligned erroneous depth image. (b) Our result.

Figure 1: Proposed framework of alignment and refinement of

ToF depth images for weakly calibrated ToF RGB-D module. The

scene is chosen from our synthetic ToF-FlyingThings3D dataset.

These two problems hamper the direct usage of ToF RGB-

D camera modules for applications such as computational

photography, augmented reality and video entertainment.

Multi-view geometry sheds light on the first problem. In

fact, pixel correspondences between the RGB image and the

ToF amplitude image can be computed given the true depth

from the perspective of either of the images accompanied

with the full set of camera parameters [17]. However, un-

der dynamic changes during deployment, mobile ToF RGB-

D camera parameters can seldom be calibrated once and for

all. In fact, modern RGB cameras are often equipped with

optical image stabilization (OIS) systems which dynami-

cally changes the principal points, alongside with other mild

calibration degradation to the ToF RGB-D camera module.

These impacts can be sufficiently modeled by the changes

of the principal point cx, cy of the RGB camera, and the

relative translation parameters tx, ty [7, 37]; while the rest

of the parameters can be viewed as unchanged. Hence, it

brings the need of performing online calibration and align-

ment for ToF RGB-D camera modules.

With the above practical setup, we assume the ToF

sensor and the RGB camera have already been calibrated

with standard procedure, e.g., with [38], and therefore hav-

ing known initial camera parameters. However, the set

of parameters {cx, cy, tx, ty} changes during deployment.

We call such ToF RGB-D camera modules weakly cali-

brated. As a result, in the following we also assume both

the ToF amplitude images and the ToF depth images pro-
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vided to our framework have already been rectified and

warped to the viewpoint of RGB camera according to the

initial camera parameters,1 However, random perturbations

to {cx, cy, tx, ty} lead to misalignment; so performing on-

line alignment is a must.

Although a straightforward solution is to match their key

points on the fly, this approach fails in practice because the

imaging process of a ToF camera departs greatly from that

of a standard RGB camera [16]. Above all, a ToF amplitude

image is lightened up by a single light source located on the

module. Moreover, since infra-red frequencies are used, the

same material may have considerably different appearances

in the ToF amplitude images and the color images.

To apply multi-view geometry directly, another difficulty

is the second problem—erroneous measurements—as men-

tioned above. A ToF sensor approximates the true depth

by estimating the phase shift of the received infra-red light,

which is determined by the scene geometry, materials, the

light source itself, etc. Apart from thermal noise which is

common for electronic devices, a major source of error is

the multi-path interference (MPI)—stems from the mecha-

nisms of ToF sensor—making the depth measurements far-

ther than the actual ones [16].

Given the coupled nature of the alignment and the refine-

ment problems, it will be beneficial to solve them with the

help from high-quality ToF RGB-D data. In this paper, we

propose a novel end-to-end deep learning framework solv-

ing both the alignment and refinement tasks of depth images

produced by off-the-shelf ToF RGB-D modules. Our key

contributions include:

(i) To address the alignment problem, we propose an

effective two-stage method for estimating the cross-

modal flow between the ToF amplitude and RGB im-

age, utilizing the original depth measurements, and

trained with dedicated data augmentation technique.

(ii) For the ToF depth refinement problem, we propose

an effective architecture, ToF kernel prediction net-

work (ToF-KPN) which also employs the RGB im-

ages. With simple changes to the original KPN, we

enable state-of-the-art performance in reducing MPI

while enhancing the depth quality.

(iii) It is difficult to collect sufficient real data with high-

quality ground-truth for training. Hence, we synthe-

size a dataset for our problem with tools in computer

graphics. We call our dataset ToF-FlyingThings3D, as

we let various objects floating in the scenes similar to

the FlyingThings3D dataset [25].

We call our Deep End-to-end Alignment and Refinement

framework DEAR. Our paper is organized as follows. We

1From the mechanisms of ToF sensor [16], we note that a ToF ampli-

tude image and its corresponding ToF depth are essentially aligned.

review related works in Section 2. In Section 3 we elaborate

our framework and in Section 4 we detail our data genera-

tion and collection strategy. Experimentation are presented

in Section 5 and conclusions are provided in Section 6.

2. Related Work

To our best knowledge, we are the first in the literature

to propose an end-to-end depth alignment and refinement

framework for ToF RGB-D camera modules. Since none of

the existing work has the same settings as ours, we briefly

review works related to the two components of our frame-

work, namely cross-modal correspondence matching and

ToF depth image refinement.

Cross-modal correspondence matching. Our work

performs online cross-modal dense correspondence match-

ing, i.e., optical flow estimation, between the ToF amplitude

image and the RGB image, so as to address the alignment

problem. In [5], the authors propose the Log-Gabor His-

togram Descriptor (LGHD) which adopts multi-scale and

multi-oriented Log-Gabor filters to extract feature descrip-

tors from multi-spectrum image pairs, while Shen et al. [31]

exploit the structure variation existing in multi-modal image

sets. In [8], Chiu et al. propose cross-modal stereo for im-

proving the accuracy of Microsoft Kinect [39] by combin-

ing the three channels of red, green, and blue optimally to

mimic the infrared image. A very recent work [40] applies

a deep neural network for solving the challenging problem

of cross-spectral stereo matching using the rectified near in-

frared and RGB images, where a novel material-aware loss

function is proposed specifically for applications in vehicle

vision. None of the above works takes the ToF amplitude as

the alternative modality nor matches correspondence under

weakly calibrated stereos. Moreover, our method estimates

the flow by exploiting the depth image obtained by the ToF

sensor while the other works do not take it into account.

ToF depth image refinement. There exist a notable

number of works on mitigating errors of continuous-wave

ToF depth images. Early works, such as [13, 11, 10, 27],

often adopt simplified assumptions such as two-path for-

mulation of MPI, leading to closed-form solutions or costly

optimization. Another stream of works focus on the acquisi-

tion side, for example using signals in the GHz band instead

of the MHz band to mitigate MPI in diffusive environment

[15, 20], or exploiting epipolar geometry of light paths [3] at

the expense of sequential multiple captures. These methods

can produce physically accurate results but are not yet ready

for the markets. Closely related to our methods are the re-

cent works based on deep learning which utilizes physically

accurate synthetic data. In [24] an auto-encoder (U-Net) is

used to learn the MPI corrected depth directly, while [34]

starts instead from raw correlation measurements aiming for

an end-to-end ToF imaging pipeline. Guo et al. [14] pro-

pose deep learning methods that tackle artifacts from multi-
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(a) Rough optical flow estimation. (b) Flow refinement with ToF depth image.

Figure 2: Architecture overview of the cross-modal flow estimation. A rough optical flow is first estimated via FlowNetC. It is then refined

by incorporating the depth measurements of the ToF sensor. For flow refinement, we make a depth-flow conversion by estimating the

perturbed camera parameters. The converted flow and the rough flow are fed to a small fusion network to obtain the refined flow.

frame fusion as well. All these works are targeted for purely

refining the depth images of ToF sensors, so they do not take

the corresponding color images into account.

3. Alignment and Refinement

This section illustrates our end-to-end framework for

joint alignment and refinement. Particularly, we first esti-

mate the cross-modal dense optical flow for image align-

ment, then a novel architecture—ToF kernel prediction net-

work (ToF-KPN)—is proposed for depth refinement.

3.1. Cross­Modal Dense Flow Estimation

We solve the alignment problem by estimating a flow

(denoted as W ∈ R
h×w×2) where the RGB image (denoted

by IRGB) and the ToF amplitude image (denoted by IToF)

are regarded as the first and the second images, respectively.

We denote the operation of warping of a one-channel h×w

image I by the flow (a warp field) W as Iwarped = I ◦W ,

that is,

Iwarped(p) = I (m+Wx(p), n+Wy(p)) , (1)

where Iwarped(p) denotes the p = (m,n)-th pixel of im-

age I , similarly for I(p); and Wx,Wy ∈ R
h×w are the

x- and y- components of the estimated optical flow. The

warping operation as in (1) is differentiable with respect

to the warp field [19]. Compared to the classic optical

flow estimation approaches, recent approaches via convolu-

tional neural networks (CNNs) not only have strong learn-

ing/adaptation power, but are also better at exploiting spa-

tial and non-local information across multiple scales [23, 9].

Therefore, we cast the matching task as the estimation of

cross-modal dense optical flow with CNNs. We divide

the estimation task into two stages: 1) rough optical flow

Wrough ∈ R
h×w×2 estimation, and 2) flow refinement. In

the first stage we compute a flow solely based on the IRGB

and IToF, while in the second we make use of the depth

image of the ToF sensor to refine the flow details.

To compute the rough flow, we have adopted a represen-

tative architecture, FlowNetC [9], though more advanced

choices, e.g., PWC-Net [35], are also applicable. FlowNetC

is an U-Net with skip connections, where the encoder part

contains a Siamese tower followed by a correlation layer

computing a cost volume. This rough flow estimation mod-

ule is illustrated in Figure 2a.

In the second stage, we refine the flow by incorporat-

ing the depth images obtained by the ToF sensor using

a lightweight fusion CNN. Particularly, we first warp the

depth image from the perspective of the ToF camera, de-

noted by DToF, to the perspective of the RGB camera,

DRGB, i.e., DRGB = DToF ◦ Wrough. For the weakly-

calibrated module, we can readily estimate a new set of

camera parameters {t⋆x, t
⋆
y, c

⋆
x, c

⋆
y} between the ToF ampli-

tude image (after initial rectification) and the RGB image

by solving the following least-square problem,2

{t⋆x, t
⋆
y, c

⋆
x, c

⋆
y}= argmin

tx,ty,cx,cy

∑

p

∥∥∥∥∥Wrough(p)−

(
tx

DRGB(p)+cx
ty

DRGB(p)+cy

)∥∥∥∥∥

2

.

(2)

Solving this problem is equivalent to solving a linear sys-

tem, which is differentiable. Hence, it is embedded as a

component in our refinement network. Then we can convert

DRGB to another estimated flow, Wconvt (subscript convt
denotes it is converted from the depth image), given by

Wconvt =

(
t⋆
x

DRGB
+ c⋆x

t⋆
y

DRGB
+ c⋆y

)
. (3)

Finally we concatenate Wrough and Wconvt and feed them

into a lightweight fusion U-Net, which outputs the refined

flow Wrefn. The architecture of this fusion CNN is il-

lustrated in Figure 2b. Having computed the refined flow

2A detailed derivation of this formulation is presented in the supple-

mentary material.
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Figure 3: Architecture overview of the depth refinement using

the proposed ToF kernel prediction network (ToF-KPN). Here

“Im2col” rearranges each patch along the channel dimension while

“Sum3” sums along the channel dimension.

Wrefn, it is applied on the input depth for later depth refine-

ment, i.e., DToF ◦ Wrefn. For convenience, we simply use

D to denote the final warped depth, DToF ◦ Wrefn, in the

rest of the paper.

3.2. Refinement via ToF Kernel Prediction Network

It is well-known that the ToF depth measurements suf-

fer from error such as the MPI, the “flying pixel” arti-

fact, and also thermal noise [16]. Moreover, the warped

depth D does not guarantee to be tightly aligned with the

RGB image. Consequently, a post-processing procedure

for depth refinement is indispensable. Kernel prediction

network (KPN) is a recently proposed model which per-

forms edge-aware adaptive filtering to images in a data-

driven manner [6, 26, 36]. Given depth image D, a vanilla

(original) KPN uses an U-Net with skip connections to pre-

dict for each pixel a kernel operating only on its surround-

ing patch. Specifically, for a KPN with output kernel size k

(k = 3 is used in our work),

Dout(p) = w
T
p · patch(D(p)) + b(p), (4)

where Dout is the output depth and Dout(p) is its p-th pixel,

patch(D(p)) ∈ R
k2

denotes the vectorized patch of D cen-

tered at pixel p. The pixel-wise kernel wp ∈ R
k2

and the

bias b ∈ R
h×w are outputs of the KPN. In other words, the

KPN output is a 3-D volume of size h× w × (k2 + 1). We

will present an improved KPN for ToF depth image refine-

ment, which differs from (4) in two major perspectives.

First, we empirically find that, in the depth refinement

task the vanilla KPN inclines to produce kernel wp with

very small magnitudes. In such cases, (4) degenerates to

Dout ≈ b and the KPN behaves like an U-Net. To make full

use of the filtering of KPN, we normalize the kernel weights

by their sum of absolute values, i.e.,

ŵp(i) = wp(i)

/∑k2

i=1
|wp(i)|, (5)

where wp(i) is the i-th entry of wp.

Secondly, resolving MPI is challenging, since it intro-

duces gross error almost uniformly in large area and can

hardly be resolved by filtering. Consequently, we propose

to add the bias term b(p) firstly aiming at correcting the

MPI, then use the kernel ŵp for edge-aware filtering:

Dout(p) = ŵ
T
p · patch([D + b](p)), (6)

where patch([D + b](p)) denotes the patch on D + b cen-

tered at pixel p. We call our improved KPN as ToF-KPN

since it is designed for ToF depth image refinement. It takes

as inputs the RGB image IRGB, the warped ToF amplitude

image IToF ◦ Wrefn, and the warped depth D, and outputs

the parameters for elementwise filtering on D. Its filtering

scheme is illustrated in Figure 3. We have performed exten-

sive ablation studies and will discuss the effects of our mod-

ifications in Section 5.2. These simple changes can boost

the results over the vanilla KPN by a significant margin.

3.3. Loss Functions

In our work, the training data consists of both the syn-

thetic data with perfect ground-truth and the real data. To

achieve robustness in both flow estimation and depth refine-

ment, we apply ℓ1 loss averaged over the image size for

training.

Cross-modal optical flow estimation. ℓ1-loss across

multiple scales is used in this module. Particularly, we de-

note the network output at scale s by W
(s)
Ω and the corre-

sponding ground-truth by W
(s)
gt , where Ω ∈ {rough, refn}.

Then given a training sample, its associated loss is

LΩ =
∑

s,p

αs

Ns

∥∥∥W (s)
Ω (p)−W

(s)
gt (p)

∥∥∥
1
. (7)

Here both W
(s)
Ω (p) and W

(s)
gt (p) are R2 vectors, Ns denotes

the number of pixel of that scale. We use the same weight-

ing factor αs as that of FlowNetC [9].

Depth refinement. Choosing proper loss functions are

crucial for learning correct geometry without MPI and irrel-

evant textures from the RGB image. ℓ1 losses on the output

depth and its gradients are used in this module. Particularly,

given the output depth Dout and the corresponding ground-

truth depth Dgt, its associated loss is

Ldepth =
1

N

∑
p
‖Dout(p)−Dgt(p)‖1

+ λ‖∇Dout(p)−∇Dgt(p)‖1,
(8)

where N is the number of pixels, the gradient is computed

with the discrete Sobel operator [33]. In our experiments,
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Figure 4: Examples of our datasets. The first row shows an in-

stance of our synthetic dataset, from left to right are the RGB im-

age, the ToF amplitude, the ToF depth image and the ground-truth

depth respectively. The second row shows an instance of our real

dataset, from left to right are the RGB image, the ToF amplitude,

the ToF depth image and the confidence mask, respectively. We

use the cyan color to indicate available pixels on the mask.

we set λ = 10 to let the ToF-KPN learn correct geometry

with minimal MPI while preserving details. We summed up

the three loss functions, Lrough, Lrefn and Ldepth for overall

end-to-end training.

4. Datasets and Augmentation

4.1. Synthetic Data Generation

Due to the mechanisms of ToF depth sensing, it is un-

easy to mitigate the error of ToF depth measurements,

e.g., by using a longer exposure time or a higher modu-

lation frequency [15, 20]. As a result, collecting a large

amount of ground-truth depth images for ToF cameras is

very challenging. Previous works on ToF signal processing

[4, 34, 14, 24] have opt for synthesizing data using tran-

sient rendering from computer graphics [19, 32]. We learn

from the experience of these previous works to synthesize

our dataset.

Technically, we follow the approach provided by

Su et al. [34] in synthetic data generation. Ad-

ditionally, we randomly place diverse kinds of objects

with various sizes into the publicly available Blender

scenes, totalling 6250 different views for training our

framework. We place our objects in a way similar

to the FlyingThings3D dataset [25] designed for opti-

cal flow estimation. Hence, we call our dataset ToF-

FlyingThings3D. We also render the corresponding RGB

images using Cycles in Blender. These together form

the {ToF amplitude, RGB, ToF depth} triplets mimicking

the outputs of an off-the-shelf ToF RGB-D camera module.

The corresponding ground-truth depths are obtained from

Blender’s Z-pass. Each data sample consists of the ToF

amplitude, RGB image, ToF depth image, and the ground-

truth depth image, all of size 640×480 and generated at the

same view point. We randomly set aside 20% of the data

instances for testing while the rest are used for training. An

example of our synthesized data is shown in the first row

of Figure 4. More details about the synthetic dataset can be

found in the supplementary material.

4.2. Real Data Collection

We have also collected a real dataset with several smart-

phones equipped with both an RGB camera and a Panasonic

ToF depth sensor [1]. Each data sample consists of an RGB

image, a ToF amplitude image, a depth image, and a binary

mask all of size 640×480. The binary mask indicates the lo-

cations of the depth measurements of high confidence. Only

depth measurements with high confidence are considered as

ground-truth during training. By carefully calibration dur-

ing the collection of each data sample, we align the depth

image, the ToF amplitude image, the binary mask, and the

RGB image to the same view point by warping. Our real

dataset includes 400 scenes collected under different illu-

mination, in which there are 42% of the samples belong-

ing to indoor and the rest belonging to outdoor. These data

samples complement the aforementioned synthetic dataset.

Again, 20% of the real data are reserved for testing while

the rest are used for training. An instance of real data is

shown in the second row of Figure 4.

4.3. Data Augmentation via Multi­view Geometry

We are now equipped with both synthetic data (Sec-

tion 4.1) and real data (Section 4.2) in which every data

sample is well aligned. During training for the alignment

module and end-to-end training, we generate unaligned

training samples from the aligned ones on the fly. In this

way we enhance the robustness, by making sure that the un-

aligned ToF and RGB training data cover as much as possi-

ble the permissible perturbations of camera parameters.

The perturbation range is determined from the devices

used. Specifically, for each sample, we uniformly sample

cx, cy within ±2.5% of the input image size. For images

of size 640 × 480, these perturbations can cause the true

alignment to deviate from initial calibration by 20 pixels or

more. Among all the initial tx’s of our ToF RGB-D camera

modules, we denote the one with largest absolute value be

t′x, similarly for t′y . Then we uniformly sample tx and ty
within ±30% of t′x and t′y , respectively. With multi-view

geometry, we use the generated {tx, ty, cx, cy} to compute

the forward optical flow from the view of the ToF sensor

to a virtual RGB camera. With this flow, we warp both the

ground-truth depth and the RGB image to the view of the

virtual RGB camera, leading to the ground-truth depth and

the RGB image for training. We also compute the ground-

truth inverse flow regarding the RGB image as the first im-

age and the ToF amplitude image as the second image. This

inverse optical flow is used as the supervising signal for

training the alignment module. Note that we also update

the confidence masks that indicate both the occlusion pix-

els or invalid depth values due to warping. These masks are

used in the optimization (2) and calculation of losses, where
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the contributions by the invalid pixels are not considered.

5. Experimentation

5.1. Training Specifications

We have adopted a pre-training strategy for both the

alignment and refinement modules. During pre-training, the

alignment module is trained in a stage-wise manner, that

is, we first trained the FlowNetC only for rough flow esti-

mation, then we included the flow refinement module, both

for 20 epochs. In parallel, we pre-trained the ToF-KPN for

40 epochs. We finally stack the alignment and refinement

modules together for overall end-to-end fine-tuning for 10

epochs. For all the training, we used the ADAM optimizer

[21] with a batch size of 3, where images are randomly

cropped into size 384 × 512. When training from scratch,

the learning rates are set to be 4× 10−4, while during over-

all fine-tuning, the learning rates are set to be 1 × 10−5.

In both cases, we adopt a staircase decay rate of 0.7 to the

learning rates after every two epochs. Our implementation

is based on the TensorFlow framework [2]. All the models

are trained on an Nvidia GTX1080 Ti GPU. The results re-

ported in Section 5.2 and Section 5.3 are based on the sep-

arately trained alignment and refinement modules, and in

Section 5.4 the jointly fine-tuned DEAR framework.

5.2. Ablation Studies

Flow refinement with fusion network. Camera param-

eter estimation in Figure 2b acts as an intermediate step

bringing raw depth information into flow estimation, to-

gether with the fusion network it refines the rough optical

flow. We herein quantitatively evaluate the flow estimation

results before and after adding the optical flow refinement,

as well as directly using depth as fusion network’s input,

on both the real and synthetic datasets. Average end-point

error (AEPE) is used as the metric for objective evaluation.

We first validate the accuracy of our alignment module

using both the synthetic data and the real data. Specif-

ically, we apply the method described in Section 4.2 to

generate test data from randomly sampled camera pa-

rameters. To model different levels of perturbations,

we generate 6 groups of data, each containing 1000
{ToF amplitude, RGB, ToF depth} triplets accompanied

with the ground-truth flow, where perturbations are sam-

pled from normal distributions with increasing standard de-

viations. Our experiments found that the flow refinement

module consistently leads to improved accuracy (Table 1).

We also qualitatively demonstrate the effect of flow refine-

ment in Figure 5.

Depth refinement with ToF-KPN. Recall that for depth

refinement, we aim to not only enhance the depth details by

exploiting the RGB image, but also reduce the ToF depth

sensing error such as the MPI and the sensor noises. This

RGB ToF ampl. ToF depth Wrough Wrefn Wgt

Figure 5: Optical flow refinement incorporating the raw ToF depth

measurements greatly refines flow quality.

Standard Deviation σ 2.00 4.00 6.00

Datasets Real Syn. Real Syn. Real Syn.

Before Refinement 1.28 1.52 1.48 2.10 1.59 2.70

Direct Fusion 1.29 1.55 1.50 2.16 1.63 2.79

After Refinement 1.15 1.34 1.31 1.87 1.36 2.45

Table 1: Average end-point error before and after flow refinement.

experiment shows that superior refinement quality can be

achieved with our proposed ToF-KPN architecture. Specif-

ically, we validate the performance of our refinement mod-

ule, denoted by TOF-KPN, against several networks and

hyper-parameter variations, they are:

• U-NET: A U-Net with the same structure as the backbone

of our TOF-KPN, but instead it directly regresses the depth.

It is supervised using the same loss function (8) as the TOF-

KPN.

• NOGRAD: The same with TOF-KPN except is trained using

no additional gradient loss as compared to (8) of TOF-KPN.

• NONORM: The same with TOF-KPN except the kernel nor-

malization step (5) is not performed.

• AFTBIAS: The same with TOF-KPN except the bias is

added after applying the kernel.

• NONORMAFTBIAS: The same with NONORM except the

bias is added after applying the kernel, i.e., the vanilla KPN

as in (4).

• NONORMNOBIAS: The same with NONORM except that no

bias term is added.

We follow the experimentation approach as in [4, 34] to an-

alyze the model behaviors. Specifically, we sort the pixel-

wise errors between the input depth and the ground-truth

depth within range of 4 meters in ascending order and divide

them into four quantiles, by which the pixels are classified.

The first quantile (0 ∼ 25%) consists of the pixels that are

identified as having low-error, while the second (25 ∼ 50%)

and the third (50 ∼ 75%) quantiles are mid- and high-error

pixels. Errors in the last quantile are treated as outliers. On

the test split of our synthetic ToF-FlyingThings3D dataset,

we compute the overall MAE as well as the MAEs of indi-

vidual classes, and report them in Table 2.

We first observe that our TOF-KPN provides the best

MAE across all error levels. By comparing TOF-KPN

3Adopted from [24], please refer to the text for details.
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(a) RGB image (b) ToF depth (c) Vanilla KPN (d)TOF-KPN(ours) (e) Ground-truth (f) Bias of (c) (g) Bias of ours

Figure 6: Depth refinement results of an image fragment. The vanilla KPN, i.e., NONORMAFTBIAS in (c), produces dominating bias term

and diminishing kernels, which behaves very close to a simple U-Net. As shown in (f), the bias image is very similar to the depth itself. In

contrast, our approach produces well-behaved bias image (g).

Model
Mean Absolute Error (MAE) in cm

Low Err. Mid Err. High Err. All

U-NET 1.71 1.42 1.52 1.79

NOGRAD 2.19 1.78 1.96 2.43

NONORM 1.60 1.37 1.51 1.73

AFTBIAS 1.52 1.29 1.39 1.62

NONORMAFTBIAS 1.64 1.38 1.52 1.76

NONORMNOBIAS 1.63 1.37 1.50 1.74

TOF-KPN (ours) 1.44 1.19 1.29 1.51

Table 2: Quantitative study of model design for the depth refine-

ment module on the ToF-FlyingThings3D dataset.

Model
Mean Absolute Error (MAE) in cm

No. of Param.

Low Err. Mid Err. High Err. All

DEEPTOF3[24] 4.31 3.52 4.08 4.69 2.6 M

Su et al. [34] 4.58 4.14 4.57 4.90 24.3 M

TOF-KPN w/o RGB 2.21 1.93 2.21 2.44 2.6 M

Table 3: Quantitative comparison with competitive ToF depth im-

age refinement methods on the ToF-FlyingThings3D dataset. Note

that in this comparison no color images are used as inputs.

and NOGRAD, we note that the greatest gain comes from

the weighted gradient loss, without which it results in at

least 60.9% increase in MAE. With the same loss functions,

different model architectures also result in different per-

formances. The worst behaving KPN variant is NONOR-

MAFTBIAS, i.e., the vanilla KPN (4), which neither have

kernel normalization nor add the bias first. For this model,

we empirically find that the bias quickly dominates while

the kernels degenerates to zeros during training. Hence,

the network behave very similar to U-NET, as mentioned in

Section 3.2. To mitigate this phenomenon and fully utilize

the power of KPN, one may either use kernel normalization

or applying the bias beforehand, leading to slightly smaller

MSE (AFTBIAS and NONORM). However, we furthermore

note that for NONORM, the bias term has little contribu-

tion since its performance is similar to the one without bias

term, i.e., NONORMNOBIAS. Performing both kernel nor-

malization and adding bias in the first place as our TOF-

KPN leads to the best performance with a substantial mar-

gin of 6.8% over the second best model, AFTBIAS. A sub-

jective comparison between NONORMAFTBIAS and TOF-

ToF amplitude ToF depth image

ToF depth values DEEPTOF [24] Su et al. [34] TOF-KPN (ours)

Figure 7: Depth values of different approaches on a scan-line are

shown, alongside with the ground-truth. The green arrows indicate

the locations that suffer from severe MPI effect.

KPN is also shown in Figure 6, where NONORMAFTBIAS

has dominating bias while our TOF-KPN gives more faith-

ful results.

5.3. Comparisons on ToF Depth Image Refinement

We compare our proposed ToF-KPN with the state-of-

the-art ToF depth image refinement approaches based on

deep neural networks.

Experiments on ToF-FlyingThings3D. We compare

our proposal with two other representative approaches. The

first one is a deep end-to-end ToF pipeline proposed by Su et

al. [34] which takes the raw correlation measurements as

inputs. In the experiment, we directly use their released

model because our ToF-FlyingThings3D dataset is gener-

ated using the same scenes and settings as [34]. The second

competing method is the DEEPTOF framework based on an

auto-encoder which processes off-the-shelf ToF depth im-

ages directly [24]. The original DEEPTOF employs a model

smaller than ours and it is trained on their real dataset.

For fair comparison, we replace their model by our U-NET

backbone and train it on our synthetic dataset. We also ap-

ply the Euclidean norm as the loss function as indicated in

[24]. Note that these two methods takes as inputs the ToF

depth image and the ToF amplitude, i.e., they do not use the

RGB image. For fairness, we train a version of our TOF-
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(a) RGB image (b) ToF amplitude (c) ToF depth (d) Results of DEAR (e) ToF depth + RGB (f) DEAR + RGB

Figure 8: Visual results of our deep end-to-end alignment and refinement framework. In the first two rows we show the results on synthetic

data, while last two rows for real data taken by weakly calibrated ToF RGB-D camera modules.

KPN which does not take the RGB image as input.

The objective results, in terms of MAE, are presented in

Table 3. We see that our approach, TOF-KPN, achieves the

best performance with minimal amount of model parame-

ters. In Figure 7, we demonstrate our capability of reducing

MPI by plotting the depth values along a scan-line.

Experiments on FLAT [14]. We compare our refine-

ment with the multi-reflection module (MRM) in FLAT

on 120 static test images provided in the FLAT dataset.

The MRM uses a KPN architecture but performs filter-

ing on the raw correlation measurements. We fine-tune

our model on the static training dataset in FLAT, using the

depths obtained from the default de-aliasing algorithm used

in libfreenect2 [28] as input. Note that we do not train

nor test on the images of objects without complete back-

ground environment, which have little MPI error but takes

up about half of the entire FLAT dataset. In testing, we

achieve an MAE of 0.69 cm while that of MRM is 3.88 cm.

5.4. Evaluation of Deep End­to­End Alignment and
Refinement Framework

In this last experiment, we evaluate the overall per-

formance of our deep end-to-end alignment and refine-

ment (DEAR) framework on both the synthetic and real

datasets. For this purpose we generate 150 extra misaligned

{ToF amplitude, RGB, ToF depth} triplets (accompanied

with the ground-truth depth) for testing. They are rendered

at novel views defined by randomly sampled camera param-

eters. The visual results are demonstrated in Figure 8, where

the first two rows show results of the synthetic data while

the rest show results of our real data. To visualize the align-

ment quality, in the last two columns of Figure 8, we blend

the RGB images with the corresponding input depth DToF

and the output depth Dout, respectively.

Quantitatively, by assembling the separately trained

alignment and refinement modules then applying them to

the synthetic data, the average depth MAE reduces from

14.61 cm to 2.90 cm. By jointly fine-tuning the overall

DEAR framework, the average MAE further reduces to

2.81 cm. This demonstrates that our proposal is capable

of producing high-quality refined depths that are also well

aligned with the corresponding RGB images. More results

can be found in the supplementary material.

6. Conclusion

We have proposed DEAR, a deep end-to-end alignment

and refinement framework for weakly calibrated ToF RGB-

D camera module. Our alignment module estimates cross

modal optical flow, integrating information from the ToF

depth; our refinement module, based on a specifically de-

signed kernel prediction network, tackles the erroneous ToF

depth measurements. To obtain high-quality data for train-

ing we have synthesized a dataset, ToF-FlyingThings3D,

with tools from computer graphics. Comprehensive experi-

ments have been conducted to demonstrate the effectiveness

of our proposal.
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