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Abstract

Image inpainting techniques have shown significant im-

provements by using deep neural networks recently. How-

ever, most of them may either fail to reconstruct reasonable

structures or restore fine-grained textures. In order to solve

this problem, in this paper, we propose a two-stage model

which splits the inpainting task into two parts: structure re-

construction and texture generation. In the first stage, edge-

preserved smooth images are employed to train a structure

reconstructor which completes the missing structures of the

inputs. In the second stage, based on the reconstructed

structures, a texture generator using appearance flow is de-

signed to yield image details. Experiments on multiple pub-

licly available datasets show the superior performance of

the proposed network.

1 . Introduction

Image inpainting refers to generating alternative struc-

tures and textures for missing regions of corrupted input

images and obtaining visually realistic results. It has a

wide range of applications. For example, users can remove

unwanted objects or edit contents of images by using in-

painting techniques. A major challenge of image inpaint-

ing tasks is to generate correct structures and realistic tex-

tures. Some early patch-based works attempt to fill missing

holes with image patches from existing regions [1, 8]. By

nearest-neighbor searching and copying relevant patches,

these methods can synthesize vivid textures for background

inpainting tasks. However, since these methods cannot cap-

ture high-level semantics, it is hard for them to generate

realistic structures for images with non-repetitive patterns

(e.g. faces).

With the advent of deep neural network techniques, some

recent works [22, 12, 32, 33, 16] model the inpainting task

as a conditional generation problem, which learns map-

ping functions between the input corrupted images and the

ground truth images. These methods are able to learn mean-

Figure 1. (From left to right) Input corrupted images, reconstructed

structure images, visualizations of the appearance flow fields, fi-

nal output images. Our method first recovers global structures for

missing regions, then generate textures by sampling features from

existing regions according to the recovered structures. To visual-

ize the appearance flow fields, we plot the sample points of some

typical missing regions. The arrows show the direction of the ap-

pearance flow.

ingful semantics, so they can generate coherent structures

for missing holes. However, since these methods do not

effectively separate the structure and texture information,

they often suffer from either over-smoothed boundaries or

texture artifacts.

To solve this problem, some two-stage networks [33, 26,

21] are proposed. These methods recover missing structures

in the first stage and generate the final results using the re-

constructed information in the second stage. The method
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proposed in [33] uses ground truth images as the labels

of structure recovery. However, ground truth images con-

tain high-frequency textures. These irrelevant details may

mislead the structure reconstruction. Spg-net [26] predicts

the semantic segmentation labels of the missing areas as

structural information. However, regions with similar se-

mantic labels may have different textures (e.g. the windows

and walls of the same building), which creates difficulties

for the final recovery. Using edge images as the structural

guidance, EdgeConnect [21] achieves good results even for

some highly structured scenes. However, the distribution

of edge images differs greatly from the distribution of the

target images. In other words, the edge extractor discards

too much useful information, such as image color, making

it difficult to generate vivid textures.

In this paper, we propose a novel two-stage network

StructureFlow for image inpainting. Our network consists

of a structure reconstructor and a texture generator. To

recover meaningful structures, we employ edge-preserved

smooth images to represent the global structures of image

scenes. Edge-preserved smooth methods [30, 31] aim to re-

move high-frequency textures while retaining sharp edges

and low-frequency structures. By using these images as the

guidance of the structure reconstructor, the network is able

to focus on recovering global structures without being dis-

turbed by irrelevant texture information. After reconstruct-

ing the missing structures, the texture generator is used to

synthesize high-frequency details. Since image neighbor-

hoods with similar structures are highly correlated, the un-

corrupted regions can be used to generate textures for miss-

ing regions. However, it is hard for convolutional neural

networks to model long-term correlations [33]. In order to

establish a clear relationship between different regions, we

propose to use appearance flow [35] to sample features from

regions with similar structures, as shown in Figure 1. Since

appearance flow is easily stuck within bad local minima in

the inpainting task [33], in this work, we made two modi-

fications to ensure the convergence of the training process.

First, Gaussian sampling is employed instead of Bilinear

sampling to expand the receptive field of the sampling op-

eration. Second, we introduce a new loss function, called

sampling correctness loss, to determine if the correct re-

gions are sampled.

Both subjective and objective experiments compared

with several state-of-the-art methods show that our method

can achieve competitive results. Furthermore, we perform

ablation studies to verify our hypothesis and modifications.

The main contributions of our paper can be summarized as:

• We propose a structure reconstructor to generate edge-

preserved smooth images as the global structure infor-

mation.

• We introduce appearance flow to establish long-term

corrections between missing regions and existing re-

gions for vivid texture generation.

• To ease the optimization of appearance flow, we pro-

pose to use Gaussian sampling instead of Bilinear sam-

pling and introduce a novel sampling correctness loss.

• Experiments on multiple public datasets show that our

method is able to achieve competitive results.

2 . Related Work

2 .1. Image Inpainting

Existing image inpainting works can be roughly di-

vided into two categories: methods using diffusion-based

or patch-based techniques and methods using deep neural

networks. Diffusion-based methods [2, 6] synthesize tex-

tures by propagating the neighborhood region appearance

to the target holes. However, these methods can only deal

with small holes in background inpainting tasks. They may

fail to generate meaningful structures. Unlike the diffusion-

based methods using only neighborhood pixels of missing

holes, patch-based methods can take advantage of remote

information to recover the lost areas. Patch-based meth-

ods [1, 8, 3] fill target regions by searching and copying

similar image patches from the uncorrupted regions of the

source images. These methods can generate photo-realistic

textures for relatively large missing holes. In order to find

suitable image patches, bidirectional similarity [24] is pro-

posed to capture more visual information and introduce less

visual artifacts when calculating the patch similarity. To re-

duce the computational cost, PatchMatch [1] designs a fast

nearest neighbor searching algorithm using natural coher-

ence in the imagery as prior information. However, these

patch-based methods assume that the non-hole regions have

similar semantic contents with the missing regions, which

may not be true in some tasks such as face image inpaint-

ing. Therefore, they may work well in some images with

repetitive structures but cannot generate reasonable results

for images with unique structures.

Recently, many deep learning based methods have been

proposed to model the inpainting task as a conditional gen-

eration problem. A significant advantage of these meth-

ods is that they are able to extract meaningful semantics

from the corrupted images and generate new content for

images. Context Encoder [22] is one of the early attempts.

It uses an encoder-decoder architecture to first extract fea-

tures and then to reconstruct the outputs. However, this

network struggles to maintain global consistency and of-

ten generate results with visual artifacts. Iizuka et al. [12]

solve this problem by using both local and global discrim-

inators which are responsible for generating realistic alter-

native contents for missing holes and maintaining the co-

herency of competed images respectively. Yu et al. [33] find
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Figure 2. Overview of our StructureFlow. Our model first generates global structures (i.e. edge-preserved smooth images) using structure

reconstructor. Then texture generator is used to yield high-frequency details and output the final results. We add the appearance flow to

our texture generator to sample features from existing regions.

that convolutional neural networks are ineffective in build-

ing long-term correlations. To solve this problem, they pro-

pose contextual attention to borrow features from remote

regions. Liu et al. [16] believe the substituting pixels in the

masked holes of the inputs introduce artifacts to the final re-

sults. Therefore, they propose partial convolutions to force

the network to use valid pixels (uncorrupted pixels) only.

Gated convolution [32] further generalizes this idea by ex-

tending the feature selecting mechanism to be learnable for

each location across all layers. EdgeConnect proposed in

paper [21] has a similar motivation to our paper: generat-

ing reasonable structures by using additional prior informa-

tion. EdgeConnect first recovers edge maps and then fills

the missing regions in fine details. However, due to the lim-

ited representation ability of edge maps, this method may

generate wrong details in the boundaries of objects.

2 .2. Optical Flow and Appearance Flow

Optical flow is used to describe the motion of objects,

surfaces, and edges between consecutive video frames. It

has been widely used in video frame synthesis [37, 29], ac-

tion recognition [25, 28], etc. Optical flow estimation is an

important task in computer vision. Many methods [11, 27]

have been proposed to accurately estimate optical flow be-

tween consecutive frames. Recently, some methods [5, 13]

solve this problem by training deep neural networks. How-

ever, these techniques require sufficient ground truth optical

flow fields which are extremely difficult to obtain. There-

fore, some synthetic optical flow datasets [5] are created for

training. Some other methods [18, 19] solve this problem by

training the network in an unsupervised manner. However,

many existing unsupervised optical flow estimation meth-

ods struggle to capture large motions. Some papers [18, 23]

manage to use multi-scale approaches to improve the re-

sults. We believe it is due to the limited receptive field of

Bilinear sampling. In this paper, we use Gaussian sampling

as an improvement.

Appearance flow proposed by [35] is used to generate

target scenes (objects) from source scenes (objects) using a

flow-based method. It calculates the correlations between

sources and targets to predict the 2-D coordinate vectors

(i.e. appearance flow fields). This idea can be used in image

inpainting tasks. To generate realistic alternative contents

for missing holes, one can reasonably ”flow” pixels (fea-

tures) from source regions to missing regions. In this paper,

we improve the appearance flow in [35] to make it suitable

for image inpainting tasks.

3 . Our Approach

The framework of our StructureFlow inpainting network

is shown in Figure 2. Our model consists of two parts:

the structure reconstructor Gs and the texture generator Gt.

The structure reconstructor Gs is used to predict missing

structures, thereby generating the global structure image Ŝ.

The texture generator Gt draws details according to the re-

constructed structures Ŝ and outputs the final results Î.

3 .1. Structure Reconstructor

A major challenge of image inpainting tasks is to gen-

erate meaningful structures for missing regions. There-

fore, we first design a structure reconstructor Gs to recover

global structures of the input images. The edge-preserved

smooth methods [30, 31] aim to remove high-frequency tex-

tures while retaining the sharp edges and low-frequency

structures. Their results can well represent global struc-

tures. Let Igt be the ground-truth image and Sgt be the

edge-preserved smooth result of Igt. The processing of our

structure reconstructor Gs can be written as

Ŝ = Gs(Iin,Sin,M) (1)
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where M is the mask of the input image Iin. It is a bina-

rized matrix where 1 represents the missing region and 0

represents the background. Sin = Sgt ◦ (1 − M) is the

structures of Iin. Here, ◦ denotes element-wise product. Ŝ

is the predicted structures.

The reconstruction loss of Gs is defined as the ℓ1 dis-

tance between the predicted structures Ŝ and the ground-

truth structures Sgt.

Ls
ℓ1

= ‖Ŝ− Sgt‖1 (2)

Meanwhile, to mimic the distributions of the target struc-

tures Sgt, we apply generative adversarial framework [7] to

our structure reconstructor. The adversarial loss of Gs can

be written as

Ls
adv = E[log(1−Ds(Gs(Iin,Sin,M)))]

+ E[logDs(Sgt)] (3)

where Ds is the discriminator of the structure reconstruc-

tor. We jointly train the generator Gs and discriminator Ds

using the following optimization.

min
Gs

max
Ds

Ls(Gs, Ds) = λs
ℓ1
Ls
ℓ1
+ λs

advL
s
adv (4)

where λs
ℓ1

and λs
adv are regularization parameters. We set

λs
ℓ1

= 4 and λs
adv = 1 in all experiments.

3 .2. Texture Generator

After obtaining the reconstructed structure image Ŝ, our

texture generator Gt is employed to yield vivid textures.

The processing of the texture generator Gt can be written

as

Î = Gt(Iin, Ŝ,M) (5)

where Î denotes the final output result. We use ℓ1 loss to

calculate the reconstruction error.

Lt
ℓ1

= ‖Î− Igt‖1 (6)

To generate realistic results, we employ adversarial loss in

our texture generator.

Lt
adv = E[log(1−Dt(Gt(Iin, Ŝ,M)))]

+ E[logDt(Igt)] (7)

Since image regions with similar structures are highly

related, it is possible to extract these correlations using the

reconstructed structures Ŝ for texture generation to improve

the performance. However, convolutional neural networks

are not effective for capturing long-term dependency [33].

In order to establish a clear relationship between different

regions, we introduce the appearance flow to our Gt. As

shown in Figure 2, the appearance flow is used to warp the

extracted features of the inputs. Thus, features containing

vivid texture information can ”flow” to the corrupted re-

gions.

However, training the appearance flow in an unsuper-

vised manner is a difficult task [18, 23]. The networks may

struggle to capture large motions and stuck in a bad local

minima. To tackle this problem, we first propose to use

Gaussian sampling instead of Bilinear sampling to expand

the receptive field. Then, we propose a sampling correct-

ness loss to constraint the possible convergence results.

The sampling process calculates the gradients according

to the input pixels (features). If the receptive field of the

sampling operation is limited, only a few pixels can partic-

ipate in the operation. Since the adjacent pixels (features)

are often highly correlated, a large receptive field is required

to obtain correct and stable gradients. Therefore, Bilinear

sampling with a very limited receptive field may not be suit-

able for tasks requiring establishing long-term correlations.

To expand the receptive field, we use Gaussian sampling

instead of Bilinear sampling in the appearance flow opera-

tion. The process of Gaussian sampling operation with ker-

nel size n can be written as

Fo =

n∑

i=1

n∑

j=1

ai,j∑n

i=1

∑n

j=1 ai,j
Fi,j (8)

where Fi,j is the features around the sample center and Fo

is the output feature. The weights ai,j is calculated as

ai,j = exp(−
∆h2 +∆v2

2σ2
) (9)

where ∆h and ∆v is the horizontal and vertical distance

between the sampling center and feature Fi,j respectively.

Parameter σ is used to denote the variance of the Gaussian

sampling kernel.

The proposed sampling correctness loss is used to con-

straint the appearance flow fields. It determines whether the

current sampled regions are ”good” choices. We use the

pre-trained VGG19 to calculate this loss. Specifically, we

first calculate the VGG features of the input corrupted im-

age Iin and the ground truth image Igt. Let Vin and V
gt be

the features generated by a specific layer of VGG19. Sym-

bol M denotes a coordinate set containing the coordinates

of missing areas, N is the number of elements in set M .

Then, our sampling correctness loss calculate the relative

cosine similarity between the ground truth features and the

sampled features

Lt
c =

1

N

∑

(x,y)∈M

exp(−
µ(Vgt

x,y,V
in
x+∆x,y+∆y)

µmax
x,y

) (10)

where V
in
x+∆x,y+∆y is the sampled feature calculated by

our Gaussian sampling and µ(∗) denotes the cosine similar-

ity. µmax
x,y is a normalization term. For each feature V

gt
x,y
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PSNR SSIM FID

Mask 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

CA 27.150 20.001 16.911 0.9269 0.7613 0.5718 4.8586 18.4190 37.9432

PConv 31.030 23.673 19.743 0.9070 0.7310 0.5325 - - -

EdgeConnect 29.972 23.321 19.641 0.9603 0.8600 0.6916 3.0097 7.2635 19.0003

Ours 32.029 25.218 21.090 0.9738 0.9026 0.7561 2.9420 7.0354 22.3803
Table 1. The evaluation results of CA [33], PConv [16], EdgeConnect [21], and our model over dataset Places2 [34]. Since the code and

models of PConv are not available, we report the results presented in their paper.

where (x, y) ∈ M , we find the most similar feature from

Vin and calculate their cosine similarity as µmax
x,y .

µmax
x,y = max

(x′,y′)∈Ω
µ(Vgt

x,y,V
in
x′,y′) (11)

where Ω denotes a coordinate set containing all coordinates

in Vin. Our texture generator is trained using the following

optimization

min
Gt

max
Dt

Lt(Gt, Dt) = λt
ℓ1
Lt
ℓ1
+ λt

cL
t
c + λt

advL
t
adv (12)

where λt
ℓ1

, λt
c and λt

adv are the hyperparameters. In our

experiments, we set λt
ℓ1

= 5, λt
c = 0.25 and λt

adv = 1.

4 . Experiments

4 .1. Implementation Details

Basically, autoencoder structures are employed to design

our generators Gs and Gt. Several residual blocks [9] are

added to further process the features. For the appearance

flow, we concatenate the warped features with the features

obtained by convolutional blocks. The architecture of our

discriminators is similar to that of BicycleGAN [36]. We

use two PatchGANs [14] with different scales to predict real

vs. fake for overlapping image patches with different sizes.

In order to solve the notorious problem of instability train-

ing of generative adversarial networks, spectral normaliza-

tion [20] is used in our network.

We train our model on three public datasets including

Places2 [34], Celeba [17], and Paris StreetView [4]. The

most challenging dataset Places2 contains more than 10

million images comprising 400+ unique scene categories.

Celeba and Paris StreetView contain highly structured face

and building images respectively. We use the irregular mask

dataset provided by [16]. The mask images are classified

based on their hole sizes relative to the entire image (e.g.

0− 20% etc.).

We employ edge-preserved smooth method RTV [31] to

obtain the training labels of the structure reconstructor Gt.

In RTV smooth method, parameter σ is used to control the

spatial scale of smooth windows, thereby controlling the

maximum size of texture elements. In section 4 .3, we ex-

plore the impact of σ on the final results. We empirically

find the best results obtained when we set σ ≈ 3.

We train our model in stages. First, the structure recon-

structor Gs and the texture generator Gt are trained sepa-

rately using the edge-preserved image Sgt. Then, we con-

tinue to fine-tune Gt using the reconstructed structures Ŝ.

The network is trained using 256 × 256 images with batch

size as 12. We use the Adam optimizer [15] with learning

rate as 10−4.

4 .2. Comparisons

We subjectively and objectively compare our approach

with several state-of-the-art methods including Contextual

Attention (CA) [33], Partial Convolution (PConv) [16] and

EdgeConnect [21].

Objective comparisons Image inpainting tasks lack spe-

cialized quantitative evaluation metrics. In order to compare

the results as accurately as possible, we employ two types

of metrics: distortion measurement metrics and perceptual

quality measurement metrics. Structural similarity index

(SSIM) and peak signal-to-noise ratio (PSNR) assume that

the ideal recovered results are exactly the same as the target

images. They are used to measure the distortions of the re-

sults. Fréchet Inception Distance (FID) [10] calculates the

Wasserstein-2 distance between two distributions. There-

fore, it can indicate the perceptual quality of the results. In

this paper, we use the pre-trained Inception-V3 model to

extract features of real and inpainted images when calcu-

lating FID scores. The final evaluation results over Places2

are reported in Table 1. We calculate the statistics over 10k
random images in the test set. It can be seen that our model

achieves competitive results compared with other models.

Subjective comparisons We implement a human sub-

jective study on the Amazon Mechanical Turk (MTurk). We

ask volunteers to choose the more realistic image from im-

age pairs of real and generated images. For each dataset,

we randomly select 600 images and assign them random

mask ratios from 0% − 60% for the evaluation. Each im-

age is compared 5 times by different volunteers. The eval-

uation results are shown in Table 2. Our model achieves

better results than the competitors in the highly-structured
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Figure 3. The qualitative comparisons with existing models. (From top to bottom) Input corrupted images, results of CA [33], results of

EdgeConnect [21], results of our StructureFlow, and Ground truth images.

CA EdgeConnect Ours

Celeba 5.68% 26.28% 32.04%

Paris 17.36% 33.44% 33.68%

Places2 8.72% 26.36% 23.56%
Table 2. The evaluation results of user study. The volunteers are

asked to select the more realistic image from image pairs of real

and generated images. The fooling rate is provided in the table.

scenes, such as face dataset Celeba and street view dataset

Paris. This indicates that our model can generate meaning-

ful structures for missing regions. We also achieve compet-

itive results in dataset Places2.

Figure 3 shows some example results of different mod-

els. It can be seen that the results of CA suffer from ar-

tifacts, which means that this method may struggle to bal-

ance the generation of textures and structures. EdgeCon-

nect is able to recover correct global structures. However,

it may generate wrong details at the edges of objects. Our

method can generate meaningful structures as well as vivid

textures. We also provide the reconstructed structures of

EdgeConnect and our model in Figure 4. We find that the

edge maps loss too much useful information, such as im-

age color when recovering the global structures. Therefore,

EdgeConnect may fill incorrect details for some missing ar-

eas. Meanwhile, edges of different objects may be mixed

together in edge maps, which makes it difficult to gener-

ate textures. In contrast, our edge-preserved smooth images

can well represent the structures of images. Therefore, our

model can well balance structure reconstruction and tex-

ture generation. Photo-realistic results are obtained even

for some highly structured images with large hole ratios.

4 .3. Ablation Studies

In this section, we analyze how each component of our

StructureFlow contributes to the final performance from

two perspectives: structures and appearance flow.

Structure Ablation In this paper, we assume that the

structure information is important for image inpainting

tasks. Therefore, we first reconstruct structures and use

them as prior information to generate the final results. To

verify this assumption, we remove our structure reconstruc-

tor and train an inpainting model with only the texture gen-

erator. The corrupted images along with its masks are di-

rectly inputted into the model. Please note that we also keep

appearance flow in the network for fair comparisons. The

results are shown in Table 3. It can be seen that our struc-
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Structures of

EdgeConnect
EdgeConnect

Structures of

Ours
OursInputs

Figure 4. The visual comparisons between EdgeConnect [21] and

our StructureFlow. (From left to right) Input corrupted images, re-

constructed structures of EdgeConnect, inpainted results of Edge-

Connect, reconstructed structures of our StructureFlow, inpainted

results of our StructureFlow.

ture reconstructor can bring stable performance gain to the

model.

Then we turn our attention to the edge-preserved smooth

images. We believe the edge-preserved smooth images are

able to represent the structures since the smooth operations

remove high-frequency textures. To verify this, we train a

model using ground truth images Igt as the labels of the

structure reconstructor. The results can be found in Table 3.

Compared with StructureFlow, we can find that using im-

ages containing high-frequency textures as structures leads

to performance degradation.

However, it is difficult to accurately distinguish the tex-

tures and the structures of an image. What is the appro-

priate degree of smooth operation? We find there exists a

trade-off between the structure reconstructor and the tex-

ture generator. If very few textures are removed, the struc-

ture reconstruction will be more difficult, since it needs to

! = 0 ! = 3 ! = 9

Figure 5. The influence of the parameter σ in RTV edge-preserved

smooth method on final results. The last three columns show re-

sults of models trained by smooth images generated with σ =

0, 3, 9, where the first row shows the results of structure recon-

structor and the second row shows the generated results.

PSNR SSIM

P
ar

is

w/o Structure 28.46 0.8879

w/o Smooth 28.41 0.8848

w/o Flow 28.77 0.8906

StructureFlow 29.25 0.8979
C

el
eb

a

w/o Structure 29.42 0.9324

w/o Smooth 29.61 0.9335

w/o Flow 29.91 0.9368

StructureFlow 30.31 0.9420
Table 3. The evaluation results of ablation studies. We provide the

statistics of four models: the model trained without the structure

reconstructor (i.e. w/o Structure), the model trained using ground

truth images as the labels of the structure reconstructor (i.e. w/o

Smooth), the model trained without the appearance flow operation

(i.e. w/o Flow) and our full model (i.e. StructureFlow). The statis-

tics are based on random masks with mask ratio 0%-60%.

σ = 0 σ = 1 σ = 3 σ = 6 σ = 9

PSNR 28.41 28.81 29.25 29.14 28.98

SSIM 0.8848 0.8896 0.8979 0.8962 0.8990
Table 4. The evaluation results over dataset Paris of models trained

using edge-preserved images generated with σ = 0, 1, 3, 6, 9. The

statistics are based on random masks with mask ratio 0%-60%.

recover more information. However, the texture generation

will be easier. Therefore, we need to balance the difficul-

ties of these two tasks to achieve better results. We use σ in

RTV [31] smooth method to control the maximum size of

texture elements in Sgt. Smoother results are obtained with

larger σ value. We train our StructureFlow using smooth

images generated from σ = 0, 1, 3, 6, 9. The evaluation

results over dataset Paris are shown in Table 4. It can be

seen that the best results are obtained when σ = 3. Both

too small and too large σ values lead to model performance

degradation. An example can be found in Figure 5. When

187



Figure 6. Ablation studies of Gaussian sampling and the sampling

correctness loss. The appearance flow fields are visualized using

the provided color coding map. Flow direction is encoded with

color and magnitude with color intensity.

σ = 0, the structure reconstructor fail to generate reason-

able structures, as it is disturbed by irrelevant texture infor-

mation. The texture generator fails to yield realistic images

when trained with σ = 9 since some useful structural infor-

mation is removed.

Flow Ablation In this ablation study, we first evaluate

the performance gain bought by our appearance flow. Then,

we illustrate the effectiveness of Gaussian sampling and the

sampling correctness loss.

To verify the validity of our appearance flow, we train

a model without using the appearance flow blocks in the

texture generator. The evaluation results can be found in

Table 3. It can be seen that our StructureFlow has better

performance than the model trained without the appearance

flow operation, which means that our appearance flow can

help with the texture generation and improve model perfor-

mance.

Next, we test our Gaussian sampling and the sampling

correctness loss. Two models are trained for this ablation

study: a model trained using Bilinear sampling in the warp

operation of appearance flow and a model trained without

using the sampling correctness loss. Figure 6 shows the ap-

pearance flow fields obtained by these models. It can be

seen that the model trained without using the sampling cor-

rectness loss is unable to sample correct features for large

missing regions. Bilinear sampling also fails to capture

long-term correlations. Our StructureFlow obtains a rea-

sonable flow field and generates realistic textures for miss-

ing regions.

4 .4. User case

Our method can be used for some image editing appli-

cations. Figure 7 provides some usage examples. Users

can remove the unwanted objects by interactively drawing

masks in the inputs. Our model is able to generate realistic

alternative contents for the missing regions. In addition, by

Figure 7. Examples of object removing and image editing using

our StructureFlow. Our model is able to generate realistic alterna-

tive contents for missing regions.

directly editing the structure images, users can copy or add

new objects and contents to images.

5 . Conclusion

In this paper, we propose an effective structure-aware

framework for recovering corrupted images with meaning-

ful structures and vivid textures. Our method divides the

inpainting task into two subtasks: structure reconstruction

and texture generation. We demonstrate that edge-preserved

smooth images can well represent the global structure in-

formation and play an important role in inpainting tasks.

As for texture generation, we use appearance flow to sam-

ple features from relative regions. We verify that our flow

operation can bring stable performance gain to the final re-

sults. Our method can obtain competitive results compared

with several state-of-the-art methods. Our source code

is available at: https://github.com/RenYurui/

StructureFlow.
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