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Abstract

Multi-modal learning, particularly among imaging and

linguistic modalities, has made amazing strides in many

high-level fundamental visual understanding problems,

ranging from language grounding to dense event caption-

ing. However, much of the research has been limited to

approaches that either do not take audio corresponding to

video into account at all, or those that model the audio-

visual correlations in service of sound or sound source lo-

calization. In this paper, we present the evidence, that audio

signals can carry surprising amount of information when

it comes to high-level visual-lingual tasks. Specifically,

we focus on the problem of weakly-supervised dense event

captioning in videos and show that audio on its own can

nearly rival performance of a state-of-the-art visual model

and, combined with video, can improve on the state-of-the-

art performance. Extensive experiments on the ActivityNet

Captions dataset show that our proposed multi-modal ap-

proach outperforms state-of-the-art unimodal methods, as

well as validate specific feature representation and archi-

tecture design choices.

1. Introduction

Humans often perceive the world through multiple sen-

sory modalities, such as watching, listening, smelling,

touching, and tasting. Consider two people sitting in a

restaurant; seeing them across the table suggests that they

maybe friends or coincidental companions; hearing, even

the coarse demeanor of their conversation, makes the na-

ture of their relationship much clearer. In our daily life,

there are many other examples that produce strong evidence

that multi-modal co-occurrences give us fuller perception of

events. Recall how difficult it is to perceive the intricacies

of the story from a silent film. Multi-modal perception has

been widely studied in areas like psychology [10, 42], neu-

rology [33], and human computer interaction [37].

In the computer vision community, however, the

progress in learning representations from multiple modal-

ities has been limited, especially for high-level percep-

tual tasks where such modalities (e.g., audio or sound)
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Figure 1: Multi-modal Dense Event Captioning. Illus-

tration of our problem definition, where we use both audio

features and visual information to generate the dense cap-

tions for a video in a weakly supervised manner.

can play an integral role. Recent works [27, 31] propose

approaches for localizing audio in unconstrained videos

(sound source localization) or utilize sound in video cap-

tioning [15, 16, 44, 38]. However, these approaches con-

sider relatively short videos, i.e., usually about 20 seconds,

and focus on description of a single salient event [47]. More

importantly, while they show that audio can boost the per-

formance of visual models to an extent, such improvements

are typically considered marginal and the role of audio is

delegated to being secondary (or not nearly as important) as

visual signal [16, 44].

We posit that sound (or audio) may in fact be much more

important than the community may realize. Consider the

previously mentioned example of a silent film. The lack

of sound makes it significantly more difficult, if not impos-

sible in many cases, to describe the rich flow of the story

and constituent events. Armed with this intuition, we fo-

cus on dense event captioning [22, 43, 49] (a.k.a. dense-

captioning of events in videos [20]) and endow our models

with ability to utilize rich auditory signals for both event lo-
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calization and captioning. Figure 1 illustrates one example

of our multi-modal dense event captioning task. Compared

with conventional video captioning, dense event captioning

deals with longer and more complex video sequences, usu-

ally 2 minutes or more. To the best of our knowledge, our

work is the first to tackle the dense event captioning with

sound, treating sound as a first class perceptual modality.

Audio features can be represented in many different

ways. Choosing the most appropriate representation for our

task is challenging. To this end, we compare different audio

feature representations in this work. Importantly, we show

that audio signal alone can achieve impressive performance

on the dense event captioning task (rivalling visual counter-

part). The form of fusion needed to incorporate the audio

with the video signal is another challenge. We consider and

compare a variety of fusion strategies.

Dense event captioning provides detailed descriptions

for videos, which is beneficial for in-depth video analy-

sis. However, training a fully supervised model requires

both caption annotations and corresponding temporal seg-

ment coordinates (i.e., the start and end time of each event),

which is extremely difficult and time consuming to collect.

Recently, [12] proposes a method for dense event caption-

ing in a weakly supervised setting. The approach does not

require temporal segment annotation during training. Dur-

ing evaluation, the model is able to detect all events of in-

terest and generate their corresponding captions. Inspired

by and building on [12], we tackle our multi-modal dense

event captioning in a weakly supervised manner.

Contributions. Our contributions are multiple fold. First,

to the best of our knowledge, this is the first work that ad-

dresses dense event captioning task in a multi-modal set-

ting. In doing so, we propose an attention-based multi-

modal fusion model to integrate both audio and video in-

formation. Second, we compare different audio feature ex-

traction techniques [4, 11, 23], and analyze their suitabil-

ity for the task. Third, we discuss and test different fusion

strategies for incorporating audio cues with visual features.

Finally, extensive experiments on the ActivityNet Captions

dataset [20] show that audio model, on its own, can nearly

rival performance of a visual model and, combined with

video, using our multi-modal weakly-supervised approach,

can improve on the state-of-the-art performance.

2. Related Work

Audio Feature Representations. Recently computer vi-

sion community has begun to explore audio features for

learning good representations in unconstrained videos. Ay-

tar et al. [4] propose a sound network guided by a vi-

sual teacher to learn the representations for sound. Earlier

works, [27, 31, 35], address sound source localization prob-

lem to identify which pixels or regions are responsible for

generating a specified sound in videos (sound grounding).

For example, [31] introduces an attention based localiza-

tion network guided by sound information. A joint repre-

sentation between audio and visual networks is presented

in [27, 35] to localize sound source. Gao et al. [14] formu-

late a new problem of audio source separation using a multi-

instance multi-label learning framework. This framework

maps audio bases, extracted by non-negative matrix factor-

ization (NMF), to the detected visual objects. In recent year,

audio event detection (AED) [8, 29, 36] has received atten-

tion in the research community. Most of the AED methods

locate audio events and then classify each event.

Multi-modal Features in Video Analysis. Combining au-

dio with visual features (i.e., multi-modal representation)

often boosts performance of networks in vision, especially

in video analysis [2, 3, 16, 38, 44]. Ariav et al. [3] propose

an end-to-end deep neural network to detect voice activity

by incorporating audio and visual modalities. Features from

both modalities are fused using multi-modal compact bi-

linear pooling (MCB) to generate a joint representation for

speech signal. Authors in [2] propose a multi-modal method

for egocentric activity recognition where audio-visual fea-

tures are combined with multi-kernel learning and boosting.

Recently, multi-modal approaches are also gaining pop-

ularity for video captioning [38, 44]. In [16] a multi-modal

attention mechanism to fuse information across different

modalities is proposed. Hori et al. [17] extend the work

in [16] by applying hypothesis-level integration based on

minimum Bayes-risk decoding [21, 34] to improve the cap-

tion quality. Hao et al. [15] present multi-modal feature

fusion strategies to maximize the benefits of visual-audio

resonance information. Wang et al. [44] introduce a hierar-

chical encoder-decoder network to adaptively learn the at-

tentive representations of multiple modalities, and fuse both

global and local contexts of each modality for video under-

standing and sentence generation. A module for exploring

modality selection during sentence generation is proposed

in [38] with the aim to interpret how words in the generated

sentences are associated with audio and visual modalities.

Dense Event Captioning in Videos. The task of dense

event captioning in videos was first introduced in [20]. The

task involves detecting multiple events that occur in a video

and describing each event using natural language. Most of

the works [26, 48] solve this problem in a two-stage man-

ner, i.e., first temporal event proposal generation and then

sentence captioning for each of the proposed event seg-

ments. In [48], authors adopt a temporal action proposal

network to localize proposals of interest in videos, and then

generate descriptions for each proposal. Wang et al. [43]

present a bidirectional proposal method that effectively ex-

ploits both past and future contexts to make proposal pre-

dictions. In [49], a differentiable masking scheme is used

to ensure the consistency between proposal and captioning
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modules. Li et al. [22] propose a descriptiveness regression

component to unify the event localization and sentence gen-

eration. Xu et al. [46] present an end-to-end joint event de-

tection and description network (JEDDi-Net) which adopts

region convolutional 3D network [45] for proposal genera-

tion and refinement, and proposes hierarchical captioning.

Duan et al. [12] formulate the dense event captioning

task in a weakly supervised setting, where there is no

ground-truth temporal segment annotations during training

and evaluation. They decompose the task into a pair of dual

problems, event captioning and sentence localization, and

present an iterative approach for training. Our work is mo-

tivated by [12] and builds on their framework. However,

importantly, we fuse audio and visual features, and explore

a variety of fusion mechanisms to address the multi-modal

weakly supervised dense event captioning task. We note

that [12] is thus far the only method for dense event cap-

tioning in the weakly supervised setting.

3. Multi-modal Dense Event Captioning

In this work, we consider two important modalities, au-

dio and video, to generate dense captions in a weakly su-

pervised setting. Weak supervision means that we do not

require ground-truth temporal event segments during train-

ing. The overview of our multi-modal architecture is shown

in Figure 2. The architecture consists of two modules, a

sentence localizer and a caption generator. Given a set of

initial random proposal segments in a video, caption gener-

ator produces captions for the specified segments. Sentence

localizer then refines the corresponding segments with the

generated captions. Caption generator is employed again to

refine the captions. This process can proceed iteratively to

arrive at consistent segments and captions; in practice we

use one iteration following the observations in [12].

We extract features from audio, video, and captions first,

and pass them as inputs to the sentence localizer during

training. For each modality, an encoder is used to encode

the input. We use recurrent neural networks (RNNs) with

GRU [9] units as encoders. We then apply a crossing at-

tention among the audio, video and caption features. Then

an attention feature fusion mechanism followed by a fully-

connected layer is applied to produce temporal segments.

The caption generator takes the encoded features of au-

dio and video, along with the resultant temporal segments

as inputs. It performs soft mask clipping on the audio and

video features based on the temporal segments, and uses

a context fusion technique to generate the multi-modal con-

text features. Then a caption decoder, which is also an RNN

with GRU units, generates one caption for each multi-modal

context feature. We discuss and compare three different

context fusion strategies to find the most appropriate one

for our multi-modal integration.

In what follows, we first describe how to extract features

from audio and video in Sec. 3.1. Then we present our

weakly supervised approach in Sec. 3.2. Lastly, we demon-

strate three different context fusion strategies in section 3.3.

3.1. Feature Representation

We consider both features from audio and video modali-

ties for dense event captioning. It is generally challenging to

select the most appropriate feature extraction process, espe-

cially for the audio modality. We describe different feature

extraction methods to process both audio and video inputs.

3.1.1 Audio Feature Processing

ActivityNet Captions dataset [20] does not provide audio

tracks. As such, we collected all audio data from the

YouTube videos via the original URLs. Some videos are

no longer available on YouTube. In total, we were able to

collect around 15,840 audio tracks corresponding to Activ-

ityNet videos. To process the audio, we consider and com-

pare three different audio feature representations.

MFCC Features. Mel-Frequency Cepstrum (MFC) is a

common representation for sound in digital signal process-

ing. Mel-Frequency Cepstral Coefficients (MFCCs) are co-

efficients that collectively make up an MFC – a represen-

tation of the short-term power spectrum of sound [19]. We

down-sample the audio from 44 kHz to 16 kHz and use 25

as the sampling rate. We choose 128 MFCC features, with

2048 as the FFT window size and 512 as the number of

samples between successive frames (i.e., hop length).

CQT Features. The Constant-Q-Transform (CQT) is a

time-frequency representation where the frequency bins are

geometrically spaced and the ratios of the center frequen-

cies to bandwidths (Q-factors) of all bins are equal [7]. CQT

is motivated from the human auditory system and the funda-

mental frequencies of the tones in Western music [30]. We

perform feature extraction by choosing 64 Hz and 60 as the

minimum frequency and the number of frequency bins re-

spectively. Similar to the MFCC features described above,

we use 2048 as the FFT window size and 512 as the hop

length. We use VGG-16 [32] without the last classification

layer to convert both MFCC and CQT features into 512-

dimensional representations.

SoundNet Features. SoundNet [4] is a CNN that learns to

represent raw audio waveforms. The acoustic representa-

tion is learned using two-million videos with their accom-

panying audios; leveraging the natural synchronization be-

tween them. We use a pretrained SoundNet [4] model to ex-

tract the 1000-dimension audio features from the 8-th con-

volutional layer (i.e., conv8) for each video’s audio track.

3.1.2 Video Feature Processing

Given an input video V = {vt}
Tv

t=1, where vt is the video

frame at time t and Tv is the video length, a 3D-CNN model
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Figure 2: Our Multi-modal Architecture. The model has two parts, a sentence localizer and a caption generator. The

sentence localizer takes audio, video, and captions as inputs and generates a temporal segment for each caption. The caption

generator uses the resultant temporal segments, with audio and video features, to produce a caption for each segment.

is used to process the input video frames into a sequence of

visual features {ft = F (vt : vt+δ)}
Tf

t=1. Here, δ means the

time resolution for each feature ft and Tf is the length of the

feature sequence. We use features extracted from encoder

F provided by the ActivityNet Captions dataset [20], where

F is the pretrained C3D [18] network with δ = 16 frames.

The dimension of the resultant C3D features is a tensor of

size Tf ×D, where D = 500 and Tf = Tv/δ.

3.2. Weakly Supervised Model

Weak supervision means that we do not require ground-

truth temporal alignments between the video (visual and au-

dio collectively) and captions. We make a one-to-one cor-

respondence assumption, meaning that we assume that each

caption describes one temporal segment and each tempo-

ral segment corresponds to only one caption. This assump-

tion holds in the current benchmark dataset and most real

world scenarios. We employ two network modules, a sen-

tence localizer and a caption generator. Given a caption, the

sentence localizer will produce a temporal segment in the

context, while the caption generator will generate a caption

with a given temporal segment. We use context to refer an

encoded video or audio.

Notations. We use GRU RNNs to encode visual and audio

streams of the video. This results in a sequence of output

feature vectors, one per frame, O = {ot ∈ R
k}To

t=0 and

the final hidden state h
o ∈ R

k, where To is the length of

the video. While in practice we get two sets of such vec-

tors (one set for video and one set for corresponding audio

“frames”), we omit the subscript for clarity of formulation

that follows. A caption is encoded similarly by the output

features of the RNN, C = {ct ∈ R
k}Tc

t=0 with the last hid-

den state being h
c ∈ R

k, where Tc is the length of the cap-

tion in words. We use context to refer the encoding of the

full visual or audio information in videos. A context seg-

ment S is represented by (c, l), where c and l denote seg-

ment’s temporal center and length respectively within O.

3.2.1 Sentence Localizer

Sentence localizer attempts to localize a given caption in a

video by considering the caption and the encoded complete

video (context). Formally, given a (video or audio) con-

text O and an encoded caption C, sentence localizer will

regress a temporal segment S in O. With the context and

caption features, it first applies crossing attention among

them. Then an attention feature fusion, followed by one

layer fully-connected neural network, is used to generate

the temporal segment. Following [10], we use 15 prede-

fined temporal segments and generate 15 offsets in sentence

localization using fully connected layer. The final segments

are the sum of temporal segments and offsets value. The

purpose is to fine-tune the offset value for best localization.

Crossing Attention. The crossing attention consists of two

sub-attentions, one caption attention Attc, and one context

attention Atto. For a context O and a caption C, we first

compute the attention between h
o and C as:

Attc = softmax((ho)TαcC)CT , (1)

and then calculate the attention between h
c and O as:

Atto = softmax((hc)TαoO)OT , (2)

where αc ∈ R
k×k and αo ∈ R

k×k are the learnable atten-

tion weights, and ()T is the matrix transpose operation. We

note that Atto is a vector of size 1× k comprising of atten-

tion weighted features for the visual/audio frames; similarly

Attc is a vector of size 1× k of attended caption features.
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Figure 3: Context Fusion Strategies. Three fusion strategies are illustrated: (a) multiplicative mixture fusion, (b) multi-

modal context fusion, and (c) MUTAN fusion.

When training our multi-modal approaches, the caption

attention Attc is calculated only between the visual modal-

ity and the captions, and we generate video attention Attv

and audio attention Atta using Eq. 2. While we are training

our unimodal approaches which either use audio (or video)

information to generate captions, the caption attention Attc

is calculated between the audio (or video) and captions.

Attention Feature Fusion. After obtaining the sub-

attentions, we use the multi-model feature fusion tech-

nique [13] to fuse them together:

Attsum = Attc +Attv +Atta (3)

Attdot = Attc ·Attv ·Atta (4)

Attfc = fc(Attc||Attv||Atta) (5)

Attfusion = Attsum||Attdot||Attfc (6)

where + and · are the element-wise addition and multipli-

cation, || is the column-wise concatenation, and fc(·) is a

one-layer fully-connected neural network.

3.2.2 Caption Generator

Given a temporal segment S in a context O, the caption gen-

erator will generate a caption based on S. With the temporal

segments generated by the sentence localizer (Sec. 3.2.1),

the caption generator first applies soft mask clipping on

the contexts, and then uses a context fusion mechanism

(Sec. 3.3) to fuse the clipped contexts together. The fused

contexts are then fed to a caption decoder, which is also a

GRU RNN, to generate the corresponding captions.

Soft Mask Clipping. Getting a temporal segment S from

a context, i.e., the clipping operation, is non-differentiable,

which makes it difficult to handle in end-to-end training. To

this end, we utilize a continuous mask function with regard

to the time step t to perform soft clipping. The mask M to

obtain an S is defined as follows:

M(t,S) = σ(−L(t− c+
l

2
))− σ(−L(t− c−

l

2
)), (7)

where σ(·) is the sigmoid function, and L is a scaling fac-

tor. When L is large enough, this mask function becomes a

step function which performs the exact clipping. We use the

normalized weighted sum of the context features (weighted

by the mask) as a feature representing S. This operation ap-

proximates traditional mean-pooling over clipped frames.

3.3. Context Fusion

Because audio and visual representations are from two

different modalities, merging them together is a crucial task

in a multi-modal setting. We use three different context

merging techniques (Fig. 3) to fuse the video V
′ and audio

A
′ features obtained after the normalized soft mask clip-

ping operation. We treat V′ and A
′ as row vectors.

Multiplicative Mixture Fusion. The multiplicative mix-

ture fusion can make the model automatically focus on in-

formation from a more reliable modality and reduce empha-

sis on the less reliable one [25]. Given a pair of features V′

and A
′, the multiplicative mixture fusion first adds these

two contexts and then concatenates the added context with

the two original ones. That is, it produces a final context as

follows,

Cfinal = (V′ +A
′)||V′||A′ (8)

where + and || are the element-wise addition and column-

wise concatenation respectively.

Multi-modal Context Fusion. This fusion strategy is sim-

ilar to Eq. 6. But here, we apply the fusion technique on A
′

and V
′ (segments as opposed to full video context),

Cfinal = (V′ +A
′)||(V′ ·A′)|| fc(V′||A′). (9)

MUTAN Fusion. MUTAN fusion was first proposed in [6]

to solve visual question answering tasks by fusing visual

and linguistic features. We adopt the fusion scheme to fuse

V
′ and A

′. With the idea of Tucker decomposition [39], we

first reduce the dimension of V′ and A
′,

V
′′ = tanh(V′ ×Wv) (10)

A
′′ = tanh(A′ ×Wa) (11)
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where Wv and Wa are learnable parameters and tanh(·)
is the hyperbolic tangent function. Then we produce final

context as folows:

C̃ = ((Tc ×1 V
′′)×2 A

′′) (12)

Cfinal = squeeze(C̃)×Wo, (13)

where Tc and Wo are learnable parameters. ×i, i ∈ {1, 2}
denotes the mode-i product between a tensor and a matrix,

and × is the matrix multiplication operation. Tc models

the interactions between the video and the audio modalities,

which is a 3-dimension tensor; squeeze operator squeezes

C̃ into a row vector.

3.4. Training Loss

We follow the training procedure and loss function pre-

sented in [12] to train our networks. We employ the idea

of cycle consistency [50] to train the sentence localizer and

the caption generator, and treat the temporal segment re-

gression as a classification problem. The final training loss

is formulated as

L = Lc + λsLs + λrLr (14)

where λs and λr are tunable hyperpramaters. Lc is the

caption reconstruction loss, which is a cross-entropy loss

measuring the similarity between two sentences. Ls is the

segment reconstruction loss, which is an L2 loss. It mea-

sures the similarity between two temporal segments. Lr is

the temporal segment regression loss, which is also a cross-

entropy loss, because we regard the temporal segment re-

gression as a classification problem.

4. Experiments

In this section, we first describe the dataset used in our

experiments, which is an extension of the ActivityNet Cap-

tions Dataset [20] (Sec. 4.1). Then we present the experi-

mental setup and implementation details (Sec. 4.2). Lastly,

we discuss the experimental results for both unimodal (i.e.,

trained using either audio or video modality) and multi-

modal approaches (Sec. 4.3).

4.1. Dataset

ActivityNet Captions dataset [20] is a benchmark for

large-scale dense event captioning in videos. The dataset

consists of 20,000 videos where each video is annotated

with a series of temporally aligned captions. On average,

one video corresponds to 3.65 captions. However, besides

the captions, the current dataset only provides C3D fea-

tures [18] for visual frames, no original videos. To ob-

tain the audio tracks for those videos, we needed to find

the original videos on YouTube and download the audios

via the provided URLs. Around 5,000 videos are unavail-

able on YouTube now. We are able to find 8026 videos

Features M C R B@1 B@2 B@3 B@4 S

Pretrained model

MFCC 2.70 6.46 6.74 5.52 1.74 0.67 0.21 3.51

CQT 2.38 5.60 5.72 4.37 1.57 0.46 0.13 2.90

SoundNet 2.63 5.76 6.99 6.28 1.81 0.38 0.12 3.44

Final model

MFCC 3.36 9.56 8.51 6.68 2.55 1.23 0.60 4.20

CQT 3.25 8.97 7.43 6.34 2.69 0.93 0.32 3.63

SoundNet 3.41 9.21 8.50 7.19 2.15 0.49 0.13 4.22

Table 1: Audio Only Results. Illustrated are dense caption-

ing results of pretrained and final models using audio only.

(out of 10009 videos) for training and 3880 videos (out of

4917 videos) for validation. We use those available train-

ing/validation videos throughout our experiments.

4.2. Experiment Setup and Implementation Details

We follow the experiment protocol in [12] to train and

evaluate all the models. We consider the models proposed

in [12] as our baselines, i.e., unimodal models that only uti-

lize audio or visual features. Due to the difference in the

number of videos for training and validation from the orig-

inal dataset, we run all the experiments from scratch using

the PyTorch implementation provided by [12]1. The dimen-

sions of the hidden and output layers for all GRU RNNs (au-

dio/video/caption encoders and caption decoders) are set to

512. We also follow [12] to build the word vocabulary (con-

taining 6,000 words) and preprocess the words.

Training. Weak supervision means that we do not have

ground-truth temporal segments. We first train the caption

generator only (pretrained model), and then train the sen-

tence localizer and caption generator together (final model).

To train the pretrained model, we input the entire context se-

quence (Fake Proposal, S = (0.5, 1)). We use the weights

of the pretrained model to initialize the relevant weights

in the final model. For both pretrained model and final

model, we train them in both unimodal and multi-modal

settings. To train unimodal models, we use initial learn-

ing rates 0.0001 and 0.01 for audio and video respectively

with a cross-entropy loss. While training our multi-modal

models, we set the initial learning rates to 0.0001 for the

network parts that have been initialized with the pretrained

weights, and 0.01 for other network components. λs and λr

in Eq. 14 are both set to 0.1. We train the networks using

stochastic gradient descent with a momentum factor of 0.8.

Testing. To test the pretrained models, we select one ran-

dom ground truth description as well as random temporal

segment instead of entire video unlike training. For the final

models, following [12], we start from 15 randomly guessed

temporal segments, and apply one round of fixed-point it-

eration and the IoU filtering mechanism to obtain a set of

filtered segments. Caption generators are applied to the fil-

tered segments together with context features to produce the

dense event captions.

1https://github.com/XgDuan/WSDEC
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Fusion Strategies M C R B@1 B@2 B@3 B@4 S mIoU

Pretrained model

Multiplicative mixture fusion 3.59 8.12 7.51 7.12 2.74 1.22 0.56 4.58 -

Multi-modal context fusion 3.55 7.91 7.54 7.24 2.78 1.28 0.62 4.45 -

MUTAN fusion 3.71 8.20 7.71 7.45 2.92 1.31 0.63 4.78 -

Final model

Multiplicative mixture fusion 4.89 13.97 10.39 9.92 4.17 1.85 0.88 5.95 29.87

Multi-modal context fusion 4.94 13.90 10.37 9.95 4.20 1.86 0.89 5.98 29.91

MUTAN fusion 4.93 13.79 10.39 10.00 4.20 1.85 0.90 6.01 30.02

Table 2: Fusion Strategies. Testing results for different context fusion strategies for integrating audio and video modalities

are illustrated for both pretrained and final models. We use MFCC audio features and C3D video features for all experiments.

Model M C R B@1 B@2 B@3 B@4 S mIoU

Pretrained model

Unimodal (C3D video feature) [12] 3.66 8.20 7.42 7.06 2.76 1.29 0.62 4.41 -

Unimodal (SoundNet audio feature) 2.63 5.76 6.99 6.28 1.81 0.38 0.12 3.44 -

Unimodal (MFCC audio feature) 2.70 6.46 6.74 5.52 1.74 0.67 0.21 3.51 -

Multi-modal (SoundNet audio + C3D video feature) 3.72 8.02 7.50 7.12 2.74 1.23 0.58 4.46 -

Multi-modal (MFCC audio + C3D video feature) 3.71 8.20 7.71 7.45 2.92 1.31 0.63 4.78 -

Final model

Unimodal (C3D video feature) [12] 4.89 13.81 9.92 9.45 3.97 1.75 0.83 5.83 29.78

Unimodal (SoundNet audio feature) 3.41 9.21 8.50 7.19 2.15 0.49 0.13 4.22 25.57

Unimodal (MFCC audio feature) 3.36 9.56 8.51 6.68 2.55 1.23 0.60 4.20 27.16

Multi-modal (SoundNet audio + C3D video feature) 5.03 14.27 10.35 9.75 4.19 1.92 0.94 6.04 29.96

Multi-modal (MFCC audio + C3D video feature) 4.93 13.79 10.39 10.00 4.20 1.85 0.90 6.01 30.02

Table 3: Multi-modal Results. Comparison among unimodal and our multi-modal models using MUTAN fusion.

.. .. .. .. ..

(a) Ground-truth
A camera pans around a boy sitting
on the ground and leads into him
riding a skateboard.

time

Several shots are shown of people riding
around on skateboards as well as falling
down and laughing.

more clips are shown of kids
performing tricks on skateboards and
riding past the camera.

(b) Pretrain model (Visual) a person is seen sitting on a skateboard and leads
into several shots of him riding around .

(c) Pretrain model (Audio+Visual) a person is seen riding down on a road and jumping down a long.
.

(d) Final Model (Visual) a person is seen riding around on a skateboard on a board and jumping over a beam .

(e) Final Model (Audio + Visual) a person is seen riding on a skateboard of a road while the camera captures his movements. 

(a) Ground-truth

(b) Pretrain model (Visual)

(c) Pretrain model (Audio+Visual)

(d) Final Model (Visual)

(e) Final Model (Audio + Visual)

.. .. .. .. ..

A large group of people are
seen walking around a street
with a group of people dancing
in the middle.

A large marching band is seen walking down
the street one after the other.

More people are seen playing
instruments and the camera pans
around to capture them all.

a large group of people are seen standing in front of
a large group of people standing in front of

a large group of people are seen walking around a
street while a group of people watch on the sides

a large group of people are seen standing on a street holding instruments standing in front of a large crowd

a large group of people are seen standing around a
street while a group of people watch on the sides.

a band is playing instruments on a street .

Input Video

Input Video

Figure 4: Qualitative Results. Both pretrained and final model results are illustrated of two videos. Captions are from

(a) ground-truth; (b) pretrained model trained only using visual features; (c) multi-modal pretrained model; (d) final model

trained with video features only; (e) our multi-modal final model for dense event captioning in videos.
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Model M C R B@1 B@2 B@3 B@4 S

Unimodal (C3D)[10] 7.09 24.46 14.79 14.32 6.23 2.89 1.35 8.22

Multi-modal (SoundNet audio feature + C3D video feature) 7.02 24.22 14.66 14.18 6.13 2.88 1.41 7.89

Multi-modal (MFCC audio feature + C3D video feature) 7.23 25.36 15.37 15.23 6.58 3.04 1.46 8.51

Table 4: Results with ground-truth temporal segments.

Model M C R B@1 B@2 B@3 B@4 S

Unimodal (C3D) [10] 4.58 10.45 9.27 8.7 3.39 1.50 0.69 -

Multi-modal (SoundNet + C3D) 4.70 10.32 9.40 8.95 3.40 1.53 0.73 5.51

Multi-modal (MFCC + C3D) 4.78 10.53 9.60 9.23 3.62 1.69 0.82 5.56

Table 5: Pretrained model results on the full dataset.

Evaluation metrics. We measure the performance of cap-

tioning results using traditional evaluation metrics: ME-

TEOR (M) [5], CIDEr (C) [40], Rouge-L (R) [24], Spice

(S) [1] and Bleu@N (B@N) [28]. For score computations,

we use official scripts provided by [20]2. Where appropri-

ate, we use mean Intesection over Union (mIoU) to measure

segment localization performance.

4.3. Experiment Results

Since audio features can be represented in a variety of

ways [4, 30, 41], finding the best representation is chal-

lenging. We conduct experiments on both pretrained mod-

els and final models using different audio representations,

i.e., MFCC [19], CQT [7], and SoundNet [4], which are

described in Sec. 3.1.1. Table 1 shows the experiment re-

sults of pretrained models and final models using only au-

dio features. We can see that both MFCC and soundNet can

generate comparable results.

As discussed in Sec. 3.3, in the multi-modal setting,

choosing a good fusion strategy to combine both audio and

video features is another crucial point. Table 2 shows com-

parison of different context fusion techniques using MFCC

audio representations and C3D visual features (Sec. 3.1.2)

for both pretrained models and final models. Among all fu-

sion techniques, we find that MUTAN fusion is the most ap-

propriate one for our weakly supervised multi-modal dense

event captioning task. Therefore, we decide to use MUTAN

fusion technique for our multi-modal models when compar-

ing to unimodal models. Tab. 3 shows the testing results for

comparison among unimodal and multi-modal approaches.

We can see that our multi-modal approach (both MFCC

and SoundNet audio with C3D video features) outperforms

state-of-the-art unimodal method [12] in most evaluation

metrics. Specifically on the Bleu@3 and Bleu@4 scores,

it leads to 9% and 13% improvement respectively. Compar-

ing among unimodel approaches, we are surprised to find

that only using audio features achieves competitive perfor-

mance. We trained our caption generator with GT segments

to remove the effect of localization. The results are shown

in Table 4. We also conduct experiment on pretrain caption

generator using the full dataset where for some videos, au-

2https://github.com/ranjaykrishna/densevid_eval

dio data is not available (treated as missing data). We con-

sider zero feature vectors for missing audios. The results

are shown in Table 5. In addition, we randomly selected

15 validation videos and invited 20 people to conduct hu-

man evaluation for comparing our multi-modal model to the

visual-only one. The forced choice preference rate for our

multi-modal model is 60.67%.

Figure 4 demonstrates some qualitative results for both

pretrained models and final models. It displays the ground-

truth captions along with the ones generated by unimodal

models and our multi-modal models. The arrow segments

indicate the ground-truth or detected temporal event seg-

ments. We utilize C3D visual features along with audio fea-

tures. We can see that our multi-modal approaches outper-

form unimodal ones, both on caption quality and temporal

segment accuracy.

Similar to [12], we are suffering from two limitations.

One is that sometimes our multi-modal model can not de-

tect the beginning of an event correctly. The other is that

most of the time our final model only generates around 2

event captions, which means that the multi-modal approach

is still not good enough to detect all the events in the weakly

supervised setting. Overcoming of these two limitations is

the focus of our future work.

5. Conclusion

Audio is a less explored modality in the computer vi-

sion community. In this paper, we propose a muti-modal

approach for dense event captioning in a weakly supervised

setting. We incorporate both audio features with visual ones

to generate dense event captions for given videos. We dis-

cuss and compare different feature representation methods

and context fusion strategies. Extensive experiments illus-

trate that audio features can play a vital role, and combining

both audio and visual modalities can achieve performance

better than the state-of-the-art unimodal visual model.
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