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Abstract

Several important security issues of Deep Neural Net-
work (DNN) have been raised recently associated with dif-
ferent applications and components. The most widely inves-
tigated security concern of DNN is from its malicious input,
a.k.a adversarial example. Nevertheless, the security chal-
lenge of DNN's parameters is not well explored yet. In this
work, we are the first to propose a novel DNN weight at-
tack methodology called Bit-Flip Attack (BFA) which can
crush a neural network through maliciously flipping ex-
tremely small amount of bits within its weight storage mem-
ory system (i.e., DRAM). The bit-flip operations could be
conducted through well-known Row-Hammer attack, while
our main contribution is to develop an algorithm to identify
the most vulnerable bits of DNN weight parameters (stored
in memory as binary bits), that could maximize the accuracy
degradation with a minimum number of bit-flips. Our pro-
posed BFA utilizes a Progressive Bit Search (PBS) method
which combines gradient ranking and progressive search to
identify the most vulnerable bit to be flipped. With the aid of
PBS, we can successfully attack a ResNet-18 fully malfunc-
tion (i.e., top-1 accuracy degrade from 69.8% to 0.1%) only
through 13 bit-flips out of 93 million bits, while randomly
flipping 100 bits merely degrades the accuracy by less
than 1%. Code is released at: https://github.com/
elliothe/Neural_Network_Weight_Attack

1. Introduction

Recently, deep neural networks (DNNs) have demon-
strated its great potential of surpassing or close to human-
level performance in multiple domains, such as object
recognition [ 4], Game Al [34], synthetic voice [27], neigh-
borhood voting prediction [10] and etc [9]. It stimulates
the demand for deploying state-of-the-art deep learning al-
gorithms in real-world applications to release labors from
repetitive work. Under such circumstance, the security and
robustness of deep neural network is an essential concern
which cannot be circumvented.

Adversarial example [11] (aka., adversarial attack) is a
well-known security issue of DNN, which can cause the
system malfunction with the magnitude-constrained input
noise that mankind cannot discern. Both attack and defense
of adversarial example on the input end of DNN has been
heavily investigated in the past couple of years [26, 11, 36]
and still be in progress [16, 29, 22]. Nevertheless, the secu-
rity issue of network parameters themselves is not yet well
explored. Recently, the development of fault injection at-
tack [25] has raised further security concerns on the storage
of DNN parameters.

The possible reasons that there was a lack of concerns on
the security of network parameters may come in twofold:
1) The neural network is widely recognized as a robust sys-
tem against parameter variations. 2) The DNNs are used to
be only deployed on the high-performance computing sys-
tem (e.g., CPUs, GPUs, and other accelerators [33, 1, 30]),
which normally contains a variety of methods ensuring data
integrity. Thus, attacking the parameters is more related
to a system cyber-security topic. However, the game has
been changed during the past few years. First, the robust-
ness of the neural network to small perturbation has been
put into the spotlight by adversarial examples on DNN in-
put [11, 26]. Second, with the aid of DNN compression
techniques (e.g., pruning[l3] and quantization [39]) and
outstanding compact neural network architectures [18, 32],
deep neural networks now are friendly to the resource-
limited mobile device as well. Such resource-limited plat-
forms normally lack effective data integrity check mecha-
nism, which makes the deployed DNN vulnerable to popu-
lar fault injection techniques, such as row hammer and laser
beam [3].

Recently, there exist a cohort of works [25, 5] in an at-
tempt to attack DNN network parameters stored in DRAM
using Row Hammer Attack (RHA). However, the key limi-
tation to these previous attack methods is that they primarily
focused on extremely vulnerable full-precision DNN model
(i.e., parameters in floating-point format). Our conducted
simulation shows that randomly flipping the exponent part
of floating-point weight could easily overwhelm the func-
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tionality of DNN. The explanation behind that is flipping
the bits in exponent part of floating-point value can increase
the weight to an extremely large value, thus leading to the
exploded output. As a result, attacking the weight con-
strained DNN (i.e., weights quantized into fixed-point val-
ues) is the primary focus in this work, where the range of
weight magnitude relies on the bit-width of weights.

Overview of Bit-Flip attack: In this work, we attempt to
perform parameter attack on the weights of quantized DNN,
whose weight magnitude is intrinsically constrained owing
to the fixed-point representation. To conduct an efficient
bit-flip attack on weights, for the first time, we propose a
Bit-Flip Attack (BFA) together with Progressive Bit Search
(PBS) technique, that can totally crush a fully functional
quantized DNN and convert it to a random output generator
with several bit-flips. Our proposed PBS combines gradient
ranking and progressive search to locate the most vulnera-
ble bits, while BFA performs the bit-flip operations on the
located bits along their gradient ascending directions. To
identify the vulnerable bits to be flipped within the identical
layer and across different layers, we perform the in-layer
search and cross-layer search in an iterative way. Thus, for
each BFA iteration, only the most vulnerable bit elected by
the PBS technique will be flip to its opposite binary value.
The extensive experiments are conducted regarding various
network structure, different datasets and quantization bit-
width, etc. It is shocking to notice that ResNet-18 will be-
come a random output generator (i.e., 0.1% top-1 accuracy)
with only 13 bit-flips out of 93 million bits by our proposed
attacking method, on ImageNet dataset.

2. Related Work

Memory Bit-Flip in Real-World: Flipping a memory
cell bit within the memory system is a realistic and demon-
strated threat model in existing computer systems. Re-
cently, Kim ez al., [19] have demonstrated a method to cause
memory bit-flip in DRAM merely through the frequent data
accessing, which is now popularly known as Row-Hammer
Attack (RHA). A malicious user can use RHA to modify
the data stored in DRAM memory cell by just flipping one
bit at a time. [31] showed that by creating a profile for the
bit flips in a DRAM, row hammer attack can effectively flip
a single bit at any address in the software stack. Accord-
ing to the state-of-the-art investigations, common error de-
tection and correction techniques, such as Error-Correcting
Code (ECC) [8] and Intel SGX [12], are broken defense
mechanism to RHA. Such existing memory bit-flip attack
(i.e. row-hammer attack) model brings a huge challenge
to the security of DNN powered computing system since
its parameters are normally stored in the main memory, i.e.
DRAM, for maximizing the computation throughput, which
is directly exposed to the adversarial attacker. Moreover,

such challenge becomes more severe because DNN pow-
ered applications are widely deployed in many resource-
limited (e.g. smart IoT devices, mobile system, edge de-
vices, etc.) system that lacks necessary data integrity check
mechanism.

Previous Neural Network Parameter Attack. Adver-
sarial example attack has been widely explored [38] to eval-
uate the robustness of DNN. However, we are still at the
rudimentary stage towards investigating the effect of net-
work parameter attack on neural network accuracy. Neural
network parameters have been attacked using different lev-
els of hardware trojans, which require a specific pattern of
input to trigger the trojan inside the network [7, 24]. More-
over, such a trojan attack requires hardware-level modifica-
tions, which may not be feasible in many practical appli-
cations. As a result, fault injection attacks could become
a suitable alternative to attack DNN parameters [25]. For
example, a single Bias attack (SBA) attacks a certain bias
term of a neuron to change the classification of DNN to a
different class [25]. Other works have injected faults into
the activation function of the neural network to miss clas-
sify a target input [5].

Limitations of previous works. However, these previous
attack algorithms are developed based on a full-precision
model (i.e. network parameters are floating-point num-
bers stored in memory in the format of IEEE standard
for floating-point arithmetic [17]), where we believe such
attack algorithms may not be efficient. Since it is ex-
tremely easy to cause DNN malfunction by just flipping the
most significant exponent bits of any random floating-point
weight parameters. Through this simple method, it mainly
causes DNN malfunction by exponentially increasing the
magnitude of particular weight parameters by just several
bit-flips. We conducted such an experiment to prove its ef-
ficiency in section 4.4. Based on our simulation results, it
shows just 1 bit-flip of the most significant exponent bit of a
random floating-point number weight could cause ResNet-
18 network completely malfunction on ImageNet dataset.

Why we need a bit search algorithm. On the other side,
most of recent deep neural network applications are per-
formed in quantized platform such as google’s Tensor Pro-
cessing Unit (TPU) [37], that uses 8-bit operations for quan-
tized network. Such fixed precision models are more robust
to network parameter perturbation. Similarly, we conducted
another experiment to randomly choose quantized weight
for bit-flip attack using RHA. The simulation results in fig-
ure 4 show that 100 bit-flip in a quantized ResNet-18 could
only cause 0.6% accuracy degradation in ImageNet, which
indicates that random selection of quantized weight param-
eters to be attacked is not efficient and feasible. Thus, an
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efficient algorithm is required to search for the most vulner-
able weights/bits in a quantized DNN.

3. Approach

In this section, we present a novel Bit-Flip Attack (BFA)
method to maliciously cause a DNN system malfunction
through flipping extremely small amount of vulnerable bits
of weights. Our proposed algorithm, called Progressive Bit
Search (PBS), is to identify those vulnerable DNN weight
parameters (stored in terms of memory bits in DRAM) that
could maximize the accuracy degradation with minimum
number of bit-flips. It is worth to note that this work fo-
cuses on BFA on a more robust DNN with quantized weight
parameters instead of floating-point number weights as dis-
cussed earlier.

3.1. Problem Definition

Given a quantized DNN contains L convolutional/fully-
connected layers, the original weights in floating-point are
symmetrically quantized into 2™¢ — 1 levels with N,-bits
uniform quantizer. The quantized weights W are arithmeti-
cally represented in N,-bits signed integer. In the comput-
ing memory system, W is stored in the format of twos com-
plementl, which is denoted as B in this work. More de-
tails of weights quantization are described in Section 3.2.
The goal of this work is to find the optimal combination
of vulnerable weight bits to perform BFA, thus maximizing
the inference loss of DNN parameterized by the perturbed
weights whose twos complement representation is B. Such
vulnerable bit searching problem can be formulated as an
optimization problem as:

max £(f (@ B} t) = £(f (2 (Bi}Ey) t)

{B:}
L (L
st Y D(B,B) € {0,1,..., Ny}
=1

where  and t are the vectorized input and target output’.
Taken z as the input, the inference computation of network
parameterized by {B;}~ | is expressed as f(z; {B;}}~,).
Note that £(-,-) calculates the loss between DNN output
and target. D(B;, B;) computes the Hamming distance be-
tween clean- and perturbed-binary weight tensor, and N,
is maximum Hamming distance allowed through the entire
DNN.

3.2. Quantization and Encoding

Weight quantization. In this work, we adopt a layer-wise
N,-bits uniform quantizer for weight quantization. For [-th

I All the binary weight mentioned hereinafter referred to as the weights
in twos complement.

2Note that, all the targets ¢ in this work are not the ground-truth labels,
but the outputs of the clean DNN w.r.t the input data.

layer, the quantization process from the floating-point base
ng to its fixed-point (signed integer) counterpart W; can
be described as:

Aw; = max(WP)/(2Na=1 —1); WP eR? (2

W, = round(W}?/Awy) - Awy 3)

where d is the dimension of weight tensor, Aw; is the step
size of weight quantizer. For training the quantized DNN
with non-differential stair-case function (in Eq. (3)), we
use the straight-through estimator [4] as other works [39].
Note that, since Aw; € R is the coefficient shared by all
the weights in [-th layer, we only store its fixed-point part
(W, /Aw;) € {—2Na=1 . 2Na=11d rather than W,.

Weight Encoding. The computing system normally
stores the signed integer in two’s complement representa-
tion, owing to its efficiency in arithmetic operations (e.g.,
mul). Given one weight element w € W;, the conver-
sion from its binary representation (b = [bn,_1,...,bo] €
{0,1}"4) in two’s complement can be expressed as:

N,—2
w/Aw =g(b) = -2V by 1+ Y 20b (4
=0

With the conversion relation described by g(-) in Eq. (4), we
can inversely obtain the binary representation of weights B
from its fixed-point counterpart as well.

3.3. Bit-Flip Attack

In this work, we perform the BFA utilizing the similar
mechanism as FGSM [ 1], which was used to generate ad-
versarial example. The key idea of BFA is to flip the bits
along its gradient ascending direction w.r.t the loss of DNN.
We take the binary vector b in Eq. (4) as an example and
attempt to perform BFA upon b. We first calculates the gra-
dients of b w.r.t loss as:

oL oL

8qu71 g eeey 87b0
where L is the inference loss of DNN parametrized by b.
The naive operation is to directly perform the bit-flip using
the gradients obtained in Eq. (5) and get perturbed bits as:
b = b+ sign(VsL) (6)

where sign(VyL) € {—1,+1}e. However, since the bit
value is constrained between 0 and 1 (b € {0,1}"9), flip-
ping the bit as Eq. (6) could lead to data overflow. Ideally,
the BFA is supposed to follow the truth table in Table 1.
Thus, we mathematically redefine the BFA as follows:

m =bd (sign(VeL)/2 + 0.5) 7
b=bom ®)

where @ is the bit-wise xor operator. m is the mask which
indicates whether to perform the bit-flip operation.

Vol = |

] ®)
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Table 1. Truth table of Bit-Flip Attack (BFA). b; is the clean bit
and b; is the perturbed bit by BFA. m indicates whether there ex-
ist value change between b; and b;. The positive and negative of
OL/0b; are represented by 1 and 0 respectively.

0 1(+) 11
0 0(-) 0 0
1 1 (+) 1 0
1 0(¢-) 0 1

3.4. Progressive Bit Search

Rather than performing the BFA upon each bit through-
out the entire network, our goal is to perform BFA in a more
precise and effective fashion. In this subsection, we pro-
pose a method called Progressive Bit Search (PBS) which
combines the gradient ranking and progressive search. The
proposed PBS method attempts to identify and flip n;, most
vulnerable bits per BFA iteration (n, = 1 by default),
thus progressively degrading the performance of DNN un-
til it reaches the minimum accuracy or the preset num-
ber of iteration. As the flowchart of performing PBS de-
picted in Fig. 1, for each attack iteration, the process of
bit searching can be generally divided into two successive
steps: 1) In-layer Search: the in-layer search is performed
through electing the n; most vulnerable bits in the selected
layer, then record the inference loss if those elected bits are
flipped. 2) Cross-layer Search: with the in-layer search
conducted upon each layer of the network independently,
the cross-layer search is to evaluate the recorded loss incre-
ment caused by BFA with in-layer search, thus identify the
top ny vulnerable bits across different layers. The details of
each step are described as follows.

In-layer Search. For the PBS in k-th iteration, in-layer

searching of the n, most vulnerable bits from ﬁf in -
th layer is performed through gradient ranking. With the
given vectored input « and target ¢, the inference and back-
propagation are performed successively to calculate the gra-
dients of bits w.r.t the inference loss. Then, we descendingly
rank the vulnerability of bits by the absolute value of their
gradients OL/0b and elect the bits whose gradients are top-
nyp, such process can be written as:

~k—1

byt =Top |V £(f(@: {B; }iy).t)| ()

where {Topnb} function returns the pointer pointing at the
storage of those elected n;, vulnerable bits. Then, we apply
the BFA on those elected bits as:

bf=b"om (10)

where the mask m is generated following Eq. (7). Now,
with the in-layer search and BFA performed on the [-th

"5 Start k-th iteration (End k-th iteration)
g
22! Enter next layer Perform BFA on
5 vulnerable bits
=
4
S| le ,
A & Find vulnerable bits dat file f
e & in current layer ata protile tor
&) n k-th iteration:
) + Layerwise
No ;a Perform BFA and get vulnerable bits
'_é the DNN loss and loss
= v
Restore the bits to the ;
Access data profile
status before BFA P
v 1
. Enter the layer
Is this last . .
S this 1as YES» with maximum
layer? loss

Figure 1. Flowchart to perform Progressive Bit Search (PBS) with
in-layer and cross-layer search.

layer, we have to evaluate the loss increment caused by BFA
in Eq. (10), which can be written as:

£ = L(f(m; (B} ), t) (11)

where the only difference between {ﬁf}le and {fif_l o
are the bits flipped in Eq. (10). Note that, those bits flipped
to bf in Eq. (10) will be restored back to IA)f*l after the loss
evaluation is finished.

Cross-layer Search. As the aforementioned in-layer
search can perform the layer-wise vulnerable bits election
and BFA evaluation, the cross-layer search evaluates the
BFA across the entire network. For the PBS in k-th iter-
ation, the cross-layer search first independently conduct the
in-layer search on each layer, and generate the loss set as
{ck Lk, L%} Then, we could identify the layer-j with
maximum loss and re-perform the BFA (without restore) on
the bits elected in j-th layer, which can be expressed as:

lA)jc = Bg‘f_l bm
C_ ky L 12)
st. j=argmax {L}2,
!

After that, PBS is entered into &£ + 1 iteration.

4. Experiments
4.1. Experimental setup

Datasets: We take two visual datasets: CIFAR-10 [20]
and ImageNet [21] for object classification task. CIFAR-
10 contains 60K RGB images in size of 32 x 32. Following
the standard practice, SOK examples are used for training
and the remaining 10K for testing. The images are drawn
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Table 2. BFA on CIFAR-10 with ResNet-20/32/44/56, under various quantization bit-width (Nq=4/6/8). Np;, is the number of bit-flips
required (5 trials) to degrade the top-1 accuracy below 11% with BFA, regardless whether there exists bits flipped back to their original
states. For CIFAR-10, top-1 accuracy with random guess is 10%. Dsg is the hamming distance between clean- and perturbed- binary
weight (Dg = Zle D(]ASZ7 B;)). The bold number with underline highlight the mismatch between two corresponding Ngi, and Dy, which

indicates there exist even bit-flips on the identical bit/bits.

Baseline Ny =8 Ny=6 Ny=4
Acc. Acc. Nﬂip Dy Acc. Nﬂip Dg Acc. Nﬂip Dy
Net20 92.11 92.28 [7,10,10,12,17] [7,10,10,12,17]  91.89 [8,8,11,12,13] [8,8,11,12,13] 91.85 [7,7,7,8,12] [7,7,7,8,12]
Net32 92.77 92.32 [8,9,12,13,31] [8,9,12,13,31] 93.09 [9,10,12,14,23] [9,10,12,14,23] 9231 [10,12,14,14,17] [10,12,14,14,17]
Net44 93.10 93.60  [6,10,11,13,22] [6,10,11,13,22]  93.39 [13,13,15,16,17] [13,13,15,16,17] 91.52 [14,14,15,16,50] [14,14,15,16,50]

Net56 9259  93.14 [16,17,18,22,22] [16,17,18,22,22] 93.56

[16,16,17,20,21]

[16,16,17,20,21] 92.53  [9,21,21,23,24]  [9,21,21,21,24]

evenly from 10 classes. ImageNet dataset contains 1.2M
training images divided into 1000 distinct classes. The
data augmentation used in this work is identical to meth-
ods in [15]. Note that, the proposed BFA is performed
through randomly draw a sample of input images x from
the test/validation set, where the default sample size is 128
and 256 for CIFAR-10 and ImageNet respectively. Then,
only the sample input x is used to perform BFA, where the
rest data and ground-truth labels are isolated from the at-
tacker. Moreover, each experimental configuration is run
with 5 trials to alleviate error caused by the randomness of
sampling input .

Network Architectures and quantization: For CIFAR-
10, experiments are conducted on a series of residual
network (ResNet-20/32/44/56)[15], where the weights are
quantized into 4/6/8 bit-width with retraining. For Ima-
geNet, we choose a variety of famous network structures,
including AlexNet, ResNet-18/34/50. Based on our obser-
vation, with high bit-width quantizer (e.g., Ny=8), directly
quantizing the pre-trained full-precision DNN without re-
training (i.e., fine-tuning) only shows negligible accuracy
degradation. Therefore, for fast evaluation of our proposed
BFA on ImageNet dataset and its various network struc-
tures, we directly perform the weight quantization without
retraining before conducting the BFA.

Attack Formulation: Traditional attacks mostly focus on
attacking DNN by feeding perturbed inputs [1 1] to the net-
work. Such adversarial attack can be grouped into two ma-
jor categories: 1) white-box attack [ 1, 26], where the ad-
versary has full access to the network architecture and pa-
rameters, and 2) black-box attack [6, 28], where the adver-
sary can only access the input and output of a DNN without
its internal configurations. For our proposed BFA, it de-
mands full access to the DNN’s weights and gradients. Thus
BFA can be considered as a white-box attack. However, we
assume that even under white box attack setup, the attacker
has no access to the training dataset, training algorithm and
hyper parameters used during the training of the network.

4.2. BFA on CIFAR-10

Our bit-flip attack is evaluated across different archi-
tectures (i.e., ResNet-20/32/44/56) using varying quantized
bit-widths (i.e., Nq=4/6/8) on CIFAR-10 dataset in Table 2.
Without BFA, the quantized models show negligible accu-
racy degradation or even higher accuracy in comparison to
their full-precision counterpart. The quantization noise in-
troduced by the weight quantization is considered as a regu-
larization method, which might contribute the accuracy im-
provement when model training is over-fitting.

Since CIFAR-10 dataset has 10 different classes of ob-
ject, degrading the model’s accuracy down to 10% is equiv-
alent to make the model as random output generator. In
contrast to adversarial example (e.g., PGD attack [26]), our
proposed BFA is unable to degrade the network accuracy
to 0%. The reason is adversarial input example attack is
an input-specific attack which is designed to misclassify
each input separately, while our proposed BFA attempts
to misclassify the images from each object category using
the identical attacked model. Consequently, the measurable
success of BFA would be making the DNN generate out-
put randomly. Therefore, we report the number of bit-flips
Npip required to cause the DNN’s test accuracy to go below
11% as the measurable indicator of BFA performance, for
CIFAR-10 dataset.

As the experimental result listed in Table 2, for all the
ResNet architecture with varying quantization bit-width, the
required number of bit-flips Ng;, to make the DNN mal-
function is most likely below 20. Besides NVg;,, we take the
hamming distance Dy between clean- and perturbed-model
as another measurable indicator. The intuition behind is our
proposed BFA attempts to flip the selected bits without con-
sidering its original status. Thus, it exists the probability
that some of the bits might be flipped repeatedly with even
times. However, the reality is that such back and forth bit-
flips rarely happen throughout all the experiments. Under
varying quantization configurations, there is no obvious re-
lation between the quantization bit-width and the required
number of bit-flips (i.e., robustness of DNN against BFA).
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4.3. BFA on ImageNet

The summary of evaluation of our attack on ImageNet
dataset is presented in table 3. We report both baseline
and 8-bit quantized network accuracy for four popular im-
age classification architectures on ImageNet. We observe
roughly 0.1-0.4 % reduction in Top-1 classification accu-
racy after quantizing the network’s weights to 8-bits. Since
ImageNet dataset has 1000 different classes of objects, a
classification accuracy of 0.1% can be considered as ran-
dom output. Thus reporting only the number of bit flips
Npip required to cause the accuracy to degrade to below
0.2% would be sufficient to prove the attack’s effectiveness.

Table 3. BFA on ImageNet with various network architecture, un-
der direct 8-bit weight quantization (without retraining). Accu-
racy (Acc.) is in topl/top5 format. Ny, is the median number of
bit-flips (out of 5 trials) required to degrade the top-1 accuracy
below 0.2%. For ImageNet, top-1 accuracy with random guess is
0.1%. Dg is the corresponding hamming distance. Capacity is the
number of bits used for weight storage (# of weights x 8).

Model Baseline Quantized Ne D
(Capacity) Acc. % Acc. % flip B
AlexNet [21]
(488.806.720) 56.55/79.08 56.13/78.94 17 17
ResNet-18 [15]
(93.516.096) 69.76/89.08 69.50/88.98 13 13
ResNet-34 [15]
(174.381.376) 73.30/91.42 73.13/91.38 11 11
ResNetSO[10) 76 1519087 758419282 11 11

(204,456,256)

For ImageNet, BFA with PBS attack requires only 17
(median of 5 trials ) bit flips out of 480 Million bits to
crush AlexNet. However, Np;, decreases even more as
we perform the attack on ResNet architectures. Figure 3
shows accuracy degradation for ResNet models, which has
a much steeper slope than AlexNet. As AlexNet does not
have residual connections, which may result in a different
response to such gradient-based attacks. For ResNet net-
works, as the network parameters keep increasing, it re-
quires lesser number of Ny;, to attack the network. Finally,
Our attack makes a ResNet-50 architecture dysfunctional by
flipping 11 out of 200 Million bits only. The attack achieves
such success by modifying roughly 0.000003% of the bits
to destroy the fully functional DNN. Thus the gravity of
DNN parameter’s security concern can be summarized as
two identical models with 50M similar weights but only a
0.000003% error in the parameters can generate completely
different output values causing a 63% degradation in test
accuracy.
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Figure 2. The BFA performance of ResNet-18 with various attack
sample size (16/32/64/128/256) on ImageNet dataset. Regions in
shadow indicates the error band w.r.t 5 trials.

4.4. Ablation study

PBS with various sample size. In our experiment,
we randomly sample a set of input images from the
test/validation subset to perform the BFA, which we define
it as attack sample. Then, we evaluate the effectiveness of
the attack on the whole test data set which works as a val-
idation. We opted to perform the validation on the whole
test dataset including the random batch that was originally
selected for the attack because the sample size is too small
compared to the whole test dataset for both ImageNet and
CIFAR-10. In this section, we perform an ablation study on
the attack sample size. In figure 2, We configure the sam-
ple size from 16-256 and plotted Top-1 validation accuracy,
Top-5 validation accuracy, Sample loss and validation loss
respectively.

The performance of the attack based on attack sample
size can be ranked as: S(128) > S(32) > S(256) >
S(64) > S(16). The observation confirms that with even
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Figure 3. The accuracy (Topl/Top5) and loss evolution curve versus the number of bit-flips (/Vg;p) under BFA, for AlexNet/ResNet-
18/ResNet-50 on ImageNet dataset. The sample size for performing BFA is 256. On each network architecture, we run 5 experiments and
the region in shadow indicate the error-band. For all experiments in this figure, there exists no bit flipped multiple times during the attack

(i.e., Nﬂip = DB).

small input sample size, PBS still works with very small
bit-flips.
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Figure 4. Randomly flipping bits of a ResNet-18 architecture on

ImageNet. Even after flipping 100 random bits the network’s both
Top-1 and Top-5 accuracy does not degrade significantly.

PBS versus random bit-flips. In this section, we perform
an ablation study on randomly flipping any bits of a ran-
dom weight in the network. First, we test random bit flip
on a full-precision weight(i.e, floating-point) on ResNet-
18 model. For floating-point weights represented in stan-
dard IEEE format, if we change the most significant bits of
the exponent section, then the floating-point weight value
would change by a huge amount. As a result, the trained
ResNet-18 Network starts malfunctioning even after just
one random bit flip.

Then, we implement the random bit flip on 8-bit Quan-
tized ResNet-18 architecture as shown in figure 4. It shows

that by flipping even 100 random bits, the Top-1 accuracy
on ImageNet dataset does not degrade more than 1%. It
demonstrates the need for an efficient bit search algorithm
to identify the most vulnerable bits as randomly flipping
any bit does not hamper the neural network too much. In
comparison, our attack algorithm requires just 13 bits out
of 93M for ResNet-18 to completely cause the network to
malfunction on ImageNet dataset.

4.5. Comparison to other methods

Progressive bit search is the very first attack bit search-
ing algorithm developed to malfunction a quantized neural
network through perturbation of stored model parameters
using row hammer attack. We already showed in the pre-
vious section that the previous attack algorithms [25, 5] on
floating-point model parameters are not efficient. They do
not consider that attacking floating-point DNN model is as
easy as flipping most significant exponent bits of any ran-
dom weights. Our developed BFA with PBS is the first work
that emphasizes the need for developing attack algorithms
to properly scrutinize the security of DNN model param-
eters. Our attack can crush a DNN model to demonstrate
DNN’s vulnerability to intentional malicious bit flips. Fur-
ther, our algorithm would encourage more future work on
both attack and defense front in an attempt to make neural
network more resilient and robust.
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5. Discussion

Why only a few bit flips can cause such destructive phe-
nomena? In the analysis of the existence of adversary in
deep neural network, Goodfellow et al. [1 1] concluded that
deep neural networks exhibit vulnerability to adversarial ex-
amples due to their extreme linearity. The linearity of these
models is the reason why they cannot resist adversary. The
theory suggests that, with sufficient large input dimension,
a network will always be vulnerable to noise injected at any
layer. Our proposed BFA with PBS attack also introduces
noise at different layers of the DNN. Any noise injected at
the intermediate layer will increase as it is multiplied by the
input features.

Table 4. Attacking a VGG16 [35] model’s only the first and last
layer separately on CIFAR-10 dataset. Attacking the first layer
is much more effective. The noise injected at the early stages of
the network keeps growing as it propagates through the following
layers.

Layer to attack ~ Ng;,  Accuracy (%)
First Conv. layer 20 10.06
Last linear layer 20 84.61

For VGG16 network we observed similar phenomena
where among the 15 bit flips required to degrade the ac-
curacy to 10 percent, 9 of them are in the first six layers.
Additionally, we confirm this hypothesis of noise propaga-
tion across layers by the experiment shown in table 4. We
attack the model by freezing all the layers (making them
not accessible to the attacker) except the first layer, then
we do the opposite by freezing all the layers except the last
one. As expected, attacking the first layer achieves higher
attack success. However, this linearity theory may be too
simple to explain other complex phenomena inside a DNN
and may not hold across different architectures. For exam-
ple, ResNet architecture which has skip connections, tend
to evenly distribute the bit flips across different layers.

Time Complexity of BFA with PBS. For each iteration
of PBS to identify single most vulnerable bit, the time com-
plexity is O(L- N), where L is the number of total convolu-
tion and linear layers, and N is the number of bits with high-
est gradient ranking that will be checked in PBS method. In
general, the time complexity of the proposed PBS is linear
for each search iteration.

BFA with PBS does not suffer from gradient obfusca-
tion. Generation of adversarial examples in quantized net-
work using straight-through estimator introduces gradient
obfuscation [2, 23]. Attacking a quantized network be-
comes tricky as such network shows signs of gradient scat-
tering [2]. In this work, we also used a quantized network

which implements a uniform quantizer. However, our net-
work directly uses quantized weights to do the inference
after training. We calculate the gradient directly with re-
spect to the quantized weights to avoid gradient obfusca-
tion. Moreover, the performance of BFA against 4,6,8 bits
quantized networks proves that the effectiveness of BFA
does not degrade due to the presence of a non-differentiable
function at the forward path.

Potential Defense Methods. To defend adversarial exam-
ples, the most common approach nowadays is to train the
network with a mixture of clean and adversarial examples
[11,26]. One of the proposed defense methods against BFA
would be to train the network to solve Madry’s Min-Max
optimization problem [26]. Their approach called adversar-
ial training minimizes two losses: one from the real image
and other from the adversarial image. Hence, we perform
adversarial training using BFA with PBS to minimize two
such losses: one computed from the original network and
the other computed from the same network with one bit flip
for each batch.

However, unlike adversarial training, such a training
method does not help in improving the robustness of the
network. Our attack can bypass adversarial training scheme
primarily because of a large search space of close to 93M
bits. Even if we train the network to be resilient to several
bit-flips, there will always remain some bits that will be vul-
nerable to attack. Another potential defense against BFA
can be quantized networks. Again our observation in ta-
ble 2, does not show any co-relation between the number of
quantization bits with the number of bit-flips required. Thus
some of the popular adversarial defense methods [26, 23]
fail against our BFA attack.

Data integrity check with a follow-up error correction is
an ultimate solution to ensure no bits could be maliciously
flipped, but it is very expensive to protect all bits (e.g., even
NVIDIA 1080Ti GPU does not have ECC function). Ad-
ditionally, some recent row hammer attack based methods
[8, 12] can even by-pass major integrity checks, such as
ECC and Intel’s SGX. The above observations make our at-
tack even more threatening for deep learning applications.

6. Conclusion

Our proposed attack is the very first work for vulnera-
ble bit search on quantized neural networks. BFA puts light
on why the security analysis for neural network parame-
ters needs more attention. We demonstrate through exten-
sive experiments and analysis that the vulnerability of DNN
parameter to malicious bit-flips is extremely severe than an-
ticipated. We would encourage further investigation on both
attack and defense front to thrive towards developing a more
resilient network for deep learning applications.
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