
Bit-Flip Attack: Crushing Neural Network with Progressive Bit Search

Adnan Siraj Rakin†, Zhezhi He† and Deliang Fan

Dept. of Electrical and Computer Engineering, Arizona State University, Tempe, AZ 85287
† These authors contributed equally

{asrakin, Zhezhihe, dfan}@asu.edu

Abstract

Several important security issues of Deep Neural Net-

work (DNN) have been raised recently associated with dif-

ferent applications and components. The most widely inves-

tigated security concern of DNN is from its malicious input,

a.k.a adversarial example. Nevertheless, the security chal-

lenge of DNN’s parameters is not well explored yet. In this

work, we are the first to propose a novel DNN weight at-

tack methodology called Bit-Flip Attack (BFA) which can

crush a neural network through maliciously flipping ex-

tremely small amount of bits within its weight storage mem-

ory system (i.e., DRAM). The bit-flip operations could be

conducted through well-known Row-Hammer attack, while

our main contribution is to develop an algorithm to identify

the most vulnerable bits of DNN weight parameters (stored

in memory as binary bits), that could maximize the accuracy

degradation with a minimum number of bit-flips. Our pro-

posed BFA utilizes a Progressive Bit Search (PBS) method

which combines gradient ranking and progressive search to

identify the most vulnerable bit to be flipped. With the aid of

PBS, we can successfully attack a ResNet-18 fully malfunc-

tion (i.e., top-1 accuracy degrade from 69.8% to 0.1%) only

through 13 bit-flips out of 93 million bits, while randomly

flipping 100 bits merely degrades the accuracy by less

than 1%. Code is released at: https://github.com/

elliothe/Neural_Network_Weight_Attack

1. Introduction

Recently, deep neural networks (DNNs) have demon-

strated its great potential of surpassing or close to human-

level performance in multiple domains, such as object

recognition [14], Game AI [34], synthetic voice [27], neigh-

borhood voting prediction [10] and etc [9]. It stimulates

the demand for deploying state-of-the-art deep learning al-

gorithms in real-world applications to release labors from

repetitive work. Under such circumstance, the security and

robustness of deep neural network is an essential concern

which cannot be circumvented.

Adversarial example [11] (aka., adversarial attack) is a

well-known security issue of DNN, which can cause the

system malfunction with the magnitude-constrained input

noise that mankind cannot discern. Both attack and defense

of adversarial example on the input end of DNN has been

heavily investigated in the past couple of years [26, 11, 36]

and still be in progress [16, 29, 22]. Nevertheless, the secu-

rity issue of network parameters themselves is not yet well

explored. Recently, the development of fault injection at-

tack [25] has raised further security concerns on the storage

of DNN parameters.

The possible reasons that there was a lack of concerns on

the security of network parameters may come in twofold:

1) The neural network is widely recognized as a robust sys-

tem against parameter variations. 2) The DNNs are used to

be only deployed on the high-performance computing sys-

tem (e.g., CPUs, GPUs, and other accelerators [33, 1, 30]),

which normally contains a variety of methods ensuring data

integrity. Thus, attacking the parameters is more related

to a system cyber-security topic. However, the game has

been changed during the past few years. First, the robust-

ness of the neural network to small perturbation has been

put into the spotlight by adversarial examples on DNN in-

put [11, 26]. Second, with the aid of DNN compression

techniques (e.g., pruning[13] and quantization [39]) and

outstanding compact neural network architectures [18, 32],

deep neural networks now are friendly to the resource-

limited mobile device as well. Such resource-limited plat-

forms normally lack effective data integrity check mecha-

nism, which makes the deployed DNN vulnerable to popu-

lar fault injection techniques, such as row hammer and laser

beam [3].

Recently, there exist a cohort of works [25, 5] in an at-

tempt to attack DNN network parameters stored in DRAM

using Row Hammer Attack (RHA). However, the key limi-

tation to these previous attack methods is that they primarily

focused on extremely vulnerable full-precision DNN model

(i.e., parameters in floating-point format). Our conducted

simulation shows that randomly flipping the exponent part

of floating-point weight could easily overwhelm the func-
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tionality of DNN. The explanation behind that is flipping

the bits in exponent part of floating-point value can increase

the weight to an extremely large value, thus leading to the

exploded output. As a result, attacking the weight con-

strained DNN (i.e., weights quantized into fixed-point val-

ues) is the primary focus in this work, where the range of

weight magnitude relies on the bit-width of weights.

Overview of Bit-Flip attack: In this work, we attempt to

perform parameter attack on the weights of quantized DNN,

whose weight magnitude is intrinsically constrained owing

to the fixed-point representation. To conduct an efficient

bit-flip attack on weights, for the first time, we propose a

Bit-Flip Attack (BFA) together with Progressive Bit Search

(PBS) technique, that can totally crush a fully functional

quantized DNN and convert it to a random output generator

with several bit-flips. Our proposed PBS combines gradient

ranking and progressive search to locate the most vulnera-

ble bits, while BFA performs the bit-flip operations on the

located bits along their gradient ascending directions. To

identify the vulnerable bits to be flipped within the identical

layer and across different layers, we perform the in-layer

search and cross-layer search in an iterative way. Thus, for

each BFA iteration, only the most vulnerable bit elected by

the PBS technique will be flip to its opposite binary value.

The extensive experiments are conducted regarding various

network structure, different datasets and quantization bit-

width, etc. It is shocking to notice that ResNet-18 will be-

come a random output generator (i.e., 0.1% top-1 accuracy)

with only 13 bit-flips out of 93 million bits by our proposed

attacking method, on ImageNet dataset.

2. Related Work

Memory Bit-Flip in Real-World: Flipping a memory

cell bit within the memory system is a realistic and demon-

strated threat model in existing computer systems. Re-

cently, Kim et al., [19] have demonstrated a method to cause

memory bit-flip in DRAM merely through the frequent data

accessing, which is now popularly known as Row-Hammer

Attack (RHA). A malicious user can use RHA to modify

the data stored in DRAM memory cell by just flipping one

bit at a time. [31] showed that by creating a profile for the

bit flips in a DRAM, row hammer attack can effectively flip

a single bit at any address in the software stack. Accord-

ing to the state-of-the-art investigations, common error de-

tection and correction techniques, such as Error-Correcting

Code (ECC) [8] and Intel SGX [12], are broken defense

mechanism to RHA. Such existing memory bit-flip attack

(i.e. row-hammer attack) model brings a huge challenge

to the security of DNN powered computing system since

its parameters are normally stored in the main memory, i.e.

DRAM, for maximizing the computation throughput, which

is directly exposed to the adversarial attacker. Moreover,

such challenge becomes more severe because DNN pow-

ered applications are widely deployed in many resource-

limited (e.g. smart IoT devices, mobile system, edge de-

vices, etc.) system that lacks necessary data integrity check

mechanism.

Previous Neural Network Parameter Attack. Adver-

sarial example attack has been widely explored [38] to eval-

uate the robustness of DNN. However, we are still at the

rudimentary stage towards investigating the effect of net-

work parameter attack on neural network accuracy. Neural

network parameters have been attacked using different lev-

els of hardware trojans, which require a specific pattern of

input to trigger the trojan inside the network [7, 24]. More-

over, such a trojan attack requires hardware-level modifica-

tions, which may not be feasible in many practical appli-

cations. As a result, fault injection attacks could become

a suitable alternative to attack DNN parameters [25]. For

example, a single Bias attack (SBA) attacks a certain bias

term of a neuron to change the classification of DNN to a

different class [25]. Other works have injected faults into

the activation function of the neural network to miss clas-

sify a target input [5].

Limitations of previous works. However, these previous

attack algorithms are developed based on a full-precision

model (i.e. network parameters are floating-point num-

bers stored in memory in the format of IEEE standard

for floating-point arithmetic [17]), where we believe such

attack algorithms may not be efficient. Since it is ex-

tremely easy to cause DNN malfunction by just flipping the

most significant exponent bits of any random floating-point

weight parameters. Through this simple method, it mainly

causes DNN malfunction by exponentially increasing the

magnitude of particular weight parameters by just several

bit-flips. We conducted such an experiment to prove its ef-

ficiency in section 4.4. Based on our simulation results, it

shows just 1 bit-flip of the most significant exponent bit of a

random floating-point number weight could cause ResNet-

18 network completely malfunction on ImageNet dataset.

Why we need a bit search algorithm. On the other side,

most of recent deep neural network applications are per-

formed in quantized platform such as google’s Tensor Pro-

cessing Unit (TPU) [37], that uses 8-bit operations for quan-

tized network. Such fixed precision models are more robust

to network parameter perturbation. Similarly, we conducted

another experiment to randomly choose quantized weight

for bit-flip attack using RHA. The simulation results in fig-

ure 4 show that 100 bit-flip in a quantized ResNet-18 could

only cause 0.6% accuracy degradation in ImageNet, which

indicates that random selection of quantized weight param-

eters to be attacked is not efficient and feasible. Thus, an
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efficient algorithm is required to search for the most vulner-

able weights/bits in a quantized DNN.

3. Approach

In this section, we present a novel Bit-Flip Attack (BFA)

method to maliciously cause a DNN system malfunction

through flipping extremely small amount of vulnerable bits

of weights. Our proposed algorithm, called Progressive Bit

Search (PBS), is to identify those vulnerable DNN weight

parameters (stored in terms of memory bits in DRAM) that

could maximize the accuracy degradation with minimum

number of bit-flips. It is worth to note that this work fo-

cuses on BFA on a more robust DNN with quantized weight

parameters instead of floating-point number weights as dis-

cussed earlier.

3.1. Problem Definition

Given a quantized DNN contains L convolutional/fully-

connected layers, the original weights in floating-point are

symmetrically quantized into 2Nq − 1 levels with Nq-bits

uniform quantizer. The quantized weights W are arithmeti-

cally represented in Nq-bits signed integer. In the comput-

ing memory system, W is stored in the format of twos com-

plement1, which is denoted as B in this work. More de-

tails of weights quantization are described in Section 3.2.

The goal of this work is to find the optimal combination

of vulnerable weight bits to perform BFA, thus maximizing

the inference loss of DNN parameterized by the perturbed

weights whose twos complement representation is B̂. Such

vulnerable bit searching problem can be formulated as an

optimization problem as:

max
{B̂l}

L
(

f
(

x; {B̂l}
L
l=1

)

, t
)

− L
(

f
(

x; {Bl}
L
l=1

)

, t
)

s.t.

L
∑

l=1

D(B̂l,Bl) ∈ {0, 1, ..., Nb}

(1)

where x and t are the vectorized input and target output2.

Taken x as the input, the inference computation of network

parameterized by {B̂l}
L
l=1

is expressed as f(x; {B̂l}
L
l=1

).
Note that L(·, ·) calculates the loss between DNN output

and target. D(B̂l,Bl) computes the Hamming distance be-

tween clean- and perturbed-binary weight tensor, and Nb

is maximum Hamming distance allowed through the entire

DNN.

3.2. Quantization and Encoding

Weight quantization. In this work, we adopt a layer-wise

Nq-bits uniform quantizer for weight quantization. For l-th

1All the binary weight mentioned hereinafter referred to as the weights

in twos complement.
2Note that, all the targets t in this work are not the ground-truth labels,

but the outputs of the clean DNN w.r.t the input data.

layer, the quantization process from the floating-point base

W
fp

l to its fixed-point (signed integer) counterpart Wl can

be described as:

∆wl = max(Wfp

l )/(2
Nq−1 − 1); W

fp

l ∈ R
d (2)

Wl = round(Wfp

l /∆wl) ·∆wl (3)

where d is the dimension of weight tensor, ∆wl is the step

size of weight quantizer. For training the quantized DNN

with non-differential stair-case function (in Eq. (3)), we

use the straight-through estimator [4] as other works [39].

Note that, since ∆wl ∈ R is the coefficient shared by all

the weights in l-th layer, we only store its fixed-point part

(Wl/∆wl) ∈ {−2Nq−1, ..., 2Nq−1}d, rather than Wl.

Weight Encoding. The computing system normally

stores the signed integer in two’s complement representa-

tion, owing to its efficiency in arithmetic operations (e.g.,

mul). Given one weight element w ∈ Wl, the conver-

sion from its binary representation (b = [bNq−1, ..., b0] ∈
{0, 1}Nq ) in two’s complement can be expressed as:

w/∆w = g(b) = −2Nq−1 · bNq−1 +

Nq−2
∑

i=0

2i · bi (4)

With the conversion relation described by g(·) in Eq. (4), we

can inversely obtain the binary representation of weights B

from its fixed-point counterpart as well.

3.3. Bit­Flip Attack

In this work, we perform the BFA utilizing the similar

mechanism as FGSM [11], which was used to generate ad-

versarial example. The key idea of BFA is to flip the bits

along its gradient ascending direction w.r.t the loss of DNN.

We take the binary vector b in Eq. (4) as an example and

attempt to perform BFA upon b. We first calculates the gra-

dients of b w.r.t loss as:

∇bL = [
∂L

∂bNq−1

, ...,
∂L

∂b0
] (5)

where L is the inference loss of DNN parametrized by b.

The naive operation is to directly perform the bit-flip using

the gradients obtained in Eq. (5) and get perturbed bits as:

b̂ = b+ sign(∇bL) (6)

where sign(∇bL) ∈ {−1,+1}Nq . However, since the bit

value is constrained between 0 and 1 (b ∈ {0, 1}Nq ), flip-

ping the bit as Eq. (6) could lead to data overflow. Ideally,

the BFA is supposed to follow the truth table in Table 1.

Thus, we mathematically redefine the BFA as follows:

m = b⊕
(

sign(∇bL)/2 + 0.5
)

(7)

b̂ = b⊕m (8)

where ⊕ is the bit-wise xor operator. m is the mask which

indicates whether to perform the bit-flip operation.
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Table 1. Truth table of Bit-Flip Attack (BFA). bi is the clean bit

and b̂i is the perturbed bit by BFA. m indicates whether there ex-

ist value change between bi and b̂i. The positive and negative of

∂L/∂bi are represented by 1 and 0 respectively.

bi sign(∂L/∂bi) b̂i m

0 1 (+) 1 1

0 0 (-) 0 0

1 1 (+) 1 0

1 0 (-) 0 1

3.4. Progressive Bit Search

Rather than performing the BFA upon each bit through-

out the entire network, our goal is to perform BFA in a more

precise and effective fashion. In this subsection, we pro-

pose a method called Progressive Bit Search (PBS) which

combines the gradient ranking and progressive search. The

proposed PBS method attempts to identify and flip nb most

vulnerable bits per BFA iteration (nb = 1 by default),

thus progressively degrading the performance of DNN un-

til it reaches the minimum accuracy or the preset num-

ber of iteration. As the flowchart of performing PBS de-

picted in Fig. 1, for each attack iteration, the process of

bit searching can be generally divided into two successive

steps: 1) In-layer Search: the in-layer search is performed

through electing the nb most vulnerable bits in the selected

layer, then record the inference loss if those elected bits are

flipped. 2) Cross-layer Search: with the in-layer search

conducted upon each layer of the network independently,

the cross-layer search is to evaluate the recorded loss incre-

ment caused by BFA with in-layer search, thus identify the

top nb vulnerable bits across different layers. The details of

each step are described as follows.

In-layer Search. For the PBS in k-th iteration, in-layer

searching of the nb most vulnerable bits from B̂
k

l in l-
th layer is performed through gradient ranking. With the

given vectored input x and target t, the inference and back-

propagation are performed successively to calculate the gra-

dients of bits w.r.t the inference loss. Then, we descendingly

rank the vulnerability of bits by the absolute value of their

gradients ∂L/∂b and elect the bits whose gradients are top-

nb, such process can be written as:

b̂
k−1

l = Top
nb

∣

∣

∣

∣

∇
B̂
k−1

l

L
(

f(x; {B̂
k−1

l }Ll=1
), t

)

∣

∣

∣

∣

(9)

where {Topnb
} function returns the pointer pointing at the

storage of those elected nb vulnerable bits. Then, we apply

the BFA on those elected bits as:

b̂
k
l = b̂

k−1

l ⊕m (10)

where the mask m is generated following Eq. (7). Now,

with the in-layer search and BFA performed on the l-th

… …

Start k-th iteration End k-th iteration

Enter next layer

Is this last 

layer?

No

Find vulnerable bits 

in current layer

Perform BFA and get 

the DNN loss

Restore the bits to the 

status before BFA

data profile for 

k-th iteration:

Layerwise 

vulnerable bits 

and loss

Enter the layer 

with maximum 

loss
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vulnerable bits
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Access data profile

Store
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-l

a
y
e
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S
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Figure 1. Flowchart to perform Progressive Bit Search (PBS) with

in-layer and cross-layer search.

layer, we have to evaluate the loss increment caused by BFA

in Eq. (10), which can be written as:

Lk
l = L

(

f(x; {B̂
k

l }
L
l=1

), t
)

(11)

where the only difference between {B̂
k

l }
L
l=1

and {B̂
k−1

l }Ll=1

are the bits flipped in Eq. (10). Note that, those bits flipped

to b̂
k
l in Eq. (10) will be restored back to b̂

k−1

l after the loss

evaluation is finished.

Cross-layer Search. As the aforementioned in-layer

search can perform the layer-wise vulnerable bits election

and BFA evaluation, the cross-layer search evaluates the

BFA across the entire network. For the PBS in k-th iter-

ation, the cross-layer search first independently conduct the

in-layer search on each layer, and generate the loss set as

{Lk
1
,Lk

2
, · · ·,Lk

L}. Then, we could identify the layer-j with

maximum loss and re-perform the BFA (without restore) on

the bits elected in j-th layer, which can be expressed as:

b̂
k
j = b̂

k−1

j ⊕m

s.t. j = argmax
l

{Lk
l }

L
l=1

(12)

After that, PBS is entered into k + 1 iteration.

4. Experiments

4.1. Experimental setup

Datasets: We take two visual datasets: CIFAR-10 [20]

and ImageNet [21] for object classification task. CIFAR-

10 contains 60K RGB images in size of 32× 32. Following

the standard practice, 50K examples are used for training

and the remaining 10K for testing. The images are drawn
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Table 2. BFA on CIFAR-10 with ResNet-20/32/44/56, under various quantization bit-width (Nq=4/6/8). Nflip is the number of bit-flips

required (5 trials) to degrade the top-1 accuracy below 11% with BFA, regardless whether there exists bits flipped back to their original

states. For CIFAR-10, top-1 accuracy with random guess is 10%. DB is the hamming distance between clean- and perturbed- binary

weight (DB =
∑

L

i=1
D(B̂l,Bl)). The bold number with underline highlight the mismatch between two corresponding Nflip and DB, which

indicates there exist even bit-flips on the identical bit/bits.

Baseline

Acc.

Nq = 8 Nq = 6 Nq = 4

Acc. Nflip DB Acc. Nflip DB Acc. Nflip DB

Net20 92.11 92.28 [7,10,10,12,17] [7,10,10,12,17] 91.89 [8,8,11,12,13] [8,8,11,12,13] 91.85 [7,7,7,8,12] [7,7,7,8,12]

Net32 92.77 92.32 [8,9,12,13,31] [8,9,12,13,31] 93.09 [9,10,12,14,23] [9,10,12,14,23] 92.31 [10,12,14,14,17] [10,12,14,14,17]

Net44 93.10 93.60 [6,10,11,13,22] [6,10,11,13,22] 93.39 [13,13,15,16,17] [13,13,15,16,17] 91.52 [14,14,15,16,50] [14,14,15,16,50]

Net56 92.59 93.14 [16,17,18,22,22] [16,17,18,22,22] 93.56 [16,16,17,20,21] [16,16,17,20,21] 92.53 [9,21,21,23,24] [9,21,21,21,24]

evenly from 10 classes. ImageNet dataset contains 1.2M

training images divided into 1000 distinct classes. The

data augmentation used in this work is identical to meth-

ods in [15]. Note that, the proposed BFA is performed

through randomly draw a sample of input images x from

the test/validation set, where the default sample size is 128

and 256 for CIFAR-10 and ImageNet respectively. Then,

only the sample input x is used to perform BFA, where the

rest data and ground-truth labels are isolated from the at-

tacker. Moreover, each experimental configuration is run

with 5 trials to alleviate error caused by the randomness of

sampling input x.

Network Architectures and quantization: For CIFAR-

10, experiments are conducted on a series of residual

network (ResNet-20/32/44/56)[15], where the weights are

quantized into 4/6/8 bit-width with retraining. For Ima-

geNet, we choose a variety of famous network structures,

including AlexNet, ResNet-18/34/50. Based on our obser-

vation, with high bit-width quantizer (e.g., Nq=8), directly

quantizing the pre-trained full-precision DNN without re-

training (i.e., fine-tuning) only shows negligible accuracy

degradation. Therefore, for fast evaluation of our proposed

BFA on ImageNet dataset and its various network struc-

tures, we directly perform the weight quantization without

retraining before conducting the BFA.

Attack Formulation: Traditional attacks mostly focus on

attacking DNN by feeding perturbed inputs [11] to the net-

work. Such adversarial attack can be grouped into two ma-

jor categories: 1) white-box attack [11, 26], where the ad-

versary has full access to the network architecture and pa-

rameters, and 2) black-box attack [6, 28], where the adver-

sary can only access the input and output of a DNN without

its internal configurations. For our proposed BFA, it de-

mands full access to the DNN’s weights and gradients. Thus

BFA can be considered as a white-box attack. However, we

assume that even under white box attack setup, the attacker

has no access to the training dataset, training algorithm and

hyper parameters used during the training of the network.

4.2. BFA on CIFAR­10

Our bit-flip attack is evaluated across different archi-

tectures (i.e., ResNet-20/32/44/56) using varying quantized

bit-widths (i.e., Nq=4/6/8) on CIFAR-10 dataset in Table 2.

Without BFA, the quantized models show negligible accu-

racy degradation or even higher accuracy in comparison to

their full-precision counterpart. The quantization noise in-

troduced by the weight quantization is considered as a regu-

larization method, which might contribute the accuracy im-

provement when model training is over-fitting.

Since CIFAR-10 dataset has 10 different classes of ob-

ject, degrading the model’s accuracy down to 10% is equiv-

alent to make the model as random output generator. In

contrast to adversarial example (e.g., PGD attack [26]), our

proposed BFA is unable to degrade the network accuracy

to 0%. The reason is adversarial input example attack is

an input-specific attack which is designed to misclassify

each input separately, while our proposed BFA attempts

to misclassify the images from each object category using

the identical attacked model. Consequently, the measurable

success of BFA would be making the DNN generate out-

put randomly. Therefore, we report the number of bit-flips

Nflip required to cause the DNN’s test accuracy to go below

11% as the measurable indicator of BFA performance, for

CIFAR-10 dataset.

As the experimental result listed in Table 2, for all the

ResNet architecture with varying quantization bit-width, the

required number of bit-flips Nflip to make the DNN mal-

function is most likely below 20. Besides Nflip, we take the

hamming distance DB between clean- and perturbed-model

as another measurable indicator. The intuition behind is our

proposed BFA attempts to flip the selected bits without con-

sidering its original status. Thus, it exists the probability

that some of the bits might be flipped repeatedly with even

times. However, the reality is that such back and forth bit-

flips rarely happen throughout all the experiments. Under

varying quantization configurations, there is no obvious re-

lation between the quantization bit-width and the required

number of bit-flips (i.e., robustness of DNN against BFA).
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4.3. BFA on ImageNet

The summary of evaluation of our attack on ImageNet

dataset is presented in table 3. We report both baseline

and 8-bit quantized network accuracy for four popular im-

age classification architectures on ImageNet. We observe

roughly 0.1-0.4 % reduction in Top-1 classification accu-

racy after quantizing the network’s weights to 8-bits. Since

ImageNet dataset has 1000 different classes of objects, a

classification accuracy of 0.1% can be considered as ran-

dom output. Thus reporting only the number of bit flips

Nflip required to cause the accuracy to degrade to below

0.2% would be sufficient to prove the attack’s effectiveness.

Table 3. BFA on ImageNet with various network architecture, un-

der direct 8-bit weight quantization (without retraining). Accu-

racy (Acc.) is in top1/top5 format. Nflip is the median number of

bit-flips (out of 5 trials) required to degrade the top-1 accuracy

below 0.2%. For ImageNet, top-1 accuracy with random guess is

0.1%. DB is the corresponding hamming distance. Capacity is the

number of bits used for weight storage (# of weights × 8).

Model

(Capacity)

Baseline

Acc. %
Quantized

Acc. %
Nflip DB

AlexNet [21]

(488,806,720)
56.55/79.08 56.13/78.94 17 17

ResNet-18 [15]

(93,516,096)
69.76/89.08 69.50/88.98 13 13

ResNet-34 [15]

(174,381,376)
73.30/91.42 73.13/91.38 11 11

ResNet-50 [15]

(204,456,256)
76.15/92.87 75.84/92.82 11 11

For ImageNet, BFA with PBS attack requires only 17

(median of 5 trials ) bit flips out of 480 Million bits to

crush AlexNet. However, Nflip decreases even more as

we perform the attack on ResNet architectures. Figure 3

shows accuracy degradation for ResNet models, which has

a much steeper slope than AlexNet. As AlexNet does not

have residual connections, which may result in a different

response to such gradient-based attacks. For ResNet net-

works, as the network parameters keep increasing, it re-

quires lesser number of Nflip to attack the network. Finally,

Our attack makes a ResNet-50 architecture dysfunctional by

flipping 11 out of 200 Million bits only. The attack achieves

such success by modifying roughly 0.000003% of the bits

to destroy the fully functional DNN. Thus the gravity of

DNN parameter’s security concern can be summarized as

two identical models with 50M similar weights but only a

0.000003% error in the parameters can generate completely

different output values causing a 63% degradation in test

accuracy.
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Figure 2. The BFA performance of ResNet-18 with various attack

sample size (16/32/64/128/256) on ImageNet dataset. Regions in

shadow indicates the error band w.r.t 5 trials.

4.4. Ablation study

PBS with various sample size. In our experiment,

we randomly sample a set of input images from the

test/validation subset to perform the BFA, which we define

it as attack sample. Then, we evaluate the effectiveness of

the attack on the whole test data set which works as a val-

idation. We opted to perform the validation on the whole

test dataset including the random batch that was originally

selected for the attack because the sample size is too small

compared to the whole test dataset for both ImageNet and

CIFAR-10. In this section, we perform an ablation study on

the attack sample size. In figure 2, We configure the sam-

ple size from 16-256 and plotted Top-1 validation accuracy,

Top-5 validation accuracy, Sample loss and validation loss

respectively.

The performance of the attack based on attack sample

size can be ranked as: S(128) > S(32) > S(256) >
S(64) > S(16). The observation confirms that with even
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Figure 3. The accuracy (Top1/Top5) and loss evolution curve versus the number of bit-flips (Nflip) under BFA, for AlexNet/ResNet-

18/ResNet-50 on ImageNet dataset. The sample size for performing BFA is 256. On each network architecture, we run 5 experiments and

the region in shadow indicate the error-band. For all experiments in this figure, there exists no bit flipped multiple times during the attack

(i.e., Nflip = DB).

small input sample size, PBS still works with very small

bit-flips.
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Figure 4. Randomly flipping bits of a ResNet-18 architecture on

ImageNet. Even after flipping 100 random bits the network’s both

Top-1 and Top-5 accuracy does not degrade significantly.

PBS versus random bit-flips. In this section, we perform

an ablation study on randomly flipping any bits of a ran-

dom weight in the network. First, we test random bit flip

on a full-precision weight(i.e, floating-point) on ResNet-

18 model. For floating-point weights represented in stan-

dard IEEE format, if we change the most significant bits of

the exponent section, then the floating-point weight value

would change by a huge amount. As a result, the trained

ResNet-18 Network starts malfunctioning even after just

one random bit flip.

Then, we implement the random bit flip on 8-bit Quan-

tized ResNet-18 architecture as shown in figure 4. It shows

that by flipping even 100 random bits, the Top-1 accuracy

on ImageNet dataset does not degrade more than 1%. It

demonstrates the need for an efficient bit search algorithm

to identify the most vulnerable bits as randomly flipping

any bit does not hamper the neural network too much. In

comparison, our attack algorithm requires just 13 bits out

of 93M for ResNet-18 to completely cause the network to

malfunction on ImageNet dataset.

4.5. Comparison to other methods

Progressive bit search is the very first attack bit search-

ing algorithm developed to malfunction a quantized neural

network through perturbation of stored model parameters

using row hammer attack. We already showed in the pre-

vious section that the previous attack algorithms [25, 5] on

floating-point model parameters are not efficient. They do

not consider that attacking floating-point DNN model is as

easy as flipping most significant exponent bits of any ran-

dom weights. Our developed BFA with PBS is the first work

that emphasizes the need for developing attack algorithms

to properly scrutinize the security of DNN model param-

eters. Our attack can crush a DNN model to demonstrate

DNN’s vulnerability to intentional malicious bit flips. Fur-

ther, our algorithm would encourage more future work on

both attack and defense front in an attempt to make neural

network more resilient and robust.
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5. Discussion

Why only a few bit flips can cause such destructive phe-

nomena? In the analysis of the existence of adversary in

deep neural network, Goodfellow et al. [11] concluded that

deep neural networks exhibit vulnerability to adversarial ex-

amples due to their extreme linearity. The linearity of these

models is the reason why they cannot resist adversary. The

theory suggests that, with sufficient large input dimension,

a network will always be vulnerable to noise injected at any

layer. Our proposed BFA with PBS attack also introduces

noise at different layers of the DNN. Any noise injected at

the intermediate layer will increase as it is multiplied by the

input features.

Table 4. Attacking a VGG16 [35] model’s only the first and last

layer separately on CIFAR-10 dataset. Attacking the first layer

is much more effective. The noise injected at the early stages of

the network keeps growing as it propagates through the following

layers.

Layer to attack Nflip Accuracy (%)

First Conv. layer 20 10.06

Last linear layer 20 84.61

For VGG16 network we observed similar phenomena

where among the 15 bit flips required to degrade the ac-

curacy to 10 percent, 9 of them are in the first six layers.

Additionally, we confirm this hypothesis of noise propaga-

tion across layers by the experiment shown in table 4. We

attack the model by freezing all the layers (making them

not accessible to the attacker) except the first layer, then

we do the opposite by freezing all the layers except the last

one. As expected, attacking the first layer achieves higher

attack success. However, this linearity theory may be too

simple to explain other complex phenomena inside a DNN

and may not hold across different architectures. For exam-

ple, ResNet architecture which has skip connections, tend

to evenly distribute the bit flips across different layers.

Time Complexity of BFA with PBS. For each iteration

of PBS to identify single most vulnerable bit, the time com-

plexity is O(L ·N), where L is the number of total convolu-

tion and linear layers, and N is the number of bits with high-

est gradient ranking that will be checked in PBS method. In

general, the time complexity of the proposed PBS is linear

for each search iteration.

BFA with PBS does not suffer from gradient obfusca-

tion. Generation of adversarial examples in quantized net-

work using straight-through estimator introduces gradient

obfuscation [2, 23]. Attacking a quantized network be-

comes tricky as such network shows signs of gradient scat-

tering [2]. In this work, we also used a quantized network

which implements a uniform quantizer. However, our net-

work directly uses quantized weights to do the inference

after training. We calculate the gradient directly with re-

spect to the quantized weights to avoid gradient obfusca-

tion. Moreover, the performance of BFA against 4,6,8 bits

quantized networks proves that the effectiveness of BFA

does not degrade due to the presence of a non-differentiable

function at the forward path.

Potential Defense Methods. To defend adversarial exam-

ples, the most common approach nowadays is to train the

network with a mixture of clean and adversarial examples

[11, 26]. One of the proposed defense methods against BFA

would be to train the network to solve Madry’s Min-Max

optimization problem [26]. Their approach called adversar-

ial training minimizes two losses: one from the real image

and other from the adversarial image. Hence, we perform

adversarial training using BFA with PBS to minimize two

such losses: one computed from the original network and

the other computed from the same network with one bit flip

for each batch.

However, unlike adversarial training, such a training

method does not help in improving the robustness of the

network. Our attack can bypass adversarial training scheme

primarily because of a large search space of close to 93M

bits. Even if we train the network to be resilient to several

bit-flips, there will always remain some bits that will be vul-

nerable to attack. Another potential defense against BFA

can be quantized networks. Again our observation in ta-

ble 2, does not show any co-relation between the number of

quantization bits with the number of bit-flips required. Thus

some of the popular adversarial defense methods [26, 23]

fail against our BFA attack.

Data integrity check with a follow-up error correction is

an ultimate solution to ensure no bits could be maliciously

flipped, but it is very expensive to protect all bits (e.g., even

NVIDIA 1080Ti GPU does not have ECC function). Ad-

ditionally, some recent row hammer attack based methods

[8, 12] can even by-pass major integrity checks, such as

ECC and Intel’s SGX. The above observations make our at-

tack even more threatening for deep learning applications.

6. Conclusion

Our proposed attack is the very first work for vulnera-

ble bit search on quantized neural networks. BFA puts light

on why the security analysis for neural network parame-

ters needs more attention. We demonstrate through exten-

sive experiments and analysis that the vulnerability of DNN

parameter to malicious bit-flips is extremely severe than an-

ticipated. We would encourage further investigation on both

attack and defense front to thrive towards developing a more

resilient network for deep learning applications.
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