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Abstract

Deep neural nets achieve state-of-the-art performance

on the problem of optical flow estimation. Since optical

flow is used in several safety-critical applications like self-

driving cars, it is important to gain insights into the robust-

ness of those techniques. Recently, it has been shown that

adversarial attacks easily fool deep neural networks to mis-

classify objects. The robustness of optical flow networks to

adversarial attacks, however, has not been studied so far.

In this paper, we extend adversarial patch attacks to optical

flow networks and show that such attacks can compromise

their performance. We show that corrupting a small patch

of less than 1% of the image size can significantly affect op-

tical flow estimates. Our attacks lead to noisy flow estimates

that extend significantly beyond the region of the attack, in

many cases even completely erasing the motion of objects

in the scene. While networks using an encoder-decoder ar-

chitecture are very sensitive to these attacks, we found that

networks using a spatial pyramid architecture are less af-

fected. We analyse the success and failure of attacking both

architectures by visualizing their feature maps and compar-

ing them to classical optical flow techniques which are ro-

bust to these attacks. We also demonstrate that such attacks

are practical by placing a printed pattern into real scenes.

1. Introduction

Optical flow refers to the apparent 2D motion of each

pixel in an image sequence. It is denoted by a vector

field (u, v) that corresponds to the displacement of each

pixel in the image plane. The classical formulation [12]

seeks the optical flow (u, v) between two consecutive im-

ages I(x, y, t) and I(x+ u, y + v, t+ 1) in a sequence that

minimizes the brightness constancy (i.e. photometric) error

at each pixel, ρ(I(x, y, t)−I(x+u, y+v, t+1)), for some

robust function ρ, subject to spatial coherence constraints

that regularize the solution [4].

The estimation of flow from pairs of images has a long

Figure 1. Overview. The first column shows the optical flow re-

sults using an encoder-decoder architecture, FlowNetC [8], a spa-

tial pyramid architecture, SpyNet [20], and a classical method,

LDOF [6]. In the second column, a small circular patch is added

to both frames at the same location and orientation (highlighted

by the red box for illustration purposes). SpyNet and LDOF are

barely affected by the patch. In contrast, FlowNetC is strongly

affected, even in regions far away from the patch.

history [12] and is used in many applications spanning

medicine, special effects, video analysis, action recognition,

navigation, and robotics to name a few. A large number of

methods [3] have approached the problem and steadily im-

proved the results on current benchmarks [7, 10]. How-

ever, classical optical flow methods typically require ex-

tensive hand engineering [26] and computationally inten-

sive optimization. Recent methods [8, 13, 20] have there-

fore approached optical flow estimation using deep neural

networks. These methods typically run in real time and

produce results that are competitive with, or even surpass,

classical optimization-based approaches. Given the perfor-

mance of recent optical flow networks, they could become

an important component in applications such as self-driving

cars. The safety issues surrounding many of these systems

implies that the robustness of the algorithms must be well

understood. To date, there has not been any study to mea-
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sure the robustness of these networks to adversarial attacks.

Adversarial attacks on neural networks have been

shown to work on image classification networks [18]

and, consequently, it is reasonable to ask how such at-

tacks can affect optical flow networks. Consider the

optical flow (u, v) between two frames of an image

pair (It, It+1) computed using a network F such that

(u, v) = F (It, It+1). A successful adversarial at-

tack would cause large changes in estimated optical

flow for small, unnoticeable, perturbations in the im-

ages. Specifically, the adversary seeks a perturbed image

pair (Ĩt, Ĩt+1) such that ‖It − Ĩt‖0 + ‖It+1 − Ĩt+1‖0 < ǫ,

where ǫ is a small constant, and the estimated opti-

cal flow on the perturbed images is significantly worse,

||F (It, It+1)− F (Ĩt, Ĩt+1)|| > E, with a large constant E.

We are particularly interested in perturbations under the ℓ0
norm, since the objective is to perturb a very small number

of pixels in the original image.

In general, the perturbations on the image can be defined

in several ways [11, 18, 25, 29]. Here, we focus on ap-

plying perturbations by pasting a small patch on the image

motivated by Brown et al. [5], who use such an approach

to carry out targeted adversarial attacks on image classifi-

cation. The patch attack has real-world significance and

we show that adversarial patches can compromise optical

flow networks if an engineered patch is printed and placed

in real-world scenes.

Optical flow networks can be classified into two types of

architectures – the encoder-decoder [8, 13] and spatial pyra-

mid networks [20, 28]. We contrast the robustness of adver-

sarial attacks under these two architecture types. Similar

to [5], we independently and jointly learn patches to attack

all networks. The learned patches compromise the encoder-

decoder architectures while spatial pyramid networks show

more robust behaviour as shown in Figure 1.

In the automotive scenario, cameras for autonomous

driving are often behind the windscreen. Patch attacks can

potentially be accomplished by placing the patch on the

windshield of the car or placing it in the scene (e.g. on a traf-

fic sign or other vehicle). Note that when the patch has zero

motion w.r.t. the camera, classical optical flow algorithms

estimate zero optical flow over the patch (LDOF in Fig. 1).

However, this engineered patch, even if it has no motion,

can cause the optical flow predictions from encoder-decoder

architectures to be wildly wrong (FlowNetC in Fig. 1). In

such a scenario, the patch affects the estimated optical flow

over large areas in the image that are far away from the

patch. The patch in Figure 1 is 0.53% the size of the im-

age and is barely noticeable, yet it affects the flow in about

50% of the image region.

For the encoder-decoder networks, the patches not only

influence the optical flow estimates in the area of the patch,

but their influence extends to remote areas in the image. In

spatial pyramid architectures, in contrast, the patch causes

at most small degradations in the area of the patch. Classi-

cal approaches [6, 23] are even more robust to adversarial

patches. We propose a Zero-Flow test (Section 5) to anal-

yse the causes of patch attacks, where we visualize the fea-

ture maps of the networks while attacking a uniform random

noise image without motion. Thereby, we identify three ma-

jor problems of optical flow architectures. 1) Flow networks

are not spatially invariant, leading to spatially varying fea-

ture maps even without any motion. 2) Spatial pyramid net-

works produce large errors at coarse resolutions but are able

to recover. 3) Deconvolution layers lead to strong amplifi-

cation of activations and checkerboard artifacts.

Our contributions are as follows. We extend adversarial

patch attacks to optical flow neural networks. We learn ad-

versarial patches and show that these attacks can consider-

ably affect the performance of optical flow networks based

on an encoder-decoder architecture. We show that spa-

tial pyramid architectures, along with classical optical flow

methods, are more robust to patch attacks. We show that

such attacks are easy to implement in practice by simply

printing the patch and placing it in the scene. We also anal-

yse the feature maps of these networks under attack to pro-

vide insight into their behaviour under attack. Code is avail-

able at http://flowattack.is.tue.mpg.de/.

2. Related Work

Optical Flow. The classical version of the optical flow

problem involves solving for a flow field that minimizes

the brightness constancy loss. A survey of classical opti-

cal flow methods is available in [3, 27]. These classical

methods solve a complex, non-convex, optimization prob-

lem and are often slow. Recent deep learning methods

replace the optimization process, and instead directly pre-

dict optical flow using convolutional networks [8, 13, 20].

FlowNet [8] is the first work to regress optical flow by learn-

ing an end-to-end deep neural network. FlowNet is based on

an encoder-decoder architecture with skip connections. Al-

though FlowNet is much faster than classical methods [26],

it is not as accurate. More recently, Ilg et al. [13] proposed

FlowNet2, which achieves state-of-the-art performance on

optical flow benchmarks. FlowNet2 is constructed by stack-

ing multiple FlowNets together and fusing the output with

a network specialized on small motions.

In contrast, motivated by the classical coarse-to-fine

methods, SpyNet [20] splits the matching problem into sim-

pler subproblems using coarse-to-fine estimation on an im-

age pyramid. PWC-Net [28] extends this idea with a corre-

lation layer to learn optical flow prediction; this gives state-

of-the-art results on optical flow benchmarks.

Still other methods approach this problem from the un-

supervised learning perspective [17, 31, 15, 21] by using

a neural network to minimize the photometric error un-
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der certain constraints. These methods use both encoder-

decoder architectures [17, 31] and spatial pyramid architec-

tures [15].

While deep networks show impressive results on bench-

mark datasets, their robustness is not yet well understood.

Robustness, however, is critical for applications such as au-

tonomous driving. Therefore, we investigate the robustness

of representative approaches of each category in this paper.

In particular, we test FlowNet [8], FlowNet2 [13], SpyNet

[20], PWC-Net [28], and Back2Future [15] for their robust-

ness against adversarial attacks.

Adversarial Attacks. Adversarial attacks seek small

perturbations of the input causing large errors in the estima-

tion by a deep neural network. Attacking neural networks

using adversarial examples is a popular way to examine the

reliability of networks for image classification [11, 18, 29].

The key to all such attacks is that the change to the image

should be minor, yet have a large influence on the output.

Adversarial examples typically involve small perturbations

to the image that are not noticeable to the human eye. The

adversaries are shown to work even when a single pixel is

perturbed in the image [25].

Although these attacks reveal limitations of deep net-

works, they can not be easily replicated in real-world set-

tings. For instance, it is rather difficult to change a scene

such that one pixel captured by a camera is perturbed in

a specific way to fool the network. However, recent work

[16] demonstrates that adversarial examples can also work

when printed out and shown to the network under different

illumination conditions. Athalye et al. [2] show that ad-

versarial examples can be 3D printed and are misclassified

by networks at different scales and orientations. Sharif et

al. [24] construct adversarial glasses to fool facial recogni-

tion systems. Etimov et al. [9] show that stop signs can be

misclassified by placing various stickers on top of them.

Recently proposed patch attacks [5] place a small engi-

neered patch in the scene to fool the network into making

wrong decisions. Patch attacks are interesting because they

can be easily replicated in the real world, and work at sev-

eral scales and orientations of the patch. This makes deep

networks vulnerable in real world applications. Therefore,

we focus our investigation of the robustness of deep flow

networks on these kinds of attacks.

To our knowledge, there has been no work on attack-

ing optical flow networks. Consequently, we explore how

such networks can be attacked using adversarial patches and

analyse the potential causes of such vulnerabilities.

3. Approach

Adversarial attacks are carried out by optimizing for a

perturbation that forces a network to output the wrong labels

compared with ground truth labels. For example, if (u, v)
represents the ground truth labels for inputs (It, It+1), a

perturbed input (Ĩt, Ĩt+1) would produce incorrect labels

(ũ, ṽ). However, there are no optical flow datasets that have

dense optical flow ground truth labels for natural images.

Most of the optical flow datasets are synthetic [7, 8, 22].

SlowFlow [14] provides real world data but is limited in

size. The KITTI dataset [10] has sparse ground truth labels

and the annotations are limited to 200 training examples. To

address the problem of limited ground truth labels, we use

the predictions of the optical flow network as pseudo ground

truth. We optimize for the perturbation that maximizes the

angle between the predicted flow vectors obtained using the

original images and the perturbed images respectively. Us-

ing the predictions instead of ground truth has the advantage

that a patch can be optimized using any unlabelled video.

This makes it easier to attack optical flow systems even in

the absense of the ground truth.

Consider an optical flow network F that computes the

optical flow between two-frames of an image sequence

(It, It+1) of resolution H × W . Consider a small patch

p of resolution h × w that is pasted onto the image to per-

turb it. Let δ ∈ T be a transformation that can be applied

to the patch. These transformations in T can be a combi-

nation of rotations and scaling. We define the perturbation

A(I, p, δ, l) on the image I , that applies the transformations

δ to the patch p and pastes it at a location l ∈ L in the im-

age. We apply the same perturbation to both frames in the

sequence Ĩt = A(It, p, δ, l) and Ĩt+1 = A(It+1, p, δ, l).
This means that the optical flow between the perturbed

frames is zero in the region containing the patch. In the

real world, this would correspond to a patch being station-

ary with respect to the camera. In our experiments, we

show that patches obtained with this assumption general-

ize well to the realistic scenario of moving patches where

Ĩt = A(It, p, δt, lt) and Ĩt+1 = A(It+1, p, δt+1, lt+1) with

δt 6= δt+1 and lt 6= lt+1.

Our goal is to learn a patch p that acts as an adversary to

an optical flow network, F , and is invariant to location l or

transformations δ of the patch. The resulting patch can be

optimized using

p̂ = argmin
p

E(It,It+1)∼I,l∼L,δ∼T

(u, v) · (ũ, ṽ)

‖(u, v)‖ · ‖(ũ, ṽ)‖
(1)

with

(u, v) = F (It, It+1) (2)

(ũ, ṽ) = F (A(It, p, δ, l), A(It+1, p, δ, l)) (3)

where l is sampled over all the locations L in the image, and

I is a set of 2 frame sequences from a video.

Equation (1) computes the cosine of the angle between

the optical flow estimated by the network for normal and

perturbed images. Therefore, minimizing the loss is equiv-

alent to finding those adversarial examples that reverse the

direction of optical flow estimated by the network.
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Figure 2. Adversarial Patches. Obtained for different optical flow

networks. The size is enlarged for visualization purposes.

Table 1. Optical Flow Methods. Contrasting different optical

flow methods with respect to the Type, Supervision (Super.), Net-

work Architecture (Net.) - Encoder-Decoder (ED) vs. Spatial

Pyramid (SP) - and Number of Parameters (#Params.). Number

of parameters is denoted in Millions (M).

Type Super. Net. # Params

FlowNetC [8] CNN Yes ED 39 M

FlowNet2 [13] CNN Yes ED 162 M

SpyNet [20] CNN Yes SP 1.2 M

PWC-Net [28] CNN Yes SP 8.75 M

Back2Future [15] CNN No SP 12.2 M

LDOF [6] Classic - - -

Epic Flow [23] Classic - - -

4. Experiments

We evaluate the robustness of five optical networks to

adversarial patch attacks – FlowNetC [8], FlowNet2 [13],

SpyNet [20], PWC-Net [28] and Back2Future [15]. We

also evaluate the robustness of two very different classical

methods – LDOF [6] and EpicFlow [23] which take im-

age derivatives (LDOF) and sparse matches (EpicFlow) to

compute optical flow. These methods cover deep networks

vs. classical methods, supervised vs. unsupervised learning

methods and encoder-decoder vs. spatial pyramid architec-

tures, thus providing an overall picture of optical flow meth-

ods under adversarial patch attacks. We contrast these op-

tical flow methods in Table 1. First, we evaluate the effect

of White-box attacks, where we learn a patch of a specific

size for each network by optimizing over that particular net-

work. We then show Black-box attacks by creating a uni-

versal patch using two different networks and testing all the

optical flow methods on this patch in a real world scenario.

4.1. Whitebox Attacks

We perform White-box attacks on each of the networks

independently. We learn a circular patch that is invariant

to its location in the image, scale and orientation. The

scale augmentations of the patch are kept within ±5% of

the original size, and rotations are varied within ±10◦. For

each network, we learn patches of four different sizes. The

patch size is kept under 5% the size of the images being

attacked. We optimize for each patch p using Eq. (1) on

unlabeled frames from the raw KITTI [10]. We choose the

KITTI dataset since it reflects a safety critical application

and provides an annotated training set for evaluation. We

use the optical flow predictions from the networks as pseudo

ground truth labels to optimize for the patch that produces

the highest angular error. This allows us to leverage approx-

imately 32000 frames instead of 200 annotated frames from

the training dataset. For each of the networks, we use the

pre-trained model that gives the best performance without

fine tuning on KITTI dataset. We use Pytorch [1] as our

optimization framework and optimize for the patch using

stochastic gradient descent. Figure 2 shows the patches we

obtain by optimizing over different optical flow networks

and different patch sizes.

Evaluation. To quantify the robustness of the networks to

our adversarial patch attacks, we measure their performance

on the training set of the KITTI 2015 optical flow bench-

mark using the original and perturbed images, respectively.

We measure the vulnerability of the optical flow networks

using average end point error (EPE) and relative degrada-

tion of EPE in the presence of the adversarial patch (Ta-

ble 2). The errors are computed by placing the learned patch

p at a random location for each image in the training set. All

images are resized to 384×1280 and input to the networks.

We evaluate optical flow at the full image resolution.

As shown in Table 2, the performance of encoder-

decoder architectures – FlowNetC and FlowNet2 degrades

significantly, even when using very small patches (0.1% of

the image size). The increase in error is about 400− 500%

under attack. For the spatial pyramid based methods –

SpyNet, PWC-Net and Back2Future, the degradation is

small. Back2Future, which is an unsupervised method and

shares a similar architecture with PWC-Net, suffers less
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Table 2. White-box Attacks. Effect of patch size (in pixel and percent of the image size) on different optical flow networks. We show

average End Point Error (EPE) on KITTI 2015 for each network with and without an attack. For attacks, we also show relative degradation

% in the EPE.
Unattacked 25x25 (0.1%) 51x51 (0.5%) 102x102 (2.1%) 153x153 (4.8%)

Network EPE EPE Rel EPE Rel EPE Rel EPE Rel

FlowNetC [8] 14.56 29.07 +100% 40.27 +177% 82.41 +466% 95.32 +555%

FlowNet2 [13] 11.90 17.04 +43% 24.42 +105% 38.57 +224% 59.58 +400%

SpyNet [20] 20.26 20.59 +2% 21.00 +4% 21.22 +5% 21.00 +4%

PWC-Net [28] 11.03 11.37 +3% 11.50 +4% 11.86 +7% 12.52 +13%

Back2Future [15] 17.49 18.04 +3% 18.24 +4% 18.73 +7% 18.43 +5%

Table 3. Black-box Attacks. Attacks on different optical flow

methods using a universal patch. Methods below the line were

not used for training the patch.

Unattacked Attacked

EPE EPE Rel

FlowNet2 [13] 11.90 36.13 +203 %

PWC-Net [28] 11.03 11.01 +0 %

FlowNetC [8] 14.56 86.12 +492 %

SpyNet [20] 20.26 20.39 +1 %

Back2Future [15] 17.49 17.44 +0 %

Epic Flow [23] 4.52 4.66 +3 %

LDOF [6] 9.20 9.17 +0 %

degradation than PWC-Net on the largest patch size.

In Figure 3, we illustrate that encoder-decoder architec-

tures are extremely vulnerable to patch attacks irrespective

of scene content, location and orientation of the patch. The

patch size in Figure 3 is 25× 25 pixels, about 0.12% of the

size of the image being attacked. The figure shows that the

attacks extend significantly beyond the region of the patch,

causing a significant proportion of the optical flow vectors

to be degraded. We also observe that SpyNet is least af-

fected by the attack. For PWC-Net and Back2Future, the

degradation is contained within the region of the patch. The

strength of the attack increases with the size of the patch.

Figure 4 shows attacks with a larger patch size of 153×153,

which is about 4.76% of the image size. Other examples

and patch sizes are shown in the supplementary material.

4.2. Blackbox Attacks

In a real world scenario, the network used by a system

like an autonomous car will most likely not be accessible to

optimize the adversarial patch. Therefore, we also consider

a Black-box attack, which learns a “universal” patch to at-

tack a group of networks. Since there are two architecture

types (Encoder-Decoder and Spatial Pyramid), we consider

one network from each type to learn a “universal” patch to

attack all networks. We pick the networks – FlowNet2 [13]

and PWC-Net [28] and jointly optimize for a patch that at-

tacks both networks using Eq. 1. In this way, we obtain a

patch that is capable of attacking both encoder-decoder and

spatial pyramid architectures. The resulting patch can be

seen in Figure 7 and the Sup. Mat. While we focus on two

networks for a proof of concept, the “universal” patch can

easily be jointly optimized using more networks to obtain

even more effective attacks.

The training of the universal patch is identical to the

White-box case. However, we decided to make the eval-

uation of the Black-box attacks more realistic by using the

camera motion and disparity ground truth provided by the

KITTI Raw dataset to compute realistic motion of patches

assuming they are part of the static scene. We project the

random location of the patch from the first frame into the

3D scene and re-project it into the second frame consider-

ing the camera motion and disparity. We randomly pick a

disparity between the maximal disparity of the whole scene

and minimal disparity in region of the patch to obtain a loca-

tion in the free space between the camera and other objects

in the scene. Given the re-projection of points on the patch,

we then estimate a homography to transform the patch and

warp it using bilinear interpolation. For sequences without

ground truth camera poses we use zero motion like in the

White-box attacks. In this way, we simulate the situation

where a patch is attached to some static object in the scene.

In the supplementary material, we also show the effect of a

universal patch that has zero motion w.r.t the camera as in

the White-box attacks.

Evaluation. Table 3 shows the performance of all net-

works and classical optical flow methods from Table 1 in

the presence of the Black-box adversary. Consistent with

White-box attacks, we observe that encoder-decoder archi-

tectures suffer significantly in the presence of the adversar-

ial patch. Both, spatial pyramid architectures and classical

methods, are more robust to patch attacks.

We observe that the attacks on encoder-decoder net-

works are most effective when the patch is placed in the

the center of the image. The patches influence image re-

gions according to the receptive field of the convolutional

networks. Although the patches are small (∼ 0.5%) com-

pared to the image size, they can affect up to 50% of the

image area as can be observed in Figure 5. We show more

qualitative results in the supplementary material.

2408



FlowNetC

FlowNet2

SpyNet

PW
C-N

et

Back2Future

Attacked Reference Unattacked Flow Attacked Flow Difference

Figure 3. White-box Attacks. 25x25 patch attacks on all networks.
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Figure 4. White-box Attacks. 153x153 patch attacks on all networks.

4.3. Real World Attacks

In order to evaluate the effectiveness of adversarial

patches in the real world, we print the Black-box patch

at 1200 dpi, scaled to 8 times the original size in the

image. We then place the patch in the scene, record a

video sequence, and observe the effects on two networks

- FlowNetC and FlowNet2. Figure 7 shows the effect of

the printed patch on a deployed optical flow system running

FlowNetC. While the location of the patch in the scene was

constant, we experiment with and without camera motion.

We observe that the real world attacks on FlowNetC work

equally well with and without camera motion, while attacks

on FlowNet2 worked better with camera motion. For the

video demo of this experiment, please follow this link –

http://flowattack.is.tue.mpg.de/.

5. Zero-Flow Test

To better understand the behaviour of neural networks in

the presence of an adversarial patch attack, we propose the

Zero-Flow test. We generate an image I by independently

sampling uniform random noise for each of the pixels. We

then paste the universal patch p on I , resulting in a per-

turbed image Ĩ . We then replicate the image Ĩ and input the

two frames to the network. Since the image is replicated for

both frames, the optical flow is zero over all the pixels.

Assuming that the attack was ineffective, F (Ĩ , Ĩ) = 0
must hold. Furthermore, if perturbation is not applied to the

network inputs, F (I, I) = 0 must hold. For feature maps of

the network, Fk(Ĩ , Ĩ) = Fk(I, I) must hold. Here, Fk is the

output from the k-th layer of the neural network. In Figure

6, we show feature map visualizations along with their aver-

age norm from two networks, FlowNetC and PWC-Net. For

each network we show the feature maps with and without
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Figure 5. Black-box Attacks. Universal patch trained on FlowNet2 and PWC-Net used on all approaches pasted on a traffic sign with

realistic motion as described in Section 4.2.

the patch. Each feature map is normalized independently

for contrast and scaled to the same size.

Figure 6 illustrates that the encoder of FlowNetC

(conv<3 1,4,5,6>) spatially propagates the patch in-

formation, as expected, and the feature activation encom-

passes the entire image towards the end of the encoder

(conv6). While deconvolutions (deconv<4,5,6>)

reduce the spatial propagation of activations, they also lead

to a strong amplification. Finally, the flow prediction lay-

ers (flow<5,4,3,2>) combine both problems by fus-

ing the encoder and decoder responses. This leads to large

and widespread degradation of optical flow predictions for

the Zero-Flow test. Without the adversarial patch, we ob-

serve well distributed activations in the first convolutions as

well as low activations for all layers in general.

PWC-Net shows low activations in all correlation lay-

ers (corr<6,5,4,3,2>) irrespective of the adversar-

ial patch. Interestingly, the flow decoder of lower levels

(flow<6,5>) predict large flow in both cases – with and

without patch. However, the flow prediction at finer lev-

els of the pyramid (flow<3,2>) seems to compensate

for these errors. Similar to FlowNetC, the deconvolution

layers (upfeat<5,4,3>) lead to an amplification of ac-

tivations, with and without the patch. In addition, they seem

to cause checkerboard artifacts that have also been observed

in other contexts [19, 30].

The Zero-Flow test reveals several problems with the op-

tical flow networks. First, the networks (FlowNetC, PWC-

Net) are not spatially invariant. In the case of zero motion,

the activation maps of the network vary spatially across the

whole image even without the adversarial patch. Second,

the pyramid networks predict large motion in coarser lev-

els flow<5,4> irrespective of the presence or absence of

the patch. Finally, the deconvolution layers lead to an am-

plification of the responses and checkerboard artifacts. The

attacks exploit these weaknesses and amplify them, degrad-
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Input corr conv3 1 conv4 conv5 conv6 flow6 decon5 flow5 decon4 flow4 decon3 flow3 decon2 predict

Mean 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.1 0.2 0.1 0.1 0.1

Mean 0.1 6.6 50.3 98.3 196.5 464.9 1015.8 825.0 3035.6 717.8 2491.1 316.1 668.2 78.6

FlowNetC

Input corr6 flow6 upfeat6 corr5 flow5 upfeat5 corr4 flow4 upfeat4 corr3 flow3 upfeat3 corr2 flow2

Mean 0.0 12.2 4.4 0.3 250.9 157.3 0.0 31.1 83.0 0.0 1.5 14.5 0.0 0.0

Mean 0.00 12.2 4.4 0.2 38.2 134.92 0.04 2.4 62.6 0.01 0.1 13.8 0.00 0.02

PWC-Net

Figure 6. Visualization of Feature Maps. Average norm of feature maps as we move deeper through the network. Each image is

normalized independently for contrast and scaled to the same size. Mean refers to average norm of the feature maps.

Figure 7. Real World Attacks on FlowNetC. Top: The presence

of a printed adversarial patch visible in the centre of the image

significantly degrades the optical flow predictions. Bottom: As the

patch is covered by the subject, the effect of the patch vanishes.

ing predictions. In the Supplementary Material, we show

additional visualizations of feature maps (from FlowNet2

and Back2Future).
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6. Discussion

We have shown that patch attacks generalize to state-of-

the-art optical flow networks and can considerably impact

the performance of optical flow systems that use deep neural

networks. The patch attacks are invariant to translation and

small changes in scale and orientation of the patch. Learn-

ing patches for larger changes in scale and orientation is

computationally costly. Nevertheless, it is possible to repli-

cate the attacks with real printed patterns.

Small adversarial patches cause large errors even in

remote regions with encoder-decoder networks (FlowNet,

FlowNet2) while spatial pyramid networks (SpyNet, PWC-

Net, Back2Future) are not strongly affected. Classical ap-

proaches are also robust to these attacks. This indicates that

incorporating classical ideas such as image pyramids and

correlations into architectures makes models more robust.

In our analysis, we observed the influence of such

patches on feature maps in encoder-decoder as well as

spatial pyramid networks. We also note that this results

from inherent spatially variant properties of the optical flow

networks. This indicates that convolutions alone are not

enough to enforce spatial invariance in these networks.

Finally, independent of the attacks, the Zero-Flow test

provides a novel approach to identify problems in deep flow

networks. It reveals the internal network behaviour which

may be useful to improve the robustness of flow networks.
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