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Abstract

Existing face deblurring methods only consider single

frames and do not account for facial structure and identity

information. These methods struggle to deblur face videos

that exhibit significant pose variations and misalignment.

In this paper we propose a novel face video deblurring

network capitalizing on 3D facial priors. The model con-

sists of two main branches: i) a face video deblurring sub-

network based on an encoder-decoder architecture, and ii)

a 3D face reconstruction and rendering branch for predict-

ing 3D priors of salient facial structures and identity knowl-

edge. These structures encourage the deblurring branch to

generate sharp faces with detailed structures. Our method

leverages both image intensity and high-level identity in-

formation derived from the reconstructed 3D faces to de-

blur the input face video. Extensive experimental results

demonstrate that the proposed algorithm performs favor-

ably against the state-of-the-art methods.

1. Introduction

Face videos captured by hand-held cameras in amateur

filming often contain significant camera shake, which re-

sults in unpleasant blurry frames in the captured videos.

Even for a fixed camera, active people may lead to motion

blur that can significantly degrade the video quality. Re-

moving blur and recovering sharp faces from blurry videos

are highly desirable under such situations.

Traditional image deblurring algorithms have designed

various sharp image priors (e.g., sparsity gradient con-

straints [43], patch prior [22, 29, 38], and dark channel prior

[26, 46]) to constrain the solution space. However, these

priors are less effective for face images as the gradient dis-

tributions and patch recurrences do not closely follow the

generic statistics of natural images.

Given that many studies deblur images based on inter-

mediate salient edges or sharp gradients estimation [8], a

sensible way to solve face deblurring is also to implicitly

or explicitly extract salient edges or structures from blurred
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(a) Blurred frame (b) Semantic labels [35] (c) Our rendered face

(d) Video deblurring [36] (e) Face deblurring [35] (f) Our deblurred result

Figure 1. (a) Blurred frame of a face sequence. (b) Predicted se-

mantic labels by [35]. (c) Rendered face by our pipeline, which

has clear and sharp facial structure that provides guided spatial

location and intensity information of face components. (d) De-

blurred result by the video deblurring approach [36]. (e) Deblurred

face by [35]. (f) Our deblurred result.

faces [11, 24]. To this end, Pan et al. [24] collect an exem-

plar dataset of face images and select an exemplar from the

dataset with the closest structural similarity to the blurred

input, and then use the matched structure to reconstruct

salient edges and guide the kernel estimation process. How-

ever, this method involves manual image annotations for the

exemplar images. Furthermore, it is computationally expen-

sive due to the searching process and the iterative optimiza-

tion of latent images and blur kernels.

Recently, Convolutional Neural Networks (CNNs) have

been successfully applied to natural image deblurring [9,

37]. In this context, some face deblurring networks have

been proposed to build a mapping between blurry and sharp

faces using large-scale datasets [15, 4, 48]. Shen et al. [35]

use CNNs to generate semantic face labels for guiding the

deblurring process. The semantic face segmentation serves

as global priors and local constraints to determine which

component should be in the corresponding region. How-

ever, semantic labels can only provide global component

regions, but not the detailed edges or other low-level im-
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age context. Moreover, as shown in Figure 1(b), the method

of Shen et al. [35] fails to localize facial components accu-

rately and consequently produces a result with severe distor-

tions in Figure 1(e). Therefore, using semantic labels in face

deblurring is suboptimal and may lead to ghosting artifacts

in the deblurred result. In addition, it is also worth noting

that all of the aforementioned face deblurring approaches

ignore facial identity information.

In contrast to previous methods, we propose a face video

deblurring method by predicting facial structure and iden-

tity information from the blurry face using a deep 3D

face reconstruction and rendering branch. Specifically,

we first generate a textured 3D face for the central frame

using the a 3D face reconstruction network, which pro-

vides both image-level (e.g., intensity with sharp edges) and

perception-level (e.g., identity) information. Then the face

deblurring network applies the rendered, pose-aligned face

image as guidance to restore a sharp face. In addition, to

encourage generating identity-related face details during the

deblurring process, we further embed the identity descriptor

extracted by the 3D reconstruction network into the deblur-

ring network. We show that the 3D facial priors we exploit

in this paper can significantly facilitate face deblurring.

The main contributions of this paper are summarized as

follows:

• We propose a face deblurring method from videos by

explicitly exploiting 3D facial priors. Our 3D facial

priors provides not only sharp facial structures and de-

tailed intensity information as a reference but also a

face identity feature representation.

• We present a loss function for 3D reconstruction learn-

ing on blurred faces to adapt the face reconstruction

and rendering branch to the deblurring task.

• Compared with the state-of-the-art face deblurring

methods, the proposed network achieves superior vi-

sual quality and identity recognizability on both syn-

thetic and real face videos.

2. Related Work

Face video deblurring relates closely to natural image

and video deblurring. In this section, we review related

work on generic image/video and face deblurring to help

place our contribution in the proper context.

Generic image and video deblurring. Although numer-

ous image deblurring algorithms have emerged in the last

decades, success is still very dependent on the scene. Tra-

ditional methods often assume that blur is spatially uniform

and leverage various image priors, such as the total varia-

tion regularizer [28], sparsity [3, 17], color-line [19], and L0

gradient based regularizers [43], to tackle the ill-posedness

of the problem, Although these priors work well on some

benchmarks, they are often characterized by restrictive as-

sumptions that limit their practical applicability. Besides,

uniform kernel based methods are less effective for com-

plex scenes with spatially-variant blurs [41].

To handle such spatially-variant blur, Gupta et al. [10]

model the camera motion as a motion density function

for non-uniform deblurring. In [49], a projective motion

path model is used to estimate blur kernels by exploiting

inter-frame misalignments. However, the global homogra-

phy projection model cannot well handle object motion and

depth variation [5]. To solve this problem, Kim and Lee

[13] proposed a segmentation-free algorithm by using bidi-

rectional optical flow to model motion blurs for dynamic

scene deblurring. This method is extended to generalized

video deblurring in [14] by alternatively estimating optical

flow and latent frames. However, the assumption that mo-

tion blur is same as optical flow does not hold for complex

motions in the real world.

To address these issues, deblurring algorithms based on

deep learning have been proposed recently. Sun et al. [37]

learn blur kernels via a classification and regression net-

work. Several approaches train deep CNNs [20, 31, 51, 50]

as an image prior for uniform deconvolution, which cannot

be directly applied in dynamic scenes. To deal with com-

plex motion blurs, Nah et al. [23] proposed a deep multi-

scale network which progressively recovers the sharp image

from a coarse scale until the full resolution. However, this

method may overfit to a specific image resolution or mo-

tion scale. Tao et al. [39] adopt a scale-recurrent network

to remove blur by sharing network weights across scales so

that it can be applied to arbitrary image resolutions. To ag-

gregate information across multiple video frames, Su et al.

[36] apply an encoder-decoder network to learn video de-

blurring by stacking consecutive frames as input. However,

all these networks are designed for natural images or videos

and cannot be easily modified to leverage facial priors for

face deblurring.

Face deblurring. While most deblurring methods work

well on natural scenes, they often do not generalize well to

face images. To explicitly handle face images, several class-

specific image deblurring approaches have been developed.

HaCohen et al. [11] use additional reference images with

shared content to guide face deblurring. Anwar et al. [1]

proposed a frequency-domain class-specific prior to restore

the band-pass frequency components for face images. In

[24], Pan et al. presented a face image deblurring method

by matching the blurred image with a sharp face from an ex-

ternal exemplar dataset. However, searching for a reference

from a large exemplar dataset is time-consuming.

Since CNNs have been widely used in natural image

deblurring, several methods also employ CNNs to learn a

mapping from blurry faces to their sharp counterparts. Xu

et al. [45] use a Generative Adversarial Network (GAN) to
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Figure 2. The proposed face video deblurring framework. Our model consists of two branch. The top green block is a ResNet-50 network

which aims to reconstruct a 3D face by regressing 3DMM coefficients (as well as pose and illumination parameters) and render a sharp face

image. The bottom orange block focuses on face deblurring guided by the extracted identity vector and the rendered sharp face structure

from the 3D face reconstruction branch. The residual block is constructed by Conv (k5s1), ReLU, Conv (k5s1), and Relu layers, where

k5s1 indicates the convolution kernel is 5× 5 with stride 1.

deblur face images. However, without exploiting the unique

structure of human faces, this approach is not able to well

handle the face restoration problem especially for regions

around facial components. Shen et al. [35] exploit semantic

labels of faces as a global prior for restoration. Neverthe-

less, it relies on accurate face segmentation. In addition, all

these face deblurring methods do not take the recovery of

identity information into consideration and cannot general-

ize well to non-uniform blur.

Different from these methods, we take both face struc-

ture and identity into account. We use a 3D face reconstruc-

tion network to extract the face structure and spatial infor-

mation to guide face blur removal. The identity descriptor

from the 3D face reconstruction network is also incorpo-

rated to retain identity-aware facial details.

3D face reconstruction. 3D face reconstruction aims to

recover the 3D shapes (and textures) of human faces from

2D images. In the literature, the widely-used method

for parametric 3D face modeling is 3D Morphable Mod-

els (3DMM) [2, 27]. With a 3DMM, face reconstruction

can be achieved using an analysis-by-synthesis optimization

scheme. The Morphable face model is based on the combi-

nation of parametric descriptions of 3D face geometry and

texture with PCAs build from a collection of real scans. The

reconstructed face will always be “sharp” with clear compo-

nents (or at least motion-blur-free), since the base textures

are all sharp. We exploit this form of 3D reconstruction as

the basis of our face deblurring priors.

3. Approach

Given a blurred face video, our network first reconstruct

a 3D face based on the 3D Morphable Model (3DMM) [27].

Capitalizing on the regressed 3DMM coefficients, we can

generate a high-quality textured 3D face and render it to a

reference image to guide face deblurring. Moreover, to pro-

vide richer identity information, we take the extracted iden-

tity information into consideration such that the deblurring

network can better recover identity-related facial details.

Figure 2 illustrates the architecture of the proposed face

video deblurring network, which consists of two branch: a

3D face reconstruction and rendering branch (green block)

and a face video deblurring branch (orange block).

3.1. 3D Face Reconstruction Branch

When the captured face video contains camera shake

and/or face motion, it is very difficult for state-of-the-art

edge prediction methods to localize sharp edge in blurry

frames. In this paper, we consider predicting sharp facial

structures using 3D face reconstruction (and 2D rendering),

motivated by the following intuitions. First, 3D face re-

construction, especially with a 3DMM representation, can

produce sharp, or at least motion-blur-free reference face

images via rendering. This is because the PCA models of

a 3DMM are built with high-quality face scans captured in

controlled static environments. Second, the recent work of

[6] has shown that 3DMM fitting using a CNN can produce

remarkable reconstruction results that are robust to mod-
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est image degradations such as blur and occlusion and can

well handle large poses. Finally, the fitted 3DMM coeffi-

cients bear the subject’s identity information which also can

be leveraged to restore a clear image of the subject using a

CNN.

To this end, we apply a CNN for 3DMM-based face

reconstruction. We follow [6] to use a ResNet-50 Net-

work [12] to regress the 3DMM coefficients together with

face pose and environment illumination. The output of the

ResNet-50 is a vector x = (α,β, δ,γ,p) ∈ R
239, where

α ∈ R
80, β ∈ R

64, δ ∈ R
80, γ ∈ R

9, and p ∈ R
6 are

the parameters of face identity, expression, texture, illumi-

nation, and pose, respectively. With the extracted 3DMM

coefficients, we can easily construct a 3D face shape S and

texture T for the input face image as

S = S(α,β) = S̄+Bidα+Bexpβ (1)

T = T(δ) = T̄+Btδ, (2)

where S̄ and T̄ are the mean face shape and texture, re-

spectively. Bid, Bexp, and Bt represent the PCA bases of

identity, expression, and texture, respectively. We can then

project the constructed 3D face onto 2D image plane with

the regressed pose and illumination, and obtain a rendered

face image as illustrated in Figure 1-3. For more details re-

garding the 3D face model and the rendering process, we

refer the readers to [6].

With a differentiable mesh renderer, the 3D face recon-

struction network can be trained in an unsupervised/weakly-

supervised fashion on natural face images without the need

for ground truth labels [40, 7, 6]. To further improve the

performance on blurry faces, we apply a new rendering loss

function to finetune the pre-trained network on our paired

training frames so that the 3D reconstruction branch better

adapts to our deblurring task:

Lr =
1

pq

p
∑

v=1

q
∑

f=1

∑

i∈Mv,f
Ai

v,f‖I
i
v,f −Ri

(

x(Bv,f )
)

‖2
∑

i∈Mv,f
Ai

v,f

,

(3)

where f is the frame index, v denotes the video index, and p,

q are the total number of training videos and frames in each

training video, respectively. In addtion, I and B are sharp

and blurry image pairs in the training data, i denotes pixel

index, M is reprojected face region, A is a skin color based

attention mask for the training image [6], x(B) denotes the

regressed coefficients by the network with B as input, and

finally R denotes the image rendered with x.

As shown in Figure 3(c), given blurred frames our 3D

face reconstruction branch can generate rendered faces with

clear face components which are visually quite similar to

the ground-truths in Figure 3(d). In contrast to the state-

of-the-art face deblurring method [35] which fails to locate

(a) blurred inputs (b) Semantic [35] (c) Our rendered (d) Ground truth

Figure 3. Intermediate rendered results by our method. (a) Blurred

frames. (b) Semantic labels predicted by the face parsing network

in [35]. (c) Our rendered face structures. (d) Ground-truth sharp

images. As shown, the semantic labeled from [35] do not have cor-

responding position and shape of faces. By contrast, the rendered

face images by our face reconstruction branch provide clear spatial

positions and intensity information of the facial components.

facial components as shown in Figure 3(b), our face recon-

struction branch is more robust to motion blur and can re-

construct facial components well. The rendered face image

is well-aligned with the blurry input, providing sharp inten-

sity refernece for the facial components. Next, we present

the face debluring branch which will leverage the rendered

image as well as the identity information for debluring.

3.2. Deblurring Branch

The debluring branch takes the blurry face video frames

and the 3D reconstruction results as input and predicts clear

face images. Similar to [36], we perform an early fusion

of the consecutive frames by concatenating them in the in-

put layer. Multi-frame input will provide not only motion

cues but also complementary information across frames,

thus leading to superior performance compared to single-

image input (see the supplementary material for an experi-

mental comparison). The output of the debluring branch is

the predicted clear face content of the central frame.

We employ an encoder-decoder structure for the deblur-

ring network, which has been shown to produce remarkable

results for a number of generative tasks [21, 30, 32, 39, 44].

In particular, we choose a variation of the residual encoder-

decoder network model for face video deblurring. We

use skip connections between encoder and decoder which

can significantly accelerate the convergence [21]. We

implement stacked convolution and residual blocks (Res-

Block) [12] in the debluring network, as shown in the or-

ange block of Figure 2. More details about the network

structure can be found in the supplementary material.

To leverage the facial priors generated by the 3D face

reconstruction branch, we incorporate the rendered sharp

face as an additional feature map into the face video deblur-
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PSNR (dB): 29.59 30.61 29.72 22.71 25.82 31.36 +∞

PSNR (dB): 29.25 30.68 28.82 24.56 24.76 31.22 +∞

PSNR(dB): 29.40 28.96 30.32 23.85 21.38 31.10 +∞

PSNR(dB): 29.51 29.06 30.99 23.57 25.68 31.52 +∞

(a) Input (b) Nah [23] (c) Tao [39] (d) Su [36] (e) Pan [25] (f) Shen [35] (g) Ours (i) Ground truth

Figure 4. Face debluring results on the testing set with PSNR and SSIM relative to the ground truth. Here we compare our algorithm with

single image deblurring approaches [23, 39], video deblurring [36], and face deblurring methods [25, 35].

ring branch. As shown in the orange block of Figure 2, the

rendered face structure is concatenated with the first convo-

lutional layer to provide the reference spatial positions and

intensity information of facial components. To impose the

identity information, we concatenate the identity vector α

to the last layer of the encoder network. As shown in Fig-

ure 2, we first reshape α to a 9×9 matrix by setting the last

element as zero, then we expand it to the size of the 64×64
by zero-padding and concatenate it with the last-layer out-

put of encoder.

We note that previous image deblurring networks [23,

39] (including the state-of-the-art face deblurring approach

of [35]) often adopt a multi-scale debluring strategy to re-

cover sharp images which mimics the traditional coarse-to-

fine optimization scheme. By contrast, benefited from the

estimated sharp facial structure from the 3D face rendering,

our algorithm acts on the original scale only and performs

well without any coarse-to-fine strategy, which simplifies

the face video deblurring process significantly.

The training losses of the our deblurring branch is the

Euclidean difference between the image content of the net-

work output and the ground truth central frame,

Lc =
1

pq

p
∑

v=1

q
∑

f=1

‖Iv,f − I
′

v,f‖2. (4)

where I and I ′ are the ground-truths and deblurred results,

respectively. Note that in this work, we do not use other

sophisticated loss functions such as adversarial loss [18, 23]

and motion flow loss [9]. We show that simply using the

naive Euclidean image intensity loss Lc can already achieve

very competitive results, as will be demonstrated next.
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PSNR (dB): 34.94 34.37 33.79 25.30 24.44 35.83 +∞

PSNR (dB): 37.87 37.21 35.69 25.14 25.27 40.20 +∞

(a) Input (b) Nah [23] (c) Tao [39] (d) Su [36] (e) Pan [25] (f) Shen [35] (g) Ours (i) Ground truth

Figure 5. Face debluring results on the testing data, with PSNR and SSIM relative to the ground truth. Here we compare our algorithm

with single image deblurring approaches [23, 39], video deblurring [36], and face deblurring methods [25, 35].

Table 1. Quantitative PSNR and SSIM results on the synthetic datasets using different deblurring methods.

Pan et al. [25] Shen et al. [35] Su et al. [36] Nah et al. [23] Tao et al. [39] Ours

9 synthetic testing videos from the 300VW dataset [34]

PSNR/SSIM 25.46/0.9002 21.94/0.8803 34.40/0.9218 33.72/0.9559 36.36/0.9784 37.70/0.9849

11 synthetic testing videos from the VidTIMIT dataset [33]

PSNR/SSIM 24.01/0.9113 20.97/0.8684 37.00/0.9850 34.95/0.9805 37.25/0.9757 38.16/0.9871

4. Experiments

In this section, we evaluate the proposed method on both

synthetic datasets and real-world face videos with compar-

isons to state-of-the-art image/video deblurring methods.

4.1. Implementation Details

Our method is implemented with Tensorflow. We use a

batch size 16 for training and image patches of 256×256×
15 where 15 is the total number of RGB channels stacked

from the crops of 5 neighboring frames. The Adam opti-

mizer [16] is applied with decay rates β1 and β2 set as 0.9

and 0.999, respectively. The initial learning rate is 0.0001
and we decrease the learning rate by 0.3 every 50K itera-

tions. For all the results reported in the paper, we train the

network for 400K iterations.

4.2. Training Data

To create a large face deblurring training dataset, Shen

et al. [35] synthesize blurred images by convolving sharp

images with generated uniform blur kernels. However, im-

ages with uniform blur are different from real cases cap-

tured by cameras. Similar to [36], we opt for generat-

ing blurred images through averaging 5 consecutive frames

from sharp videos to approximate motive blur. The gener-

ated face frames are more realistic since they can simulate

complex camera shake and face motion.

In this paper, we use the 300VW face dataset [34] to

synthesize our training videos since most faces therein are

sharp with high resolutions. Since these videos are cap-

tured with general commodity cameras, there are still some

low-quality videos inappropriate for our synthesis purpose.

Therefore, we remove videos that are already blurred and/or

of low resolutions and use the remaining for data genera-

tion. Specifically, we select 83 videos as our training data

and 9 videos as testing data from the 114 videos in the

300VW dataset.

4.3. Quantitative Evaluation

In this section, we compare the proposed algorithm with

following six methods of video deblurring [36], natural im-

age deblurring [23, 39], and face image deblurring [25, 35].

For fair comparisons, we fine-tuned the image deblurring

network of [39] with another 50K iterations and re-trained

the video deblurring network of [36] using the same train-

ing data in this work. We evaluate the results of different

methods by PSNR and SSIM metrics.

300VW dataset. Table 1 reports the average PSNR and

SSIM values of the deblurred frames on the test data. The

results generated by the proposed algorithm have much

higher PSNR and SSIM values than all other competitors.

Figure 4 shows four examples from the test set synthesized

by the 300VW dataset [34]. The single image deblurring
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(a) Input / Ours (b) Input (zoom) (c) Nah [23] (d) Tao [39] (e) Kim [14] (f) Su [36] (g) Pan [25] (h) Shen [35] (i) Ours

Figure 6. Qualitative results for real-world blurry face videos. Here we compare our algorithm with single image deblurring approaches

[23, 39], video deblurring algorithms [36, 14], and face deblurring methods [25, 35].

methods of [23, 39] fail to generate sharp face components

as shown in Figure 4(b) and (c). The deep video deblur-

ring method of Su et al. [36] is developed dynamic scenes.

However, the final recovered frames contain some artifacts

as shown in Figure 4(d). Compared with the face image de-

blurring methods of [25, 35], our method generates much

sharper images with clearer structures.

VidTIMIT dataset. In addition to the testing data from the

300VW dataset, we further synthesize more testing videos

using the VidTIMIT dataset [33] to evaluate the generaliza-

tion ability of the proposed method. We randomly select 11

videos from VidTIMIT, synthesize the corresponding test-

ing data, and directly run the different methods on them. Ta-

ble 1 shows that our method generalizes well to these new

face videos and yields higher PSNR and SSIM values than

other methods again. The examples shown in Figure 5 also

demonstrate the superiority of our results.

4.4. Qualitative Evaluation

To further evaluate the proposed method on real data, we

collect a suite of videos from YouTube containing blurred

face frames that caused by camera shake and human mo-

tion, and compare against video deblurring [36, 14], nat-

ural image deblurring [23, 39], and face image deblurring

[25, 35]. Although there is no ground truth for quantitative

analysis, the difference in visual quality is clearly visible

for the restored facial components, as shown in Figure 6.

The uniform face deblurring methods of [25, 35] failed to

generate clear results as these methods focus on blur caused

by camera shake. The CNN-based methods of [23, 39] are
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(a) Input (b) Baseline (c) w/o rend. (d) w/o iden. (e) Ours

Figure 7. Comparisons between our proposed face video deblur-

ring model with different configurations. (a) Input. (b) The base-

line method without using the 3D face rendering sub-network. (c)

The deblurred result without using the rendered face image. (d)

Deblurred result without the concatenated identity vector. (e) Our

deblurred result.

Table 2. Quantitative results with different configurations on 9 syn-

thetic testing videos generated from the 300VW dataset.

PSNR/SSIM Identity similarity

ident. rend. Su [36] Ours Su [36] Ours

× ×

34.40/0.9218

36.74/0.9817

0.8352

0.8352
√

× 36.82/0.9812 0.8335

×
√

37.53/0.9869 0.8364
√ √

37.70/0.9849 0.8373

designed for dynamic scene deblurring. However, they are

not able to remove face blur as shown in Figure 6(c) and (d).

The video deblurring method of [36] is also less effective

for face deblurring as shown in Figure 6(f). By contrast, the

proposed method produces higher-fidelity faces with finer

facial components details as shown in Figure 6(i).

4.5. Ablation Study

In this section, we compare the proposed network with

and without using the 3D facial priors provided by the

3D face reconstruction branch. Here we evaluate not only

PSNR and SSIM values, but also the identity similarity be-

tween the deburred result and the ground truth computed as

the cosine distance of deep face features extracted by a face

recognition network from [47].

As shown in Figure 7, the baseline method without using

rendered face and identity information (vector α) tends to

generate some artifacts around the facial components, while

without the rendered face some details are lost in the de-

blurred result and the edges are not sharp enough, as shown

in Figure 7(c). By adding the rendered face in the face de-

blurring branch, the result exhibits clearer and sharper fa-

cial structures in Figure 7(d) and (e), which demonstrates

that the proposed 3D face rendering module could help the

network understand the spatial and intensity information of

the face components thus generating better deblurring re-

sults. The quantitative results on in Table 2 also demon-

strate the effectiveness of our 3D facial priors. As shown,

with the rendered facial structure, the proposed algorithm

obtains highest SSIM value on the test data, while adding

both facial structure and identity knowledge obtains opti-

Table 3. Average running time on testing video frames.

Image size Nah [23] Tao [39] Su [36] Ours

360×450 2.03s 1.81s 0.31s 0.67s

580×610 2.56s 1.98 0.77s 0.70s

mal performance in terms of PSNR and identity similarity

scores. The results from the deep video deblurring method

of [36] are also presented in Table 2 for reference.

We also conducted ablation studies to analyze the effec-

tiveness of our blurry-image face rendering loss Lr in Equa-

tion 3 as well as the multi-frame input scheme (vs. single-

image input). They are presented in the supplementary ma-

terial due to space limitation.

4.6. Running Time

In terms of running time, the proposed algorithm per-

forms favorably against the state-of-the-art image and video

deblurring methods [23, 39, 24, 14, 36]. The average run-

ning times for two image resolutions are shown in Ta-

ble 3. All the methods are evaluated on the same ma-

chine with an Intel(R) Xeon(R) CPU and an Nvidia Titan

X GPU. The methods of [23, 39] use a multi-scale strategy

which inevitably increases the computational cost. They

are clearly less efficient than our method. The video de-

blurring approach of [36] runs faster than our algorithm on

low-resolution frames. However, our method tends to have

better scalability and is slightly faster than [36] on higher

resolutions.

5. Conclusion

We have presented a face video deblurring network

which incorporates 3D facial priors. Our network exploits

the face rendering loss to estimate a high-quality rendered

image as guidance, which provides clear spatial location

of facial components and their intensity information. We

also embed the estimated identity vector from the 3DMM

face reconstruction into the deblurring branch to better re-

cover identity-related facial details. Quantitative and quali-

tative results show that our proposed network performs fa-

vorably against the state-of-the-art deblurring methods and

can generate visually-pleasing results on real-world blurred

face videos. We believe 3D information is valuable for low-

level vision and image processing tasks, and foresee more

applications of face image/video processing and other tasks

using 3D priors.
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Dmytro Mishkin, and Jiřı́ Matas. Deblurgan: Blind motion

deblurring using conditional adversarial networks. In CVPR,

2018. 5

[19] Wei-Sheng Lai, Jian-Jiun Ding, Yen-Yu Lin, and Yung-Yu

Chuang. Blur kernel estimation using normalized color-line

prior. In CVPR, 2015. 2

[20] Lerenhan Li, Jinshan Pan, Wei-Sheng Lai, Changxin Gao,

Nong Sang, and Ming-Hsuan Yang. Learning a discrimina-

tive prior for blind image deblurring. In CVPR, 2018. 2

[21] Xiaojiao Mao, Chunhua Shen, and Yu-Bin Yang. Image

restoration using very deep convolutional encoder-decoder

networks with symmetric skip connections. In NeurIPS,

2016. 4

[22] Tomer Michaeli and Michal Irani. Blind deblurring using

internal patch recurrence. In ECCV, 2014. 1

[23] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep

multi-scale convolutional neural network for dynamic scene

deblurring. In CVPR, 2017. 2, 5, 6, 7, 8

[24] Jinshan Pan, Zhe Hu, Zhixun Su, and Ming-Hsuan Yang. De-

blurring face images with exemplars. In ECCV, 2014. 1, 2,

8

[25] Jinshan Pan, Wenqi Ren, Zhe Hu, and Ming-Hsuan Yang.

Learning to deblur images with exemplars. TPAMI,

41(6):1412–1425, 2018. 5, 6, 7

[26] Jinshan Pan, Deqing Sun, Hanspeter Pfister, and Ming-

Hsuan Yang. Blind image deblurring using dark channel

prior. In CVPR, 2016. 1

[27] Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami

Romdhani, and Thomas Vetter. A 3d face model for pose

and illumination invariant face recognition. In IEEE Inter-

national Conference on Advanced Video and Signal based

Surveillance, 2009. 3

[28] Daniele Perrone and Paolo Favaro. Total variation blind de-

convolution: The devil is in the details. In CVPR, 2014. 2

[29] Wenqi Ren, Xiaochun Cao, Jinshan Pan, Xiaojie Guo, Wang-

meng Zuo, and Ming-Hsuan Yang. Image deblurring via en-

hanced low-rank prior. TIP, 25(7):3426–3437, 2016. 1

[30] Wenqi Ren, Lin Ma, Jiawei Zhang, Jinshan Pan, Xiaochun

Cao, Wei Liu, and Ming-Hsuan Yang. Gated fusion network

for single image dehazing. In CVPR, 2018. 4

[31] Wenqi Ren, Jiawei Zhang, Lin Ma, Jinshan Pan, Xiaochun

Cao, Wangmeng Zuo, Wei Liu, and Ming-Hsuan Yang. Deep

non-blind deconvolution via generalized low-rank approxi-

mation. In NeurIPS, 2018. 2

[32] Wenqi Ren, Jingang Zhang, Xiangyu Xu, Lin Ma, Xiaochun

Cao, Gaofeng Meng, and Wei Liu. Deep video dehazing with

semantic segmentation. TIP, 28(4):1895–1908, 2018. 4

[33] Conrad Sanderson and Kuldip K Paliwal. Identity verifica-

tion using speech and face information. Digital Signal Pro-

cessing, 14(5):449–480, 2004. 6, 7

[34] Jie Shen, Stefanos Zafeiriou, Grigoris G Chrysos, Jean Kos-

saifi, Georgios Tzimiropoulos, and Maja Pantic. The first

facial landmark tracking in-the-wild challenge: Benchmark

and results. In ICCVW, 2015. 6

[35] Ziyi Shen, Wei-Sheng Lai, Tingfa Xu, Jan Kautz, and Ming-

Hsuan Yang. Deep semantic face deblurring. In CVPR, 2018.

1, 2, 3, 4, 5, 6, 7

[36] Shuochen Su, Mauricio Delbracio, Jue Wang, Guillermo

Sapiro, Wolfgang Heidrich, and Oliver Wang. Deep video

deblurring for hand-held cameras. In CVPR, 2017. 1, 2, 4,

5, 6, 7, 8

9396



[37] Jian Sun, Wenfei Cao, Zongben Xu, and Jean Ponce. Learn-

ing a convolutional neural network for non-uniform motion

blur removal. In CVPR, 2015. 1, 2

[38] Libin Sun, Sunghyun Cho, Jue Wang, and James Hays.

Edge-based blur kernel estimation using patch priors. In

ICCP, 2013. 1

[39] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Ji-

aya Jia. Scale-recurrent network for deep image deblurring.

In CVPR, 2018. 2, 4, 5, 6, 7, 8

[40] Ayush Tewari, Michael Zollhöfer, Hyeongwoo Kim, Pablo
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