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Abstract

Pedestrian behavior anticipation is a key challenge in

the design of assistive and autonomous driving systems suit-

able for urban environments. An intelligent system should

be able to understand the intentions or underlying motives

of pedestrians and to predict their forthcoming actions. To

date, only a few public datasets were proposed for the pur-

pose of studying pedestrian behavior prediction in the con-

text of intelligent driving. To this end, we propose a novel

large-scale dataset designed for pedestrian intention esti-

mation (PIE). We conducted a large-scale human experi-

ment to establish human reference data for pedestrian in-

tention in traffic scenes. We propose models for estimat-

ing pedestrian crossing intention and predicting their future

trajectory. Our intention estimation model achieves 79%

accuracy and our trajectory prediction algorithm outper-

forms state-of-the-art by 26% on the proposed dataset. We

further show that combining pedestrian intention with ob-

served motion improves trajectory prediction. The dataset

and models are available at http://data.nvision2.

eecs.yorku.ca/PIE_dataset/.

1. Introduction

In the past decade, we have witnessed a rapid growth in

the development of assistive and autonomous driving sys-

tems capable of performing various perception, planning

and control tasks. Yet these systems still face a major chal-

lenge when it comes to driving in highly dynamic urban en-

vironments. Aside from perceiving the environment, an in-

telligent driving system should be capable of comprehend-

ing the underlying intentions of other road users and anti-

cipating their forthcoming actions (Figure 1) [33]. This is

particularly important when dealing with pedestrians at the

point of crossing as they exhibit highly variable behavior

patterns [26].

Most current approaches to pedestrian action prediction

are trajectory-based [16, 1, 5], meaning that they rely on
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Figure 1. Processing stages for different sources of information

required for understanding and predicting pedestrian behavior.

Three examples are shown: a) a pedestrian who does not intend

to cross, b) a pedestrian who intends to cross but does not cross

and c) a pedestrian who intends to cross and crosses the street.

Observations of pedestrians’ appearance and movement in com-

bination with local context help estimate whether they intend to

cross the street. Intention can be used to filter out irrelevant pede-

strians (eliminating the need for further processing as shown with

dashed lines) and/or to improve trajectory prediction.

the past observed motion of the pedestrians and/or vehicle

dynamics to predict the future locations of the pedestrians.

These approaches, however, are effective when the pede-

strians are already crossing or are about to do so, i.e. these

algorithms react to an action already in progress instead of

anticipating it. For example, scenarios where a pedestrian

is standing at the intersection or walking alongside the road

prior to crossing can be challenging for trajectory-based

approaches. Moreover, the past trajectory of a pedestrian

might not necessarily reflect their ultimate objective. For

instance, a pedestrian waiting at a bus stop might step on

the road to check for the bus. This action might be inter-

preted as a crossing event by a trajectory-based approach.

A remedy for the common drawbacks of trajectory-based

algorithms is to anticipate the action by estimating its un-

derlying cause or intention. Intention estimation allows one

to predict a future situation using expected behaviors rather

than merely rely on scene dynamics [33]. In the context
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of intelligent driving, a pedestrian’s intention reflects their

principal goal of crossing the street. The pedestrian might

not have any intention to cross (e.g. they could be waiting

for a bus, talking to someone, or taking a photo), or they

intend to cross and may or may not act on it depending on

the traffic conditions. Detecting pedestrians’ intentions can

potentially reduce the cognitive load of an intelligent driv-

ing system allowing it to identify those pedestrians whose

actions will be relevant to its own behavior planning. This

may also grant such systems a better ability to anticipate

pedestrian behavior [33].

In this paper we propose the first large-scale dataset

for pedestrian intention estimation and trajectory predic-

tion. The dataset contains several hours of naturalistic video

footage of pedestrians in urban environments. In addition

to bounding box and behavior annotations, we augment our

dataset with human reference data for pedestrian intention

estimation established via a large-scale experiment. We

propose models for pedestrian intention estimation and tra-

jectory prediction for on-board camera systems.

2. Related works

In the literature various terms such as intention, action

and behavior are used to describe what the agent is doing

or about to do in the scene. Here, we distinguish intention

as the underlying state of mind which cannot be observed

but can be inferred from the behavior. This is opposed to

actions and, more generally, behaviors, i.e. observable ac-

tions such as walking or crossing, for which there is ground

truth available.

Action prediction. In the computer vision community

there is a large body of works dedicated to video and action

prediction [20, 19, 24, 21, 7, 5, 17]. Action (or behavior)

prediction algorithms may take different forms such as gen-

erating future frames [20, 19, 24, 6], predicting the type of

action [15, 21, 7], measuring confidence in the occurrence

of an event [27, 37, 10], and forecasting the motion of ob-

jects [25, 40, 43, 1, 17, 5, 8].

Behavior and trajectory estimation. Algorithms which

predict the occurrence of certain events, e.g. crossing the

street, use information such as the road structure, pede-

strian head orientation [27] and pose [10], or scene dyna-

mics [37]. Although these algorithms are ideal for provid-

ing situational awareness, they do not give any information

regarding the future location of objects that can potentially

be helpful for trajectory planning. Some algorithms con-

struct the future scenes from which they either calculate op-

tical flow and scene motion [19] or directly localize the ob-

jects of interest [6]. These algorithms, however, are very

susceptible to occlusion and degrade rapidly with increas-

ing temporal prediction duration.

Trajectory-based algorithms rely on observation of pe-

destrians’ past motion history and predict the location of

the pedestrians in the future using contextual informa-

tion such as 3D depth [14, 34, 39], social interactions

[25, 42, 1, 31, 41], the ego-vehicle dynamics and the scene

structure [16, 17, 5]. In an on-board camera setting, how-

ever, accurate depth information may not be available in

many driver assistance systems. Social interactions may

also be difficult to infer without a top-down view of the

scene as pointed out in [5].

The state-of-the-art on-board pedestrian trajectory esti-

mation in [5] uses a two-stream encoder-decoder scheme

which combines encoding of observed bounding box loca-

tions and the ego-vehicle’s odometry to predict the future

bounding box locations of pedestrians over one second into

the future. This approach uses the last observed visual in-

formation to estimate the future odometry of the vehicle,

however, does not take into consideration any visual fea-

tures of the pedestrians to predict their trajectories.

Intention estimation. In the computer vision and

robotics literature the term intention is often used in the con-

text of action classification or path refinement. In [11, 27],

the authors assume that pedestrians want to cross and de-

cide whether the crossing takes place in front of the vehicle

and when. Intention, defined as the potential goal (destina-

tion) of pedestrians, is used to refine predicted trajectories

[3, 29, 2, 30]. These approaches rely heavily on motion

history of the pedestrians and predict the trajectory of ev-

ery individual. To the best of our knowledge, there is only

one previous work that defines pedestrian crossing intention

as their principal goal to cross [33]. The authors propose

to infer pedestrian crossing intention from their movement

patterns and their proximity to various road elements, e.g.

curbside, bus stop, ego-vehicle lane. Their algorithm, how-

ever, does not contain a perception mechanism and relies on

ground truth information for reasoning.

Datasets. A number of datasets for trajectory prediction

contain videos collected from a top-down view [18, 25, 22,

31] or surveillance camera perspective [23, 4, 45]. There

are relatively fewer datasets that are specifically catered for

pedestrian behavior prediction from a moving vehicle per-

spective. Publicly available pedestrian detection datasets

[9, 12, 44] can potentially be used for such a purpose, how-

ever, they lack necessary characteristics such as ego-vehicle

information [9], temporal correspondence [44], or enough

pedestrians samples with long tracks [12]. These datasets

also do not include any form of pedestrian behavior anno-

tations that can be used for action prediction. A recently

proposed dataset, JAAD [27], contains a large number of

pedestrian samples with temporal correspondence, a subset

of which are annotated with behavior information. How-

ever, for the purposes of intention estimation and trajectory

prediction, this dataset has a number of drawbacks. The

dataset does not have ego-vehicle information, the videos

are divided into short discontinuous chunks, and the majo-
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rity of pedestrian samples with behavioral annotations have

the intention of crossing.

Contributions. This paper offers the following four con-

tributions: 1) A large-scale pedestrian intention estimation

(PIE) dataset which includes hours of video footage of pe-

destrians at various types of crosswalks collected using a

calibrated on-board camera. The dataset contains annota-

tions necessary for perception and visual reasoning, includ-

ing bounding boxes for traffic objects, pedestrian intentions

and actions, pedestrian attributes (e.g. gender, age), road

boundaries, and ego-vehicle information (e.g. GPS, speed,

heading angle). 2) A human baseline for pedestrian inten-

tion estimation established by conducting in-lab and large-

scale online experiments involving human subjects of dif-

ferent ages and driving backgrounds. This information pro-

vides us with an estimate of pedestrians’ crossing intention

that can serve for both training and evaluation of intention

estimation algorithms. 3) A novel algorithm that combines

past trajectory information and local visual context for pre-

dicting pedestrians’ intention of crossing. 4) A trajectory

prediction algorithm that achieves state-of-the-art perfor-

mance on PIE and JAAD datasets, and shows how various

contextual information can impact the accuracy of predicted

trajectories.

3. PIE Dataset

3.1. Data

The PIE dataset consists of over 6 hours of driving

footage captured with calibrated monocular dashboard cam-

era Waylens Horizon equipped with 157◦ wide angle lens.

All videos are recorded in HD format (1920 × 1080 px) at

30 fps. The camera was placed inside the vehicle below the

rear-view mirror. For convenience, videos are split into ap-

prox. 10 minute long chunks and grouped into 6 sets. The

entire dataset was recorded in downtown Toronto, Canada

during daytime under sunny/overcast weather conditions.

Our dataset represents a wide diversity of pedestrian be-

haviors at the point of crossing and includes locations with

high foot-traffic and narrow streets as well as wide boule-

vards with fewer pedestrians. PIE provides long continuous

sequences and annotations for a wide range of applications.

Annotations. For each pedestrian close to the road that

can potentially interact with the driver we provide the fol-

lowing annotations: bounding boxes with occlusion flags,

as well as crossing intention confidence and text labels

for pedestrians’ actions (“walking”, “standing”, “looking”,

“not looking”, “crossing”, “not crossing”). Each pedestrian

has a unique id and can be tracked from the moment of ap-

pearance in the scene until going out of the frame. An oc-

clusion flag is set to partial occlusion if between 25 and 75%
of the pedestrian is not visible and to full if > 75% of the

pedestrian is not visible. Crossing intention confidence is

PIE JAAD

# of frames 911K 82K

# of annotated frames 293K 75K

# of pedestrians 1.8K 2.8K

# of pedestrians with behavior annot. 1.8K 686

# of pedestrian bboxes 740K 391K

Avg. pedestrian track length 401 140

Pedestrian intention yes no

Ego-vehicle sensor information yes no

Scene object annotations bboxes+text text

Table 1: Properties of the PIE dataset compared to JAAD.

a numeric score estimated from human reference data (see

Section 3.2).

Spatial annotations are provided for other relevant ob-

jects in the scene, including infrastructure (e.g. signs, traffic

lights, zebra crossings, road boundaries) and vehicles that

interact with pedestrians of interest1.

Using an on-board diagnostics (OBD) sensor synchro-

nized with the camera we provide GPS coordinates and ve-

hicle information, such as accurate speed and heading an-

gle, for each frame of the video.

Table 1 summarizes the properties of PIE and JAAD

datasets. JAAD has bounding box annotations for all pede-

strians, which makes it suitable for detection and tracking

applications. However, it lacks accurate vehicle informa-

tion, spatial annotations for traffic objects and pedestrian

intentions which are vital for pedestrian action prediction.

3.2. Human experiment

As mentioned in Section 2, research in the field of pede-

strian behavior understanding largely focuses on the prob-

lem of action and behavior prediction, while the topic of

intention estimation remains relatively unaddressed. Partly

this is due to the fact that establishing ground truth for cross-

ing intention is infeasible since it would require interview-

ing people on the street and observing their actions after the

vehicle passed by them [33]. However, this data is neces-

sary for identifying and focusing on the most relevant pede-

strians on the street, pedestrian behavior understanding and

prediction, including trajectory estimation. In order to de-

termine human reference data for samples in the PIE dataset

we conducted a human experiment described below.

Experiment description. The experiment involved

watching short videos from the PIE dataset. We asked the

participants to observe a single pedestrian highlighted in the

first few seconds and, after viewing each video once, answer

the following question: “Does this pedestrian want to cross

the street?”. The options were set on a 5-interval scale (the

outer intervals for definite ‘yes’ or ‘no’ and 3 intervals ex-

pressing varying degrees of uncertainty in between).

1We used the CVAT tool (https://github.com/opencv/

cvat) for all spatial annotations and behavior labels.
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Figure 2. A plot of average responses to the question “Does this

pedestrian want to cross?” for each of the 1842 video samples

containing a single pedestrian of interest. Answer option 5 is se-

lected for the presence and option 1 for the absence of crossing

intention respectively. Answer options in between represent vari-

ous levels of uncertainty. In-lab and AMT responses are shown as

green and red dots respectively. Average responses are sorted in

descending order for clarity.

Videos used in the experiment were generated for each

of the 1842 labeled pedestrians in the PIE dataset. Using

GPS information and vehicle speed we created short clips

showing ≈ 3s before the vehicle reaches 1.5 − 3s time-to-

event. In cases when ego-vehicle was stationary the video

was cropped 3s before the pedestrian began crossing. The

first and the last frames of each video clip were frozen for 4s

to allow the subjects to get familiar with the scene. The pe-

destrian of interest was highlighted with a red arrow point-

ing down for the duration of freeze-frames in the beginning

and at the end of the video.

Procedure. We first ran the experiment in a lab setting

with 5 subjects (ages 27 − 62) each of whom viewed the

entire set of 1842 videos. We then repeated the same expe-

riment on Amazon Mechanical Turk (AMT) to gather addi-

tional 10 answers per video. For the AMT experiment we

grouped videos into sets of 10 for each HIT (Human Intel-

ligence Task). We limited our study to participants residing

in Canada and the USA to ensure that they are familiar with

the rules of the road, signs, road delineation, etc. and reduce

any cultural bias. In total, we collected 27, 630 responses

from over 700 subjects (ages 19− 88).

Results. A plot of aggregated responses from lab and

AMT participants is shown in Figure 2. Since ground truth

data was not available, we focused on analyzing the agree-

ment among subjects to validate our results. First, we com-

puted intraclass correlation coefficient (ICC), a measure of

inter-rater consistency, commonly used to analyze subjec-

tive responses from a large population of raters in the ab-

sence of ground truth data [35]. Despite an inherent degree

of subjectivity of estimating pedestrian intention, the mea-

sured ICC2 is 0.97 and 0.93 for the lab and AMT subjects

respectively, which suggests a very high degree of agree-

ment within both groups of raters (ICC = 1 for absolute

2We use ICC(3,k) and ICC(1,k) for lab and AMT data respectively.

The first measure assumes that a fixed number of raters k (in this case k =

5 for in-lab participants) rate all targets and the second measure assumes

that a subset of k raters (k = 10) from a large population rates all targets.

Ratings are aggregated across raters in both cases.

agreement). The slightly lower agreement among the AMT

workers is likely due to the much larger and diverse group

of subjects and the presence of factors that we could not

control for (e.g. viewing conditions, distractions, etc.).

Despite some noise present in the AMT data, the Pearson

correlation coefficient between the average responses of the

lab and AMT subjects is 0.90 suggesting that both groups

answer similarly. For instance, 14 out of 15 raters agreed

on the same answer in nearly 17% of cases. On the other

hand, there were only 10 cases in the entire dataset where

raters did not reach an agreement with respect to the pede-

strian’s intention, resulting in an average score of exactly

3 (’Not sure’). The samples in question included pedestri-

ans who were close to the curb or already stepped onto the

road but were distracted, e.g. by their phone or by inter-

acting with another person. Bus stops in close proximity to

the pedestrian crossings were another source of confusion,

making it difficult to distinguish between pedestrians wait-

ing for the bus and those waiting to cross. However, the

number of these borderline cases was very low (≈ 3%).

The PIE dataset contains 898 examples of people who

intend to but do not cross, 512 pedestrians with the intention

to cross who eventually cross in front of the vehicle and 430
pedestrians with no crossing intention. Interestingly, there

are only 2 samples where the pedestrian crossed the street

but responses from human subjects did not indicate crossing

intention. Since this type of false negative is a potential

safety concern, it is reassuring that human participants are

particularly good at interpreting others’ intentions.

4. Method Descriptions

In this work we address the problem of pedestrian beha-

vior prediction on two levels: Early anticipation in the form

of estimating pedestrians’ intention of crossing and trajec-

tory prediction as late forecasting of the future trajectory of

pedestrians based on observed scene dynamics. The former

primarily serves as a refinement procedure to change the fo-

cus of an intelligent system to those pedestrians that matter,

or potentially will interact with the vehicle. Intention esti-

mation may also benefit trajectory prediction by implying

the types of motion patterns that are more probable in the

scene. For instance, someone with no intention of cross-

ing will not perform a lateral movement across the street in

front of the vehicle.

4.1. Pedestrian Intention Estimation

We represent pedestrian intention for each sample as

an average response of human experiment participants,

rescaled to range [0, 1] and rounded. Then we define the

task as a binary classification problem of predicting whether

the pedestrian i has an intention of crossing the street

inti ∈ {0, 1} given a partial observation of local visual con-

text around pedestrian Cobs = {ct−m
i , ct−m+1

i , ..., cti} and
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Figure 3. The proposed intention estimation and trajectory prediction framework. The system receives as input a sequence of images

and the current speed of the ego-vehicle. The intention estimation model’s encoder receives as input a square cropped image around the

pedestrians, produces some representation which is concatenated with their observed locations (bounding box coordinates) before feeding

them to the decoder. The speed model predicts future speed using an encoder-decoder scheme followed by a series of self-attention units.

The location prediction unit receives location information as encoder input and the combination of encoder representations, pedestrian

intention and future speed as decoder input, and predicts future trajectory. In the diagram, FC refers to fully-connected layers, s1:m. ©+ to

concatenation operation and s
1:m. ©× to element-wise multiplication. Location, intention and speed are denoted by l, int and s respectively.

trajectory Lobs = {lt−m
i , lt−m+1

i , ..., lti}, where l is a 2D

bounding box around the pedestrian defined by top-left and

bottom-right points ([(x1, y1), (x2, y2)]).

It has been shown that pose, implicitly encoded in the

appearance (e.g. whether the person is leaning forward

or turned towards the road), immediate local surroundings

(e.g. location relative to the curb) and motion, convey vi-

tal information about the intention to cross. Other context

elements, such as street signs, traffic signals as well as the

behavior of the ego-vehicle, may influence pedestrian’s ac-

tions, e.g. whether they will attempt to cross, but will not

have an effect on their initial intention to cross the street.

For the task of the intention estimation we employ an

RNN encoder-decoder architecture (see Figure 3), where

encoder receives a sequence of feature representations cor-

responding to the image areas around the detected pede-

strian. The output of the encoder is then concatenated with

the sequence of bounding box coordinates which capture

pedestrian dynamics. We use a binary cross-entropy loss

function for training.

4.2. Pedestrian Trajectory Prediction

We address the problem of future trajectory predic-

tion as an optimization process in which the objective

is to learn the distribution p(Lpred|Lobs, Spred, Inti) for

multiple pedestrians 1 ≤ i ≤ n, where Lpred =
{lt+1

i , lt+2

i , ..., lt+τ
i } are the predicted trajectories of pe-

destrians, Lobs = {lt−m
i , lt−m+1

i , ..., lti} are the observed

locations of pedestrians, Spred = {st+1, st+2, ..., st+τ}

refers to predicted future speed of the ego-vehicle, and Inti
is the crossing intention of pedestrian i estimated by the in-

tention estimation stream. The locations, l are 2D bounding

boxes around pedestrians defined by top-left and bottom-

right corner points [(x1, y1), (x2, y2)]

As depicted in Figure 3, the proposed model is based

on an RNN encoder-decoder architecture where the inputs

to the encoder are the observed locations of pedestrians for

some time t and the output of the decoder is the future tra-

jectory prediction up to time t + τ . We use two types of

attention: a temporal attention module applied to the en-

coder inputs and a self-attention unit applied to the decoder

inputs. The former focuses on finding the most relevant in-

formation (key frames) in the observed sequence, whereas

the latter is applied at feature-level and focuses on the parts

of the encoding representation that are relevant to current

prediction. The self-attention units are preceded by embed-

ding units for dimensionality reduction of encodings. The

final predictions are generated by a linear transformation of

the decoder’s output.

The vehicle speed estimation stream follows a similar

scheme, except it learns p(Spred|Sobs), where Sobs refers

to observed speed of the vehicle up to time t. At training

time, both sequence prediction models use a mean squared

error loss function defined as MSE = 1

N

∑τ

j=1
||loct+j

i −

ˆloci
t+j

||.
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5. Empirical evaluation

5.1. Implementation

Intention Estimation. We use Convolutional LSTM

with 64 filters and kernel size of 2 × 2 with stride 1 as

encoder and for decoder an LSTM with 128 hidden units,

tanh activation, dropout of 0.4 and recurrent dropout of

0.2. VGG16 [36] (without fc layers) pretrained on Ima-

geNet [32] is used to encode image features. We experi-

ment with two different types of visual information. The

first is imgbbox which is input image cropped to the size

of the bounding box, resized so that the larger dimension

matches the VGG input size of 224× 224 and padded with

zeros to preserve the aspect ratio. The second type of input

is local context around the pedestrian (imgcontext) which is

input image cropped to 2× the size of the bounding box,

squarified and resized to 224× 224.

Trajectory Prediction. We use LSTMs with 256 hidden

units and softsign activation in our trajectory and speed

prediction streams. Compared to tanh activation, we ob-

served faster training and performance improvement of up

to 5% when using softsign activation. The embedding

layer in the trajectory prediction stream is a fully connected

network with 64 output nodes and no dropout.

5.2. Datasets

Pedestrian Intention Estimation (PIE). There are 1842
pedestrian samples divided into train, test and validation

sets with the ratios of 50%, 40% and 10% respectively. We

sample the tracks with an overlap ratio of 0.5. For trajectory

prediction training, the tracks below the minimum length of

2 seconds (observation + prediction) are discarded. We use

the OBD sensor readings for speed information.

JAAD [27]. For trajectory prediction evaluation using

only bounding boxes we use pedestrian tracks from the

JAAD dataset. Given the smaller number of samples and

shorter tracks in this dataset, we use all pedestrian samples

with overlap ratio of 0.8. We use the same train/test split

as in [28], excluding the low-resolution and low-visibility

videos (13 out of 346) from the evaluation.

Training. Models are trained separately and combined

at the test time. Intention and trajectory models are trained

using RMSProp [38] optimizer with learning rate of 10−5

and 10−2 respectively. The intention model was trained for

300 epochs using a batch size of 128 with L2 regularization

of 0.001. We trained the trajectory model for 60 epochs

using a batch size of 64 with L2 regularization of 0.0001.

Metrics. For intention estimation we report accuracy
and F1-score defined as 2·precision·recall/(precision+
recall). The following metrics are used for evaluation of

the proposed trajectory prediction algorithm: MSE over

bounding box coordinates [5], CMSE and CFMSE which

are the MSEs of the center of the bounding boxes averaged

over the entire predicted sequence and only the last time

Method Input data acc F1

LSTM loc 0.63 0.73

LSTMed
loc 0.67 0.76

imgbbox 0.60 0.78

PIEint

imgbbox 0.69 0.79

imgcontext 0.71 0.82

imgbbox + loc 0.73 0.82

imgcontext + loc 0.79 0.87

Table 2: Pedestrian intention estimation results for various

combinations of input data: loc - bounding box coordinates,

imgbbox - image cropped to the size of bounding box, and

imgcontext - image cropped to 2× size of the bounding box

to show local context.

step (t + τ ) respectively. All results of the bounding box

predictions are in pixels.

Pedestrian intention estimation. Table 2 summarizes

the results of various models trained on different combina-

tions of input data over 0.5s of observation. The following

models are used in the evaluation: a vanilla LSTM trained

on normalized bounding box coordinates (loc) as a baseline,

an LSTM encoder-decoder (LSTMed) trained on normal-

ized bounding box coordinates or imgbbox and the proposed

model PIEint trained on 4 different types of input data,

imgbbox, imgcontext, imgbbox + loc and imgcontext + loc.

The baseline LSTM achieves 63% accuracy. In compari-

son, LSTM encoder-decoder (LSTMed), performs better us-

ing the same information, however, it does worse using only

imgbbox even though it has a higher F1-score. This can be

due to the fact that pedestrian appearance in the absence of

dynamics is not informative enough.

PIEint overall performs better than the other two models

on all input types. Its performance on appearance features

(imgbbox) and motion data (loc) is approx. 4% above the

baseline performance. Adding local context (imgcontext)
offers a small performance improvement. This suggests

that, despite using different representations, motion or ap-

pearance features on their own may not be effective in esti-

mating intention. As expected, combining different sources

of information results in improved performance. We see

that motion improves intention estimation on samples that

are relatively far away or occluded, where visual informa-

tion is unreliable. However, in situations where the pede-

strian was more visible, their pose and context elements

were also very important. Overall, the combination of appe-

arance, local context and motion offer the most advantage

boosting the final accuracy to 79%. Figure 4 shows some

examples of the proposed algorithm’s performance.

Trajectory prediction. We begin by evaluating the pro-

posed model using only location (bounding box) informa-

tion. For this purpose we report the results on the fol-

lowing models: two baseline models, a linear Kalman fil-
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PIE JAAD

Method MSE CMSE CFMSE MSE CMSE CFMSE

0.5s 1s 1.5s 1.5s 1.5s 0.5s 1s 1.5s 1.5s 1.5s

Linear 123 477 1365 950 3983 223 857 2303 1565 6111

LSTM 172 330 911 837 3352 289 569 1558 1473 5766

B-LSTM[5] 101 296 855 811 3259 159 539 1535 1447 5615

PIEtraj 58 200 636 596 2477 110 399 1248 1183 4780

Table 3: Location (bounding box) prediction errors over varying future time steps. MSE in pixels is calculated over all

predicted time steps, CMSE and CFMSE are the MSEs calculated over the center of the bounding boxes for the entire

predicted sequence and only the last time step respectively.

Figure 4. Results of pedestrian intention estimation overlaid on

top of frames from the PIE dataset (cropped for better visibility).

Bounding boxes are colored depending on the presence (green)

or absence (red) of crossing intention as detected by our model.

Dashed bounding boxes represent incorrectly estimated intention.

ter [13] and a vanilla LSTM model, state-of-the-art algo-

rithm, Bayesian LSTM [5] (B-LSTM), and the proposed

model PIEtraj . Each model is trained and tested on 0.5s

(15 frames) observation, and predicts trajectories over 0.5,

1 and 1.5 seconds in future.

Table 3 summarizes the results of the predictions using

only bounding box information. As shown in the table, the

proposed method achieves state-of-the-art performance on

all metrics, by up to 26% on the PIE dataset and 18% on

JAAD compared to B-LSTM. The performance of all mo-

dels is generally poorer on the JAAD dataset which can be

partially attributed to the smaller number of samples, scales

and shorter tracks all of which reduce the diversity of the

dataset. The deterioration of linear model performance for

long-term predictions indicates the complexity of human

motion patterns that cannot be explained with simple linear

interpolation. As expected, the performance of all models

MSE
Method 0.5s 1s 1.5s last

Linear 0.87 2.28 4.27 10.76

LSTM 1.50 1.91 3.00 6.89

PIEspeed 0.63 1.44 2.65 6.77

Table 4: Speed prediction errors over varying time steps

on the PIE dataset. Last stands for the last time step. The

results are reported in km/h.

is generally better on bounding box centers due to the fewer

degrees of freedom.

Context in trajectory prediction. We first evaluate the

proposed speed prediction stream, PIEspeed, by comparing

this model with two baseline models, a linear Kalman filter

and a vanilla LSTM model. We use MSE metric and re-

port the results in km/h. Table 4 shows the results of our

experiments. The linear model achieves reasonable perfor-

mance in short-term which is better than the vanilla LSTM

over 0.5s. This indicates that the speed variation often is in-

significant in short-term, especially in urban environments

which is the case in the proposed PIE dataset. In long-term,

however, LSTM-based models perform significantly better.

The proposed PIEspeed achieves the best performance by up

to 10% over vanilla LSTM model.

Earlier we argued that pedestrian intention can serve as

an early prediction stage in addition to trajectory predic-

tion. Here, we examine whether estimating pedestrians’ in-

tention of crossing can improve trajectory prediction. We

report the results on our trajectory prediction model PIEtraj

which receives as input the context information provided by

PIEspeed and PIEint. We report the results on 0.5s observa-

tion and 1.5s prediction.

As shown in Table 5, conditioning trajectory prediction

on pedestrian intentions can improve the results by up to

4%. This is due to the fact that intention may imply certain

patterns of motion. For instance, someone with the inten-

tion of crossing might have a lateral movement across the

street whereas someone without intention might stand still.

As one would expect, the ego-vehicle’s speed improves the

trajectory prediction, and when combined with pedestrian

intention, the best results are achieved with more than 11%
improvement over baseline using only bounding boxes.
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t t + 0.5s t + 1s t + 1.5s

Figure 5. Examples of trajectory prediction algorithm using the proposed model PIEtraj with different input combinations. The color

and model combinations are: loc (yellow), loc+PIEint (blue), loc+PIEspeed (red), and loc+PIEint+PIEspeed (purple). Ground truth

annotations are shown in green. The sequences depict different traffic scenarios. From top to bottom: A man leaving his vehicle, a woman

crossing the street, a man hailing a taxi, and a woman waiting to cross.

Method Input MSE CMSE CFMSE

PIEtraj

loc 636 596 2477

loc+PIEint 611 570 2414

loc+PIEspeed 572 535 2204

loc+PIEint+PIEspeed 559 520 2162

loc+ int+ speed 473 435 1741

Table 5: Location (bounding box) prediction errors of the

proposed model PIEtraj on 0.5s observation and 1.5s pre-

diction using different inputs. loc, int and speed stand for

location, intention and vehicle speed. PIEint and PIEspeed

are the outputs of the intention and vehicle speed estima-

tion models. MSE is reported in pixels and calculated over

all predicted time steps. CMSE and CFMSE are the MSEs

over the center of the bounding boxes for the entire pre-

dicted sequence and only the last time step respectively.

Figure 5 illustrates the performance of our proposed al-

gorithm using different contextual information on the PIE

dataset. Even though speed has a dominant effect in im-

proving trajectory prediction it may also fail in certain

cases, when the vehicle is stationary or when the pedestrian

has no intention of crossing.

6. Conclusion

We presented a novel large-scale dataset for studying pe-

destrian crossing intention and behavior with extensive mul-

timodal annotations for visual reasoning tasks. Since there

is no ground truth data for crossing intention, we conducted

a large-scale experiment to determine human reference data

for this task. Our data shows that a large number of hu-

man experiment subjects have a high degree of agreement

in their answers.

We proposed a baseline model for pedestrian intention

estimation and by evaluating various input data combina-

tions we showed that local context in conjunction with pe-

destrian motion are good predictors for crossing intention.

In addition, we proposed a trajectory prediction for an on-

board camera. Our model outperforms the state-of-the-art

by a significant margin. We show that conditioning the tra-

jectory prediction on pedestrian intention and ego-vehicle

speed further improves the results.

In future work pedestrian intention estimation can be fur-

ther improved by including explicit pose and social interac-

tions. Likewise, trajectory estimation can benefit from other

sources of information, such as traffic dynamics, signals and

road structure, all of which affect future pedestrian actions.
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