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Abstract

When taking pictures through glass window in rainy day,
the images are comprised and corrupted by the raindrops
adhered to glass surfaces. It is a challenging problem to
remove the effect of raindrops from an image. The key task
is how to accurately and robustly identify the raindrop re-
gions in an image. This paper develops a convolutional
neural network (CNN) for removing the effect of raindrops
from an image. In the proposed CNN, we introduce a dou-
ble attention mechanism that concurrently guides the CNN
using shape-driven attention and channel re-calibration.
The shape-driven attention exploits physical shape priors of
raindrops, i.e. convexness and contour closedness, to accu-
rately locate raindrops, and the channel re-calibration im-
proves the robustness when processing raindrops with vary-
ing appearances. The experimental results show that the
proposed CNN outperforms the state-of-the-art approaches
in terms of both quantitative metrics and visual quality.

1. Introduction

In rainy weather, there are many situations that one need
to take pictures of outside scenes through glass windows or
window shields. As the glass window is covered by rain-
drops in such scenarios, the captured images are comprised
by the effect caused by these raindrops. The same phe-
nomenon happens when camera lens are covered by rain-
drops when taking pictures outdoor in rainy day. The ef-
fect of raindrops on an image can significantly degrade its
visibility. See Fig. 1 for the illustration of real images
taken through windows with raindrops. In addition to vi-
sual quality degradation, the raindrops also have negative
impacts on the performance of outdoor computer vision
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systems, particularly the ones used in safety driving, out-
door surveillance, intelligent vehicle systems and camera
drones; see e.g. [12,23]. There is certainly a need for devel-
oping computational methods that can effectively remove
raindrops from an image, i.e. restore the visual distortions
caused by the raindrops on images.

The optical model of an image taken through window
with raindrops is quite complex. For our purpose, we con-

sider a simple linear model [23]:
I=(1-A)0L+AOR, (1)

where © denotes element-wise multiplication, I, L, R €
REXMXN denote the image with raindrops, the latent
raindrop-free layer, and the raindrop layer respectively. The
matrix A € [0, 1]*M*N denotes the transparency matrix.
Each entry of A represents the percentage of the light path
covered by raindrops for the corresponding pixel. As the
latent image layer L refers to the scene behind the glasses,
we also refer to L as background image/layer.

Figure 1: Examples of images taken through windows with
raindrops.

Different values of A will lead to different types of vi-
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sual distortions. Consider a pixel indexed by r. When
A(r) = 0, the pixel belongs to the background image and
has no visual effect of raindrop; when 0 < A(r) < 1, the
pixel only contains partial information of the background
(e.g. Fig. 1 (a)—(b)); and when A(r) = 1, the background
part is completely occluded by raindrops (e.g. Fig. 1 (c)-
(d)). In the last case, there might be more complex effects
on the appearance of raindrops due to the light reflection on
the glass.

It is a challenging problem to solve (1) for removing
raindrops from a single image. With totally three unknowns
L, R, A to be estimated, the problem is highly ill-posed
with an infinite number of mathematically sound solutions.
Some approaches utilize specific imaging hardware, such
as multiple cameras [20], pan-tilt camera [19], stereo cam-
era [21] and video camera [14,23], to provide multiple im-
ages so that more information can be used to resolve the
ambiguities. Such approaches have limitations on the ap-
plicability in practice.

Without additional sources, strong priors need to be im-
posed on the raindrop layer R so that the raindrops can be
accurately detected. Then, one might be able to separate
the raindrop layer and the background layer from the in-
put. Unfortunately, owing to the significant variations of
raindrops on size, shape and reflection, it is very difficult to
have a universal characterization on the appearance of rain-
drops. It is noted that raindrops are harder to identify than
rain streaks, as rain streaks have simpler reflection effect
and have quite straightforward priors on its orientation and
needle-type (e.g. [2, 10]).

1.1. Related work

Based on the availability of sources, the existing meth-
ods for raindrop removal can be categorized as multi-image
methods and single-image methods.

Multi-image methods. Taking multiple images as input,
multi-image methods [ 14, 19-21,23] exploit the strong cor-
relations among multiple images for jointly eliminating the
raindrops of multiple images. Yamashita et al. [20] worked
on the images of the same scene taken by a multi-camera
system. It is further extended in [19] to deal with single-
camera system, which simulates a multi-camera system by
adjusting the camera to different angles for generating ad-
ditional images. Later, Yamashita et al. [21] also worked
on the images produced by a stereo camera system. The
methods above request specific hardware, which limits its
applicability in practice. There are a few methods [8, 14,23]
working on video data and utilizing the contextual informa-
tion provided by adjacent frames. Kurihata et al. [8] pro-
posed to learn the spatio-temporal features of raindrops us-
ing PCA and then detect the raindrops by template matching
with learned raindrop features. Roser ef al. [15] proposed
to recognize raindrops using Bezier curve fitting. These two

methods mainly focus on raindrop detection, not removal.
Roser and Geiger [14] proposed a method that detects rain-
drops using a photometric raindrop model and restores oc-
cluded regions by fusing the intensity information from ad-
jacent image frames. You et al. [23] exploited the difference
on the motion speed as well as the difference on the scale of
temporal intensity change between raindrop pixels and la-
tent image pixels for separating the raindrops from a video.

(c) Qian et al.’s [12]

(d) Ours

Figure 2: Raindrop removal using different methods.

Single-image methods. Instead of using multiple images,
single-image methods only take one image as input. The
problem of removing raindrops from a single image is much
more challenging. The progress along this line has been
stagnated until the rapid progress of deep learning in recent
years. Eigen et al. [1] used a shallow convolutional neural
network (CNN) with only three layers for the task. This
method does not work well on the images with large and
dense raindrops, as shown in [12].

Recently, Qian et al. [12] proposed a generative adver-
sarial network (GAN) for raindrop removal. They trained
a recurrent network with spatial attention mechanism for
generating attentive raindrop masks from the input image.
The generated raindrop mask is then used to help restoring
the latent image using a CNN with a discrimination loss.
The performance of Qian et al.’s method highly depends
on the availability of the high-quality raindrop masks that
are used as the ground-truths for training the neural net-
work (NN). Nevertheless, it is very difficult to prepare such
training data. A dataset for training NN-based raindrop re-
movers is also presented by Qian et al. [12], whose ground-
truth raindrop masks are not very accurate owing to several
factors, e.g. the binarization of the mask which leads to ac-
curacy loss, and the imperfect alignment of rainy image and
raindrop-free image. See Fig. 2 for an illustration of the
results from existing methods. There is certainly a lot of
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room for further improvement. It is also shown in [12] that
the general learning of image-to-image mapping by CNNs
with GANS, e.g. Pix2Pix [6], does not perform well either.
In comparison to the success of deep learning on removing
rain streaks from images [2—4, 9, 22], the deep learning for
raindrop removal is still in its infancy stage.

1.2. Motivation and Contributions

Inspired by recent success of deep learning in image pro-
cessing, this paper proposes a CNN-based method for re-
moving raindrops from a single image. Particularly, we
build an attention mechanism into the CNN which exploits
both shape-driven attention and channel re-calibration for
effectively removing the raindrops from a single image.

Shape-driven attention of raindrop regions. As the
transparency effect caused by raindrops is spatially varying,
the transparency degree varies at different locations. Recall
that the transparency degree is related to the magnitude of
the mask matrix A in Eq. (1). Then A can be used as an at-
tention mask which guides the detection of raindrop regions
in the CNN. A recurrent sub-network is trained in Qian et
al.’s approach [12], under the supervision of truth masks in
binary form. Indeed, the binary form of truth masks is over-
simplified. Together with the challenges on building high-
quality training data of truth masks, the results could con-
tain noticeable artifacts in many cases; see e.g. Fig. 2. Such
an approach for detecting raindrop regions omits the inher-
ent shape property of raindrops, e.g. plumpness (or convex-
ness), non-anistrophy, and contour closedness. These phys-
ical properties indeed provide very informative priors for
identifying raindrop regions. These shape priors should be
exploited in the NN for facilitating the estimation of the at-
tention mask associated with the raindrop regions.

In this paper, we propose a shape-driven module to help
determining the attention mask. It is noted that the shape
of most raindrops in images are consistent on the geometri-
cal properties of convexness and contour closedness. More-
over, the raindrops tend to have roundness [23]. Such con-
tours can be well modeled by ellipses or mixtures of el-
lipses; see e.g. Fig. 3. Motivated by such an observation,
we propose a measurement of local image regions with the
following two properties: (1) it can be easily implemented
in the CNN with learnable parameters, and (2) it measures
the probability of a patch embracing a raindrop, in terms
of the fitness of the alignment of elliptic iso-contours with
the contour edges in the patch. Such a shape-driven atten-
tion mechanism can be painlessly plugged into the CNN to
guide the detection of raindrops.

Channel re-calibration of CNN features. The problem
of removing raindrops (1) can be viewed as a layer separa-
tion problem. One key to layer separation is the discrim-
inative depiction of two layers, which can be improved by
refining the discriminability of features or the discriminabil-

(a) Image with raindrops (b) Raindrop map
Figure 3: A rainy image and its raindrop map generated by
the difference between the rainy image and the truth one.
Blue denotes zero and red denotes the largest value.

ity of feature responses; see e.g. [10]. A CNN for image
raindrop removal often encodes a huge number of image
features in its intermediate results, including the features
relevant/irrelevant to image/raindrop. It is very helpful to
have a mechanism, during the separation process, to sepa-
rate features of natural images and raindrop-related features
in the CNN. More importantly, given a test image/patch, not
all the features in the CNN are equivalently useful. It is bet-
ter to selectively use the features that are more related to the
natural image contents as well as the raindrop types in the
given image/patch, which benefits the artifact suppression.

In the context of the channels of a CNN, different chan-
nels are about different types of image features or raindrop
features, which cover a wide range of local image patterns
(e.g. edges with different orientations) as well as raindrop
patterns (e.g. different sizes and appearance) for restoration.
Then, the feature selection in a CNN is about assigning dif-
ferent weights to different feature channels. This motivates
us to incorporate a channel attention/recalibration mecha-
nism into the CNN. The channel attention mechanism can
estimate the contribution of each feature channel based on
the inter-dependency among the channels, by which the
CNN can automatically include relevant features or exclude
irrelevant features for a given image during restoration.
Joint attention. Combining the proposed shape-driven
attention module and the channel attention module, we pro-
pose a CNN with a built-in joint attention mechanism for
single-image raindrop removal. The results show that such
an attention mechanism brings noticeable performance im-
provement. Compared to Qian et al.’s approach [12], our
attention is free from the supervised training with high-
quality masks which can be troublesome to construct, and
has better robustness in recovery with the help of channel
re-calibration. In the experiments, our approach outper-
formed existing state-of-the-art ones.

2. Measure of Roundness and Closedness

The raindrops in images show two geometric properties
that are quite consistent over most scenarios: one is con-
vexness and the other is contour closedness. Built upon the
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image torque operator [ 11, 16, 18] that captures the concept
of closed Gestalt-like contours with robustness to noises, we
propose a measure, implemented in the CNN with learnable
parameters, on the convexness and closedness of local im-
age contours.

More specifically, considering that the shapes of rain-
drops tend to have roundness [23] which can be modeled
by ellipses and mixture of ellipses, we generalize the torque
operator to handle elliptic contours and develop a calcu-
lation scheme based on the convolution operations. Note
that there are other powerful ellipse detectors for handling
complex variations of regions (e.g. texture regions). These
methods cannot be implemented using simple convolution
operations and they are overkill for our case with only flat
or smooth variations on raindrop regions.

Recall that the iso-contours of ellipses are of the function

2 2
x y

f(xa y) 72 b2 5 (2)

where a, b are the semi-major and semi-minor axes respec-

tively. The tangent lines of these iso-contours, denoted

by ggx are perpendicular to the gradient field Vf =
ax’ 8y and thus are given by
of of y =
=l-s 5 =153 3
g(m?y) [ 8y’ax] [ b27a2} ( )

Given an input test patch modeled as a 2D function P(z,y)
with its domain denoted by D(P), we first determine its
gradient field, denoted as VP = [‘?f; , %—5], and their edges
(tangent vectors), denoted as e(x,y) = [f%—ly), %—i]. If an
elliptic pattern exists in P, then the edges e(x, y) must align
well with the tangent vectors g(z,y). A simple measure of
alignment for a point (xg,yo) € D(P) is the inner product
between e(xg, yo) and g(xo, yo):

B(x0,v0) = e(z0,¥0) - g(z0,y0) "

opP opP Yo To.T
= [—afy(l’o,yo), %(Io,yo)] ’ [—bj’ g]

Then the torque on the patch P, measuring how likely the
P embraces a complete ellipse, is given by

T(P)= Y. Blxo,y0)/#D(P), 4)

(z0,90)€D(P)

where #D(P) is the number of pixels in P to make 7(P)
invariant to the scale of P. In other words, 7(P) measures
the roundness of the shape embraced by P. Given an image
I, 7(-) can be calculated on all its image patches with size
S x S. Then, the torque operator, denoted by p15(I), which
indicates the likeliness for each pixel of I that the pixel is
contained in an ellipse with major-axis 2a¢ and minor-axis
2b:

MS(I)(Z7J) = T(P(i,j),S)7 (5)

where P; jy ¢ denotes the patch centered at the position
(i, 7) with the size S x S. Since raindrops can be well mod-
eled by ellipses or mixtures of ellipses with closedness, the
operator g (I)(i,j) can be used to capture the raindrops in
an image. See Fig. 4 (c) for an example.

The calculation of pg(I) can be implemented based on
convolution. Let Py, - - - , Py denote all patches of size S x
S of I. Define D(P,,) = {(x;, yj)}szl. We rewrite 7(P,)
as

T(Py) = 11(Py) + 72(Pr),

where

x; OP,
71(Pn) = Z a? Oz

(xivyj)eD(Pn)

i 0P,
> g Ew)#DP). )
(24,y;)€ED(Pn)

(i, 4;)/#D(P),  (6)

T2 (Pn) =

Let B ¢ RS E{" c R5*5 denote two matri-
ces such that E%”)(z §) = %u(zy,y)), EM () =
ay n (z;,y;), which are the n- th patch of the edge maps

= V,I, By = VI respectively. Then 7 (P,,) is equiv-
alent to the inner product of E§”> and H' where
1
IZW[xlv : 7:US]T[]-7"' 71] (8)
S

The inner product of EYL) and H' over all n is the same
as the convolution of B; with the kernel H = flip(H’).
Similarly, the inner product of Eén) and V' over all n is
the same as the convolution of By with the kernel V' =

flip(V’) where

1
= SQbQ [17 ’1]T[y17"' ayS}- (9)
S
Thus, we have
ps(I) = By ®H,s+By®V,g, (10)

where ® denotes the convolution, and H,, g, V} g are of the
form H,V with their parameters as subscripts. See supple-
mentary materials for some demonstrations of our proposed
measure.

Robust edge detector. The edge maps B, Bs computed
with image gradients are not robust to noises and make the
measure ;. vulnerable to local intensity variations. A robust
edge detector is implemented to compute B, Bs. The edge
detector identifies image edges as follows. Firstly, find the
difference magnitude between neighboring pixels offset by
given step (set to 2 by default) for vertical pairs and hor-
izontal pairs (a cross of four segment). Secondly, find the
maximum/minimum within the crosses of four pairs. Lastly,
an edge is identified if the maximum of a cross, is the min-
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(a) Input image (b) Edge map

(c) Measure

Figure 4: Torque-based measure on an image with rain-
drops. Blue denotes zero and red denotes the largest value.

imum in a neighbor cross. Let (x,y) denote the gradient
orientation of the identified edge point at the position (x, y).
Then we compute By (z,y) = cos(6(z,y)), B2(z,y) =
sin(f(x,y)). For the non-edge pixels, we set the corre-
sponding elements in By, B to zero. See Fig. 4(b) for an
example of such an edge detector and supplementary mate-
rials for more examples.

3. Proposed Neural Network
3.1. Network Architecture

The proposed CNN for raindrop removal is built upon
the encoder-decoder architecture [13] which has been
widely used in image processing, including image derain-
ing [2,12]. See Fig. 5 (a) for the framework of the proposed
CNN. The CNN takes as input an image with raindrops, de-
noted by I, € RE*H*W "and two edge maps of the image
computed by the aforementioned robust edge detector, de-
noted by By, By € R1*H>*W The output is a raindrop-free
image, denoted by I, € RE*H*W:

f[:(I;,By,By) — I.. (11)

The image is first concatenated with the edge maps for ad-
ditional high-frequency information, which forms a tensor
in R(CH2)XHXW = Thep the tensor is sequentially passed
to a convolutional (Conv) layer with rectified linear unit
(ReLU), an encoder, a decoder and a convolutional layer.
The encoder contains nine residual blocks (ResBlks) which
are divided into three groups. As shown in Fig. 5 (b), each
ResBlk sequentially connects Conv/ReLU/Conv layers and
a joint physical shape + channel attention (JPCA) module,
with a skip connection from the front to the end. The JPCA
module additionally requires the input edge maps B, By
as input. The numbers of convolution kernels of the three
ResBIk groups (from left to right) are 32, 64 and 128 re-
spectively. The down-sampling layer is inserted before the
last two ResBlks. As for the decoder, its structure is sym-
metric to the encoder, except that the downsampling layers
are replaced with the upsampling layers. The downsam-
pling layers are implemented by the convolution with stride
2, and the upsampling layers are implemented by the trans-
posed convolution. The sizes of all convolution kernels in
the CNN, if not specified, are set to 5 x 5. For better opti-

mization as well as better preserving image details [5], the
long skip connections are added to connect the correspond-
ing ResBlks in the encoder/decoder.

3.2. Joint attention module

Given the intermediate feature maps F' € RE*H*W and
the edge maps B, B of the input image, our JPCA mod-
ule outputs the re-calibrated feature maps F’' € RE*HxW
based on attention:

JPCA : (F,By,B;) — F'. (12)

The structure of the JPCA module is illustrated in Fig. 5 (¢).
Firstly, the JPCA module infers a 2D spatial attention map
A, € R>HXW and an 1D channel attention map A, €
RE*1X1 Then, the JPCA map, denoted by A € REXHXW
is constructed by the tensor product of A and As. The final
output of the JPCA module is calculated by the following
attention process:

F' =FoA. (13)

There are mainly two sub-modules: physical attention (PA)
module driven by shape that calculates A and channel at-
tention (CA) module that calculates A..

Shape-driven attention module. The PA module is built
upon the torque-based measure proposed in Section 2.
The edge maps Bj, By (with possible downsampling to
match the size of the intermediate results in the en-
coder/decoder) are used as the input of each PA mod-
ule. To simulate the process of (10) using K patch scales
and M elliptic shapes, we construct two sets of con-
volution kernels {Hy, s, }ZM]fl and {%57}%2 of the
forms (8) and (9) respectively, where {a;, b;}}£, are learn-
able parameters for the shape of raindrops, and {S; }szl
are some predefined scales. According to the scale, we
group these kernels into {H,, s, }M,, - {H,, s, M,
Viosi ¥ {Vh, 5 }M,. Based on these sets of
kernels, we build up a series of convolutional layers
Convll, Convy € RM*HXW:

Convl : X — [Hg, 5, % X+ 1 Hoyy 5, * X,
C’om},\; X = Vo5 * X5 s Vi s x X,
fork=1,---, K. Then we compute
U, = Convil(By) + Conv) (By), (14)

for all k. The Uys can be viewed as the roundness mea-
sure of (10) computed on a series of scales with multiple
learnable shape parameters. Next, the shape-driven atten-
tion map A is defined as

As(h,w) = max Ui.(m, h,w). (15)

In other words, the attention A; takes the maximal torque-
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Figure 5: Framework and modules of proposed CNN for image raindrop removal.

based measure values across different image scales and dif-
ferent elliptic shapes. The structure of the PA module is
shown in Fig. 5 (d).

Channel attention module. We implement the CA mod-
ule as the one proposed in [!7], whose structure is shown
in Fig. 5 (e). Firstly, the spatial information of the feature
map is aggregated into two descriptors by using the average
pooling and max-pooling operations respectively. To cap-
ture the relationship among channels, both the descriptors
are forwarded to a shared multi-layer perceptron (MLP).
The MLP has one hidden layer, i.e. two fully-connected
(FC) layers, with the hidden state size set to C'//8 x 1 x 1
and uses ReLU as the activation function. Finally, the chan-
nel attention map is generated by summing up the outputs
of the MLP and passing it through the sigmoid activation
function.

3.3. Loss function

Given the training image pairs (X,;,Y;) for i =
1,---, N, where Y] is the image corrupted by raindrops and
X is the corresponding raindrop-free image. Let X; de-
note the output of our network when using (X;,Y;) as the
input. The loss function for training our network is defined
as follows:

N
1 N
L=+ ;:1:||X7; — Xi|x. (16)

where ||-||1 denotes the ¢; distance.

4. Experiments
4.1. Experiment setup

Data preparation. The dataset used in the experiments is
based on the one released by Qian et al. [12]. The images
with raindrops in the dataset [12] are created by the same
way as Eigen et al. [1]: taking photos before/after spray-
ing water on the glass. Qian et al.’s dataset totally contains
1110 corrupted/clean image pairs. Following the same strat-
egy as [12], we used 861 image pairs for training. Image
patches of size 256 x 256 were randomly cropped from the
training images as the input/truth data. In the remaining im-
ages of the dataset, there are 58 well-aligned image pairs
that were picked out for test (same as [12]). Two operations
were used for 4x data augmentation: (1) flipping each im-
age horizontally and (2) resizing each image with ratio 0.6.

Implementation and training details. The proposed
CNN is implemented using TensorFlow. All the experi-
ments were run on a PC with Intel(R) Core(TM) 17-8600
CPU and NVIDIA GeForce GTX 2080Ti. Regarding the
PA module, we set the patch scales (i.e. sizes of convo-
lution kernels) in calculating the torque-based measure to
15x15,20x20, - - - 40x40. At each scale, we used 8 elliptic
parameters. In training, we randomly cropped the patches
of size 256 x 256 as the inputs of the CNN. The batch size
was set to 10 and the number of epochs was set to 1000.
The learning rate was initialized with 10~* and using poly-
nomial decay with power of 0.3. For the optimization of the
training loss, we used Adam [7] with default parameters.
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Benchmark. The quantitative evaluation is done in terms
of three metrics: PSNR and SSIM calculated on the pro-
cessed image, and PSNR on the luminance (Y channel of
YUYV space). The last metric is used in [1]. There are few
published works for single-image raindrop removal. We
compare the proposed ones with two methods: Eigen et
al.’s [1] and AttentGAN [12]. We also include the results,
quoted from [12], a general image-to-image translation ap-
proach called Pix2Pix [6].

4.2. Results

Quantitative results. Table 1 lists the results of quantita-
tive evaluation. It can be seen that ours outperformed both
Eigen et al.’s method and Pix2Pix in terms of PSNR and
SSIM. Eigen et al.’s method performs much worse than
other compared methods, as it uses a shallow CNN with
only 3 layers. Pix2Pix uses a similar encoder-decoder struc-
ture to ours, but without any attention mechanism. It can be
seen that our CNN outperforms Pix2Pix with a large mar-
gin. Compared to AttentGAN, our method yielded slightly
lower PSNR on luminance channel but with both higher
PSNR and SSIM on the RGB channel. This implies that
our method can have better recovery on both image color
and image details. See supplementary materials for an il-
lustration of estimated attention maps.

Qualitative results. See Fig. 6 for the visualization of
some results. Limited by its network capacity, Eigen et al.’s
NN failed to remove raindrops. Pix2Pix removed the rain-
drops with a moderate amount, but it produced many arti-
facts on the recovered images. AttentGAN removed most
raindrops but it tended to generate artifacts on raindrop re-
gions. In comparison, our method can remove the raindrops
with less artifacts, and obtain the best visual quality among
the compared methods. As a simple user study, we invited
24 students for the study and 22 of them chose our recovery
results as their preferred ones.

Table 1: Results of tested methods on Qian et al.’s dataset.

Metric  Eigen et al. [1] Pix2Pix [6] AttentGAN [12] Ours
PSNR(dB) 23.74 28.15 30.55 30.86
PSNR-L(dB) 23.61 28.02 31.57 31.44
SSIM 0.7884 0.8547 0.9023 0.9263

Results on real images. We also collected some real-
world images via mobile phones for evaluation. The results
are shown in Fig. 7 and supplementary materials. It can be
seen that our method also works well on real images. Sim-
ilar to the results of previous experiments, Eigen et al. ’s
method cannot remove raindrops well and even caused im-
age blurring. The images generated by Pix2Pix and Attent-
GAN are not as clean as ours, and are likely to have more

artifacts on raindrop regions. In short, our method outper-
formend the existing ones in terms of visual quality.

4.3. Ablation study

To validate the effectiveness of the attention mechanism
in our CNN, we constructed three baseline models:

e Base-1: Removing the JPCA module from the CNN;

e Base-2: Removing the CA module from the CNN
(i.e. fixing the output of CA module to be 0.5);

e Base-3: Removing the PA module from the CNN
(i.e. fixing the output of PA module as well as the input
edge maps to be 0.5).

These baseline models were retrained as the original one,
with parameters tuned up for fair comparison.

Table 2 shows the comparison of the proposed CNN with
the baseline models on Qian et al.’s dataset. The rank of
PSNR/SSIM is ours, Base-3, Base-2, Base-1. By compar-
ing the Base-1 with ours, we can find that, adding the JPCA
module to network can bring noticeable performance im-
provement, e.g. the PSNR improvement of 0.95dB is ob-
served. It can be also seen that both the PA module and the
CA module have contributions to the performance improve-
ment of the network. The improvement of CA module is
larger than the PA module. Such results have demonstrated
the effectiveness of each module in our network. We also
tested the performance of our CNN while fixing the shape
parameters to be ones. The performance was decreased by
0.21dB. This demonstrated that making the shape parame-
ters learnable and adaptive to data can benefit the results.

Table 2: Results of baseline models on Qian et al.’s dataset.

Method | PA | CA | PSNR(B) | SSIM
Base-1 X X 29.91 0.8967
Base2 | v | X 30.08 | 09154
Base-3 | x | v 3058 | 0.9224
Ours | v | V 30.86 | 0.9263

5. Summary

A CNN-based method is proposed in this paper for solv-
ing one challenging problem arising from computer vision
in bad weather, i.e., how to restore an image taken through
glass window in rainy weather. The proposed method intro-
duced a joint shape-channel attention mechanism, in which
the shape-driven attention exploits the physical shape prop-
erties of raindrops, including closedness and roundness, and
the channel attention refines the features relevant to the
background layer or the raindrop layer. The experiments
showed that the proposed method outperformed the existing
ones in terms of both quantitative metrics and qualitative in-
spections.
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(a) Input image (b) Truth image (c) Eigenetal. [1] (d) Pix2Pix [6] (e) AttentGAN [12] (f) Ours

Figure 6: Visualization of the results of different methods on Qian ez al.’s dataset.
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(b Egen t al. [1] 7 (d) AttentGAN [12]

Figure 7: Visualization of the results of different methods on real-world images.
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