
Learning with Average Precision: Training

Image Retrieval with a Listwise Loss

Jérôme Revaud Jon Almazán Rafael S. Rezende César Roberto de Souza

NAVER LABS Europe

Abstract

Image retrieval can be formulated as a ranking prob-

lem where the goal is to order database images by decreas-

ing similarity to the query. Recent deep models for image

retrieval have outperformed traditional methods by lever-

aging ranking-tailored loss functions, but important theo-

retical and practical problems remain. First, rather than

directly optimizing the global ranking, they minimize an

upper-bound on the essential loss, which does not necessar-

ily result in an optimal mean average precision (mAP). Sec-

ond, these methods require significant engineering efforts

to work well, e.g., special pre-training and hard-negative

mining. In this paper we propose instead to directly opti-

mize the global mAP by leveraging recent advances in list-

wise loss formulations. Using a histogram binning approx-

imation, the AP can be differentiated and thus employed

to end-to-end learning. Compared to existing losses, the

proposed method considers thousands of images simultane-

ously at each iteration and eliminates the need for ad hoc

tricks. It also establishes a new state of the art on many

standard retrieval benchmarks. Models and evaluation

scripts have been made available at: https://europe.

naverlabs.com/Deep-Image-Retrieval/.

1. Introduction

Image retrieval consists in finding, given a query, all im-

ages containing relevant content within a large database.

Relevance here is defined at the instance level and retrieval

typically consists in ranking in top positions database im-

ages with the same object instance as the one in the query.

This important technology serves as a building block for

popular applications such as image-based item identifica-

tion (e.g., fashion items [13, 35, 60] or products [53]) and

automatic organization of personal photos [20].

Most instance retrieval approaches rely on computing

image signatures that are robust to viewpoint variations and

other types of noise. Interestingly, signatures extracted by

deep learned models have recently outperformed keypoint-

based traditional methods [17, 18, 45]. This good perfor-

mance was enabled by the ability of deep models to lever-

age a family of loss functions well-suited to the ranking

problem. Compared to classification losses previously used

for retrieval with less success [3, 4, 47], ranking-based loss

functions directly optimize for the end task, enforcing intra-

class discrimination and more fine-grained instance-level

image representations [18]. Ranking losses used to date

consider either image pairs [44], triplets [18], quadruplets

[11], or n-tuples [52]. Their common principle is to sub-

sample a small set of images, verify that they locally comply

with the ranking objective, perform a small model update if

they do not, and repeat these steps until convergence.

Despite their effectiveness, important theoretical and

practical problems remain. In particular, it has been shown

that these ranking losses are upper bounds on a quantity

known as the essential loss [34], which in turn is an up-

per bound on standard retrieval metrics such as mean aver-

age precision (mAP) [34]. Thus, optimizing these ranking

losses is not guaranteed to give results that also optimize

mAP. Hence there is no theoretical guarantee that these ap-

proaches yield good performance in a practical system. Per-

haps for this reason, many tricks are required to obtain good

results, such as pre-training for classification [1, 18], com-

bining multiple losses [10, 12], and using complex hard-

negative mining strategies [15, 21, 37, 38]. These engineer-

ing heuristics involve additional hyper-parameters and are

notoriously complicated to implement and tune [25, 58].

In this paper, we investigate a new type of ranking loss

that remedy these issues altogether by directly optimizing

mAP (see Fig. 1). Instead of considering a couple of images

at a time, it optimizes the global ranking of thousands of im-

ages simultaneously. This practically renders the aforemen-

tioned tricks unnecessary while improving the performance

at the same time. Specifically, we leverage recent advances

in listwise loss functions that allow to reformulate AP using

histogram binning [24, 25, 58]. AP is normally non-smooth

and not differentiable, and cannot be directly optimized in

gradient-based frameworks. Nevertheless, histogram bin-

ning (or soft-binning) is differentiable and can be used to

replace the non-differentiable sorting operation in the AP,

15107

Figure 1. Illustration of the differences between a local ranking loss (here triplet-based) and our listwise loss. The triplet loss (left) performs

gradient updates based on a small number of examples, which is not guarranteed to be aligned with a ranking metric. In contrast, the listwise

loss (right) considers a large number of images simultaneously and directly optimizes the Average-Precision computed from these images.

making it amenable to deep learning. He et al. [25] recently

presented outstanding results in the context of patch veri-

fication, patch retrieval and image matching based on this

technique.

In this work, we follow the same path and present an im-

age retrieval approach directly optimized for mAP. To that

aim, we train with large batches of high-resolution images

that would normally considerably exceed the memory of a

GPU. We therefore introduce an optimization scheme that

renders training feasible for arbitrary batch sizes, image res-

olutions and network depths. In summary, we make three

main contributions:

• We present, for the first time, an approach to image re-

trieval leveraging a listwise ranking loss directly opti-

mizing the mAP. It hinges upon a dedicated optimiza-

tion scheme that handles extremely large batch sizes

with arbitrary image resolutions and network depths.

• We demonstrate the many benefits of using our listwise

loss in terms of coding effort, training budget and final

performance via a ceteris paribus analysis on the loss.

• We outperform the state-of-the-art results for compa-

rable training sets and networks.

The paper is organized as follows: Section 2 discusses

related work, Section 3 describes the proposed method, Sec-

tion 4 present an experimental study, and Section 5 presents

our conclusions.

2. Related work

Early works on instance retrieval relied on local patch

descriptors (e.g., SIFT [36]), aggregated using bag-of-

words representations [14] or more elaborate schemes [16,

19, 55, 30], to obtain image-level signatures that could then

be compared to one another in order to find their closest

matches. Recently, image signatures extracted with CNNs

have emerged as an alternative. While initial work used

neuron activations extracted from off-the-shelf networks

pre-trained for classification [3, 4, 44, 47, 56], it was later

shown that networks could be trained specifically for the

task of instance retrieval in an end-to-end manner using a

siamese network [18, 45]. The key was to leverage a loss

function that optimizes ranking instead of classification.

This class of approaches represents the current state of the

art in image retrieval with global representations [18, 45].

Image retrieval can indeed be seen as a learning to rank

problem [6, 9, 34, 57]. In this framework, the task is to

determine in which (partial) order elements from the train-

ing set should appear. It is solved using metric learning

combined with an appropriate ranking loss. Most works

in image retrieval have considered pairwise (e.g., con-

trastive [44]) or tuplewise (e.g., triplet-based [17, 50], n-

tuple-based [52]) loss functions, which we call local loss

functions because they act on a fixed and limited num-

ber of examples before computing the gradient. For such

losses, training consists in repeatedly sampling random

and difficult pairs or triplets of images, computing the

loss, and backpropagating its gradient. However, several

works [15, 25, 28, 40, 48] pointed out that properly op-

timizing a local loss can be a challenging task, for sev-

eral reasons. First, it requires a number of ad hoc heuris-

tics such as pre-training for classification [1, 18], combin-

ing several losses [10, 12] and biasing the sampling of im-

age pairs by mining hard or semi-hard negative examples

[15, 21, 37, 38]. Besides being non trivial [22, 51, 59], min-

ing hard examples is often time consuming. Another major

problem that has been overlooked so far is the fact that lo-

cal loss functions only optimize an upper bound on the true

ranking loss [34, 58]. As such, there is no theoretical guar-

antee that the minimum of the loss actually corresponds to

the minimum of the true ranking loss.

In this paper, we take a different approach and directly

optimize the mean average precision (mAP) metric. While

the AP is a non-smooth and non-differentiable function, He

et al. [24, 25] have recently shown that it can be approx-

imated based on the differentiable approximation to his-

togram binning proposed in [58] (and also used in [7]). This

approach radically differs from those based on local losses.

The use of histogram approximations to mAP is called list-

wise in [34], as the loss function takes a variable (possi-

bly large) number of examples at the same time and opti-

mizes their ranking jointly. The AP loss introduced by He

et al. [24] is specially tailored to deal with score ties nat-

urally occurring with hamming distances in the context of

image hashing. Interestingly, the same formulation is also

5108

proved successful for patch matching and retrieval [25]. Yet

their tie-aware formulation poses important convergence

problems and requires several approximations to be usable

in practice. In contrast, we propose a straightforward for-

mulation of the AP loss that is stable and performs better.

We apply it to image retrieval, which is a rather different

task, as it involves high-resolution images with significant

clutter, large viewpoint changes and deeper networks.

Apart from [24, 25], several relaxations or alternative

formulations have been proposed in the literature to allow

for the direct optimization of AP [5, 23, 25, 27, 39, 54, 61].

Yue et al. [61] proposed to optimize the AP through a loss-

augmented inference problem [23] under a structured learn-

ing framework using linear SVMs. Song et al. [54] then

expanded this framework to work with non-linear models.

However, both works assume that the inference problem in

the loss-augmented inference in the structured SVM for-

mulation can be solved efficiently [27]. Moreover, their

technique requires using a dynamic-programming approach

which requires changes to the optimization algorithm itself,

complicating its general use. The AP loss had not been

implemented for the general case of deep neural networks

trained with arbitrary learning algorithms until very recently

[25, 27]. Henderson and Ferrari [27] directly optimize the

AP for object detection, while He et al. [25] optimize for

patch verification, retrieval, and image matching.

In the context of image retrieval, additional hurdles must

be cleared. Optimizing directly for mAP indeed poses

memory issues, as high-resolution images and very deep

networks are typically used at training and test time [17,

44]. To address this, smart multi-stage backpropaga-

tion methods have been developed for the case of image

triplets [18], and we show that in our setting slightly more

elaborate algorithms can be exploited for the same goal.

Note that a similar work has been concurrently and inde-

pendently proposed by Cakir et al. [8].

3. Method

This section introduces the mathematical framework of

the AP-based training loss and the adapted training proce-

dure we adopt for the case of high-resolution images.

3.1. Definitions

We first introduce mathematical notations. Let I denote

the space of images and S denote the unit hypersphere in

C-dimensional space, i.e. S =
{

x ∈ R
C | ‖x‖ = 1

}

. We

extract image embeddings using a deep feedforward net-

work fΘ : I → S , where Θ represents learnable parame-

ters of the network. We assume that fΘ(·) is equipped with

an L2-normalization output module so that the embedding

di = fΘ(Ii) has unit norm. The similarity between two im-

ages can then be naturally evaluated in the embedding space

using the cosine similarity:

sim(Ii, Ij) = d⊤i dj ∈ [−1, 1] . (1)

Our goal is to train the parameters Θ to rank, for each

given query image Iq , its similarity to every image from a

database {Ii}1≤i≤N of size N . After computing the embed-

dings associated with all images by a forward pass of our

network, the similarity sim(Iq, Ii) = S
q
i of each database

item to the query is efficiently measured in the embed-

ding space using Eq. (1), for all i in N = {1, 2, . . . , N}.

Database images are then sorted according to their similar-

ities in decreasing order. Let R : RN × N → N denote

the ranking function, where R(Sq, i) is the index of the i-

th highest value of Sq . By extension, R(Sq) denotes the

ranked list of indexes for the database. The quality of the

ranking R(Sq) can then be evaluated with respect to the

ground-truth image relevance, denoted by Y q in {0, 1}N ,

where Y
q
i is 1 if Ii is relevant to Iq and 0 otherwise.

Ranking evaluation is performed with one of the infor-

mation retrieval (IR) metrics, such as mAP, F-score, and

discounted cumulative gain. In practice (and despite some

shortcomings [33]), AP has become the de facto standard

metric for IR when the groundtruth labels are binary. In

contrast to other ranking metrics such as recall or F-score,

AP does not depend on a threshold, rank position or number

of relevant images, and is thus simpler to employ and better

at generalizing for different queries. We can write the AP

as a function of Sq and Y q:

AP(Sq, Y q) =
N
∑

k=1

Pk(S
q, Y q) ∆rk(S

q, Y q), (2)

where Pk is the precision at rank k, i.e. the proportion of

relevant items in the k first indexes, which is given by:

Pk(S
q, Y q) =

1

k

k
∑

i=1

N
∑

j=1

Y
q
j 11[R(Sq, i) = j], (3)

∆rk is the incremental recall from ranks k − 1 to k, i.e. the

proportion of the total Nq =
∑N

i=1
Y

q
i relevant items found

at rank k, which is given by:

∆rk(S
q, Y q) =

1

Nq

N
∑

j=1

Y
q
j 11[R(Sq, k) = j], (4)

and 11[·] is the indicator function.

3.2. Learning with average precision

Ideally, the parameters of fΘ should be trained using

stochastic optimization such that they maximize AP on the

training set. This is not feasible for the original AP for-

mulation, because of the presence of the indicator function

5109

11[·]. Specifically, the function R 7→ 11[R = j] has deriva-

tive w.r.t. R equal to zero for all R 6= 0 and its derivative

is undefined at R = 0. This derivative thus provides no

information for optimization.

Inspired by listwise losses developed for histograms

[58], an alternative way of computing the AP has recently

been proposed and applied for the task of descriptor hash-

ing [24] and patch matching [25]. The key is to train with

a relaxation of the AP, obtained by replacing the hard as-

signment 11 by a function δ, whose derivative can be back-

propagated, that soft-assigns similarity values into a fixed

number of bins. Throughout this section, for simplicity, we

will refer to functions differentiable almost everywhere as

differentiable.

Quantization function. For a given positive integer M ,

we partition the interval [−1, 1] into M − 1 equal-sized

intervals, each of measure ∆ = 2

M−1
and limited

(from right to left) by bin centers {bm}1≤m≤M , where

bm = 1− (m− 1)∆. In Eq. (2) we calculate precision and

incremental recall at every rank k in {1, . . . , N}. The first

step of our relaxation is to, instead, compute these values at

each bin:

P bin
m (Sq, Y q) =

∑m
m′=1

∑N
i=1

Y
q
i 11[S

q
i ∈ b̄m′]

∑m
m′=1

∑N
i=1

11[Sq
i ∈ b̄m′]

, (5)

∆rbinm (Sq, Y q) =

∑N
i=1

Y
q
i 11[S

q
i ∈ b̄m]

Nq
, (6)

where the interval b̄m = [max(bm − ∆,−1),min(bm +
∆, 1)) denotes the m-th bin.

The second step is to use a soft assignment as replace-

ment of the indicator. Similarly to [24], we define the func-

tion δ : R × {1, 2, . . . ,M} → [0, 1] such that each δ(·,m)
is a triangular kernel centered around bm and width 2∆, i.e.

δ(x,m) = max

(

1−
|x− bm|

∆
, 0

)

. (7)

δ(x,m) is a soft binning of x that approaches the indicator

function 11[x ∈ b̄m] when M → ∞ while being differen-

tiable w.r.t. x:

∂δ(x,m)

∂x
= −

sign(x− bm)

∆
11 [|x− bm| ≤ ∆] . (8)

By expanding the notation, δ(Sq,m) is a vector in [0, 1]N

that indicates the soft assignment of Sq to the bin b̄m.

Hence, the quantization {δ(Sq,m)}Ni=1
of Sq is a

smooth replacement of the indicator function. This allows

us to recompute approximations of precision and incremen-

tal recall as function of the quantization, as presented previ-

ously in Eq. (3) and Eq. (4). Thus, for each bin m, the quan-

tized precision P̂m and incremental recall ∆r̂m are com-

puted as:

P̂m(Sq, Y q) =

∑m
m′=1

δ(Sq,m′)⊤Y q

∑m
m′=1

δ(Sq,m′)⊤1
, (9)

∆r̂m(Sq, Y q) =
δ(Sq,m)⊤Y q

Nq
, (10)

and the resulting quantized average precision, denoted by

APQ, is a smooth function w.r.t. Sq , given by:

APQ(S
q, Y q) =

M
∑

m=1

P̂m(Sq, Y q) ∆r̂m(Sq, Y q). (11)

Training procedure. The training procedure and loss are

defined as follows. Let B = {I1, . . . , IB} denote a batch

of images with labels [y1, . . . , yB] ∈ N
B , and D =

[d1, . . . , dB] ∈ SB their corresponding descriptors. Dur-

ing each training iteration, we compute the mean APQ over

the batch. To that goal we consider each of the batch im-

ages as a potential query and compare it to all other batch

images. The similarity scores for query Ii are denoted by

Si ∈ [−1, 1]B , where Sij = d⊤i dj is the similarity with

image Ij . Meanwhile, let Yi denote the associated binary

ground-truth, with Yij = 11[yi = yj]. We compute the

quantized mAP, denoted by mAPQ, for this batch as:

mAPQ(D,Y) =
1

B

B
∑

i=1

APQ

(

d⊤i D,Yi

)

(12)

Since we want to maximize the mAP on the training set, the

loss is naturally defined as L(D,Y) = 1− mAPQ(D,Y).

3.3. Training for highresolution images

He et al. [25] have shown that, in the context of patch

retrieval, top performance is reached for large batch sizes.

In the context of image retrieval, the same approach can-

not be applied directly. Indeed, the memory occupied by a

batch is several orders of magnitude larger then that occu-

pied by a patch, making the backpropagation intractable on

any number of GPUs. This is because (i) high-resolution

images are typically used to train the network, and (ii) the

network used in practice is much larger (ResNet-101 has

around 44M parameters, whereas the L2-Net used in [25]

has around 26K). Training with high-resolution images is

known to be crucial to achieve good performance, both at

training and test time [18]. Training images fed to the net-

work typically have a resolution of about 1Mpix (compared

to 51× 51 patches in [25]).

By exploiting the chain rule, we design a multistaged

backpropagation that solves this memory issue and allows

the training of a network of arbitrary depth, and with arbi-

trary image resolution and batch size without approximat-

ing the loss. The algorithm is illustrated in Fig. 2, and con-

sists of three stages.

5110

Figure 2. Illustration of the multistaged network optimization. During the first stage, we compute the descriptors of all batch images,

discarding the intermediary tensors in the memory. In the second stage, we compute the score matrix S (Eq. 1) and the mAPQ loss

ℓ = L(D,Y), and we compute the gradient of the loss w.r.t. the descriptors. During the last stage, given an image in the batch, we

recompute its descriptor, this time storing the intermediate tensors, and use the computed gradient for this descriptor to continue the

backpropagation through the network. Gradients are accumulated, one image at a time, before finally updating the network weights.

During the first stage, we compute the descriptors of all

batch images, discarding the intermediary tensors in the

memory (i.e. in evaluation mode). In the second stage,

we compute the score matrix S (Eq. 1) and the loss ℓ =
L(D,Y), and we compute the gradient of the loss w.r.t. the

descriptors ∂ℓ
∂di

. In other words, we stop the backpropaga-

tion before entering the network. Since all tensors consid-

ered are compact (descriptors, score matrix), this operation

consumes little memory. During the last stage, we recom-

pute the image descriptors, this time storing the intermedi-

ary tensors. Since this operation occupies a lot of mem-

ory, we perform this operation image by image. Given the

descriptor di for the image Ii and the gradient for this de-

scriptor ∂ℓ
∂di

, we can continue the backpropagation through

the network. We thus accumulate gradients, one image at a

time, before finally updating the network weights. Pseudo-

code for multistaged backpropagation can be found in the

supplementary material.

4. Experimental results

We first discuss the different datasets used in our ex-

periments. We then report experimental results on these

datasets, studying key parameters of the proposed method

and comparing with the state of the art.

4.1. Datasets

Landmarks. The original Landmarks dataset [4] contains

213,678 images divided into 672 classes. However, since

this dataset has been created semi-automatically by query-

ing a search engine, it contains a large number of misla-

beled images. In [17], Gordo et al. proposed an automatic

cleaning process to clean this dataset to use with their re-

trieval model, and made the cleaned dataset public. This

Landmarks-clean dataset contains 42,410 images and 586

landmarks, and it is the version we use to train our model in

all our experiments.

Oxford and Paris Revisited. Radenović et al. have

recently revised the Oxford [42] and Paris [43] buildings

datasets correcting annotation errors, increasing their sizes,

and providing new protocols for their evaluation [46]. The

Revisited Oxford (ROxford) and Revisited Paris (RParis)

datasets contain 4,993 and 6,322 images respectively, with

70 additional images for each that are used as queries (see

Fig. 3 for example queries). These images are further la-

beled according to the difficulty in identifying which land-

mark they depict. These labels are then used to determine

three evaluation protocols for those datasets: Easy, Medium,

and Hard. Optionally, a set of 1 million distractor images

(R1M) can be added to each dataset to make the task more

realistic. Since these new datasets are essentially updated

versions of the original Oxford and Paris datasets, with the

same characteristics but more reliable ground-truth, we use

these revisited versions in our experiments.

4.2. Implementation details and parameter study

We train our network using stochastic gradient with

Adam [32] on the public Landmarks-clean dataset of [17].

In all experiments we use ResNet-101 [26] pre-trained on

ImageNet [49] as a backbone. We append a generalized-

mean pooling (GeM) layer [45] which was recently shown

to be more effective than R-MAC pooling [18, 56]. The

GeM power is trained using backpropagation along the

other weights. Unless stated otherwise, we use the fol-

lowing parameters: we set weight decay to 10−6, and ap-

ply standard data augmentation (e.g., color jittering, ran-

dom scaling, rotation and cropping). Training images are

cropped to a fixed size of 800 × 800, but during test, we

feed the original images (unscaled and undistorted) to the

network. We tried using multiple scales at test time, but did

not observe any significant improvement. Since we oper-

ate at a single scale, this essentially makes our descriptor

extraction about 3 times faster than state-of-the-art meth-

ods [18, 46] for a comparable network backbone. We now

discuss the choice of other parameters based on different

experimental studies.

5111

Figure 3. Example queries for ROxford and illustration for the evolution of the listwise loss during training. As training progresses, images

get sorted by descriptor distance to the query image, decreasing the value for the loss.

Learning rate. We find that the highest learning rate that

does not result in divergence gives best results. We use a

linearly decaying rate starting from 10−4 that decreases to

0 after 300 iterations.

Batch size. As pointed by [25], we find that larger batch

sizes lead to better results (see Fig. 4). The performance sat-

urates beyond 4096, and training significantly slows down

as well. We use B = 4096 in all subsequent experiments.

Class sampling. We construct each batch by sampling

random images from each dataset class (all classes are

hence represented in a single batch). We also tried sampling

classes but did not observe any difference (see Fig. 4). Due

to the dataset imbalance, certain classes are constantly over-

represented at the batch level. To counter-balance this situ-

ation, we introduce a weight in Eq. (12) to weight equally

all classes inside a batch. We train two models with and

without this option and present the results in Fig. 5. The

improvement in mAP with class weighting is around +2%

and shows the importance of this balancing.

Tie-aware AP. In [24], a tie-aware version of the mAPQ

loss is developed for the specific case of ranking integer-

valued Hamming distances. [25] uses the same version of

AP for real-valued Euclidean distances. We trained mod-

els using simplified tie-aware AP loss (see Appendix F.1 of

[24]), denoted by mAPT in addition to the original mAPQ

loss. We write the mAPT similarly to Eq. (11), but replac-

ing the precision by a more accurate approximation:

P̂m(Sq
, Y

q) =
1 + δ(Sq,m)⊤Y q + 2

∑m−1

m′=1
δ(Sq,m′)⊤Y q

1 + δ(Sq

i ,m)T 1 + 2
∑m−1

m′=1
δ(Sq

i ,m
′)⊤1

(13)

The absolute difference in mAP is presented in Fig. 4. We

find that mAPQ loss, straightforwardly derived from the def-

inition of AP, consistently outperforms the tie-aware formu-

lation by a small but significant margin. This may be due to

the fact that the tie-aware formulation used in practical im-

plementations is in fact an approximation of the theoretical

tie-aware AP (see appendix in [24]). We use the mAPQ loss

in all subsequent experiments.

Table 1. Impact of whitening.

Medium Hard

Method W ROxford RParis ROxford RParis

GeM (TL-64)
63.0 77.6 38.8 56.3

X 64.9 78.4 41.7 58.7

GeM (AP)
65.1 78.8 38.8 58.6

X 67.5 80.1 42.8 60.5

Abbrev.: (W) whitening; (TL) triplet loss; (AP) our proposed mAPQ loss.

Score quantization. Our mAPQ loss depends on the num-

ber of quantization bins M in Eq. (7). We plot the per-

formance achieved for different values of M in Fig. 4. In

agreement to previous findings [25, 58], this parameter has

little impact on the performance. We use M = 20 quanti-

zation bins in all other experiments.

Descriptor whitening. As it is common practice [29, 30,

31, 44, 46], we whiten our descriptors before evaluation.

First, we learn a PCA from descriptors extracted from the

Landmarks dataset. Then, we use it to normalize the de-

scriptors for each test dataset. As in [29], we use a square-

rooted PCA. Table 1 shows the retrieval performance with

and without whitening. Whitening brings a constant im-

provement in performance (about 1∼4%) for all datasets

and losses. We use whitening in all subsequent experiments.

4.3. Ceteris paribus analysis

In this section, we study in more details the benefits of

using the proposed listwise loss with respect to a state-of-

the-art loss. For this purpose, we replace in our approach

the proposed mAPQ loss by the triplet loss (TL) accom-

panied by hard negative mining (HNM) as described in

[18] (i.e. using batches of 64 triplets). We then re-train

the model, keeping the pipeline identical and separately re-

tuning all hyper-parameters, such as the learning rate and

the weight decay. Performance after convergence is pre-

sented in the first two lines of Table 2. Our implementation

of the triplet loss, denoted as “GeM (TL-64)”, is on par or

better than [18], which is likely due to switching from R-

MAC to GeM pooling [45]. More importantly, we observe

5112

5 10 15 20 25 30 35 40

Number of quantization bins M

0.55

0.65

0.75

0.85

m
A
P

RParis6K, medium

ROxford5K, medium

0 1000 2000 3000 4000 5000 6000 7000 8000

Batch size

0.3

0.4

0.5

0.6

0.7

0.8

m
A
P RParis6K, medium

RParis6K, hard

ROxford5K, medium

ROxford5K, hard

204 315 409 586

Number of sampled classes per batch

0.0

0.2

0.4

0.6

0.8

m
A
P

RParis6K, medium

ROxford5K, medium

RParis6K, hard

ROxford5K, hard

Figure 4. Left: mAP for the medium benchmarks of RParis and ROxford for different numbers of quantization bins M (Eq. 7), showing

this parameter has little impact on performance. Middle: mAP for different batch sizes B. Best results are obtained with large batch sizes.

Right: Assuming that it could be beneficial for the model to see images from different classes at each iteration, we construct each batch by

sampling images from a limited random set of classes. This has little to no effect on the final performance.

a significant improvement when using the proposed mAPQ

loss (up to 3% mAP) even though no hard-negative min-

ing scheme is employed. We stress that training with the

triplet loss using larger batches (i.e. seeing more triplets be-

fore updating the model), denoted as GeM (TL-512) and

GeM (TL-1024), does not lead to increased performance as

shown in Table 2. Note that TL-1024 corresponds to seeing

1024× 3 = 3072 images per model update, which roughly

corresponds to a batch size B = 4096 with our mAPQ loss.

This shows that the good performance of the mAPQ loss is

not solely due to using larger training batches.

We also indicate in Table 2 the training effort for each

method (number of backward and forward passes, number

of updates, total training time) as well as the number of

hyper-parameters and extra lines of code they require with

respect to a base implementation (see supplementary mate-

rial for more details). As it can be observed, our approach

leads to considerably fewer weight updates than when us-

ing a local loss. It also leads to a significant reduction in

forward and backward passes. This supports our claim that

considering all images at once with a listwise loss is much

more effective. Overall, our model is trained 3 times faster

than with a triplet loss.

The methods can also be compared regarding the amount

of engineering involved. For instance, hard negative mining

can easily require hundreds of additional lines, and comes

with many extra hyper-parameters. In contrast, the PyTorch

code for the proposed backprop is only 5 lines longer than a

RParis6K
medium

ROxford5K
medium

RParis6K
hard

ROxford5K
hard

−0.01

0.00

0.01

0.02

0.03

∆
m
A
P

RParis6K
medium

ROxford5K
medium

RParis6K
hard

ROxford5K
hard

−0.005

0.000

0.005

0.010

0.015

∆
m
A
P

Q Q

Figure 5. Left: Balancing AP weights when computing the AP

loss, such that all classes are weighted equally within a batch,

brings a performance improvement of 1 to 3%. Right: Improve-

ment in mAP from mean mAPT loss to mean mAPQ loss. Our

AP formulation results in a small but constant improvement with

respect to the tie-aware AP formulation from [24].

normal backprop, the AP loss itself can be implemented in

15 lines, and our approach requires only 2 hyper-parameters

(the number of bins M and batch size B), that have safe

defaults and are not very sensitive to changes.

4.4. Comparison with the state of the art

We now compare the results obtained by our model with

the state of the art. The top part of Table 3 summarizes the

performance of the best-performing methods on the datasets

listed in section 4.1 without query expansion. We use the

notation of [46] as this helps us to clarify important as-

pects about each method. Namely, generalized-mean pool-

ing [45] is denoted by GeM and the R-MAC pooling [56] is

denoted by R-MAC. The type of loss function used to train

the model is denoted by (CL) for the contrastive loss, (TL)

for the triplet loss, (AP) for our mAPQ loss, and (O) if no

loss is used (i.e. off-the-shelf features).

Table 2. Ceteris paribus analysis on the loss.

Medium Hard Number of

Backwards

Number of

Forwards

Number of

Updates

Number of

hyper-param.‡
Extra lines

of code

Training

timeMethod ROxf RPar ROxf RPar

GeM (AP) [ours] 67.5 80.1 42.8 60.5 819K 1638K 200 2 20 1 day

GeM (TL-64) [ours] 64.9 78.4 41.7 58.7 1572K 2213K 8192 6 175 (HNM) 3 days

GeM (TL-512) [ours] 65.8 77.6 41.3 57.1 2359K 3319K 1536 6 175 (HNM) 3 days

GeM (TL-1024) [ours] 65.5 78.6 41.1 59.1 3146K 4426K 1024 6 175 (HNM) 3 days

R-MAC (TL)† [18] 60.9 78.9 32.4 59.4 1536K 3185K 8000 6 100+ (HNM) 4 days

GeM (CL)† [45] 64.7 77.2 38.5 56.3 1260K 3240K 36000 7 46 (HNM) 2.5 days

†For the sake of completeness, we include metrics from [18] and [45] in the last two rows of the table even though they are not exactly comparable due the

usage of different training sets or whitening and pooling mechanisms. ‡See supplementary material for a listing of those parameters.

5113

Table 3. Performance evaluation (mean average precision) for ROxford and RParis.

Medium Hard

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

Local descriptors

HesAff-rSIFT-ASMK∗ + SP [46] 60.6 46.8 61.4 42.3 36.7 26.9 35.0 16.8

DELF-ASMK∗ + SP [41] 67.8 53.8 76.9 57.3 43.1 31.2 55.4 26.4

Global representations

MAC (O) [56] 41.7 24.2 66.2 40.8 18.0 5.7 44.1 18.2

SPoC (O) [3] 39.8 21.5 69.2 41.6 12.4 2.8 44.7 15.3

CroW (O) [31] 42.4 21.2 70.4 42.7 13.3 3.3 47.2 16.3

R-MAC (O) [56] 49.8 29.2 74.0 49.3 18.5 4.5 52.1 21.3

R-MAC (TL) [18] 60.9 39.3 78.9 54.8 32.4 12.5 59.4 28.0

GeM (O) [45] 45.0 25.6 70.7 46.2 17.7 4.7 48.7 20.3

GeM (CL) [45] 64.7 45.2 77.2 52.3 38.5 19.9 56.3 24.7

GeM (AP) [ours] 67.5 47.5 80.1 52.5 42.8 23.2 60.5 25.1

Query expansion

R-MAC (TL) + αQE [18] 64.8 45.7 82.7 61.0 36.8 19.5 65.7 35.0

GeM (CL) + αQE [45] 67.2 49.0 80.7 58.0 40.8 24.2 61.8 31.0

GeM (AP) + αQE [ours] 71.4 53.1 84.0 60.3 45.9 26.2 67.3 32.3

All global representations are learned from a ResNet-101 backbone, with varying pooling layers and fine-tuning losses. Abbreviations: (O) off-the-shelf

features; (CL) fine-tuned with contrastive loss; (TL) fine-tuned with triplet loss; (AP) fine-tuned with mAP loss (ours); (SP) spatial verification with

RANSAC; (αQE) weighted query expansion [45].

Overall, our model outperforms the state of the art by 1%

to 5% on most of the datasets and protocols. For instance,

our model is more than 4 points ahead of the best reported

results [45] on the hard protocol of ROxford and RParis.

On the same datasets augmented with 1 million distrac-

tor images, our method outperforms all other approaches

except for RParis+1M where only Gordo et al. [18] ob-

tain a better result. Note that we outperform [18] without

query expansion by +8.2% and +10.7% on ROxford+1M

in the medium and hard protocols, resp., while the differ-

ence on RParis+1M is only +2.3% and +2.9% in favor

of [18], respectively. This is remarkable since our model

uses a single scale at test time (i.e. the original test images),

whereas other methods boost their performance by pooling

image descriptors computed at several scales. In addition,

our network does not undergo any special pre-training step

(we initialize our networks with ImageNet-trained weights),

again unlike most competitors from the state of the art.

Empirically we observe that the mAPQ loss renders such

pre-training stages obsolete. Finally, the training time is

also considerably reduced: training our model from scratch

takes a few hours on a single P40 GPU.

We also report results with query expansion (QE) at the

bottom of Table 3, as is common practice in the litera-

ture [2, 18, 46, 45]. We use the α-weighted versions [45]

with α = 2 and k = 10 nearest neighbors. Our model with

QE outperforms other methods also using QE in 6 protocols

out of 8. We note that our results are on par with those of

the method proposed by Noh et al. [41], which is based on

local descriptors. Even though our method relies on global

descriptors, hence lacking any geometric verification, it still

outperforms it on the ROxford and RParis datasets without

added distractors.

5. Conclusion

In this paper, we proposed the application of a listwise

ranking loss to the task of image retrieval. We do so by

directly optimizing a differentiable relaxation of the mAP,

that we call mAPQ. In contrast to the standard loss func-

tions used for this task, mAPQ does not require expensive

mining of image samples or careful pre-training. Moreover,

we train our models efficiently using a multistaged opti-

mization scheme that allows us to learn models on high-

resolution images with arbitrary batch sizes, and achieve

state-of-the-art results in multiple benchmarks. We believe

our findings can guide the development of better models for

image retrieval by showing the benefits of optimizing for

the target metric. Our work also encourages the exploration

of image retrieval beyond the instance level, by leveraging

a metric that can learn from a ranked list of arbitrary size at

the same time, instead of relying on local rankings.

Acknowledgments

We thank Dr. Christopher Dance who provided insight

and expertise that greatly assisted the research and im-

proved the manuscript.

5114

References

[1] Relja Arandjelović, Petr Gronat, Akihiko Torii, Tomas Pa-

jdla, and Josef Sivic. NetVLAD: CNN architecture for

weakly supervised place recognition. In CVPR, 2016. 1,

2

[2] Relja Arandjelović and Andrew Zisserman. Three things ev-

eryone should know to improve object retrieval. In CVPR,

2012. 8

[3] Artem Babenko and Victor Lempitsky. Aggregating local

deep features for image retrieval. In ICCV, 2015. 1, 2, 8

[4] Artem Babenko, Anton Slesarev, Alexandr Chigorin, and

Victor Lempitsky. Neural codes for image retrieval. In

ECCV, 2014. 1, 2, 5

[5] Aseem Behl, Pritish Mohapatra, C.V. Jawahar, and M. Pawan

Kumar. Optimizing average precision using weakly super-

vised data. IEEE TPAMI, 2015. 3

[6] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt

Deeds, Nicole Hamilton, and Greg Hullender. Learning to

rank using gradient descent. In ICML, 2005. 2

[7] Fatih Cakir, Kun He, Sarah Adel Bargal, and Stan Sclaroff.

MIHash: Online hashing with mutual information. In ICCV,

2017. 2

[8] Fatih Cakir, Kun He, Xia Xide, Brian Kulis, and Stan

Sclaroff. Deep metric learning to rank. In CVPR, 2019. 3

[9] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang

Li. Learning to rank: from pairwise approach to listwise

approach. In ICML, 2007. 2

[10] Haoran Chen, Yaowei Wang, Yemin Shi, Ke Yan, Mengyue

Geng, Yonghong Tian, and Tao Xiang. Deep transfer learn-

ing for person re-identification. In International Conference

on Multimedia Big Data, 2018. 1, 2

[11] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi

Huang. Beyond triplet loss: a deep quadruplet network for

person re-identification. In CVPR, 2017. 1

[12] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi

Huang. A multi-task deep network for person re-

identification. In AAAI, 2017. 1, 2

[13] Charles Corbiere, Hedi Ben-Younes, Alexandre Ramé, and

Charles Ollion. Leveraging weakly annotated data for fash-

ion image retrieval and label prediction. In ICCVW, 2017.

1

[14] G. Csurka, C. Dance, L. Fan, J. Williamowski, and C. Bray.

Visual categorization with bags of keypoints. In ECCVW,

2004. 2

[15] Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja

Fidler. VSE++: Improving visual-semantic embeddings with

hard negatives. In BMVC, 2018. 1, 2

[16] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Flo-

rent Perronnin. Iterative quantization: A procrustean ap-

proach to learning binary codes for large-scale image re-

trieval. IEEE TPAMI, 2013. 2

[17] Albert Gordo, Jon Almazán, Jérôme Revaud, and Diane Lar-

lus. Deep image retrieval: Learning global representations

for image search. In ECCV, 2016. 1, 2, 3, 5

[18] Albert Gordo, Jon Almazán, Jerome Revaud, and Diane Lar-

lus. End-to-end learning of deep visual representations for

image retrieval. IJCV, 2017. 1, 2, 3, 4, 5, 6, 7, 8

[19] Albert Gordo, Jose A Rodriguez-Serrano, Florent Perronnin,

and Ernest Valveny. Leveraging category-level labels for

instance-level image retrieval. In CVPR, 2012. 2

[20] Ido Guy, Alexander Nus, Dan Pelleg, and Idan Szpektor.

Care to share?: Learning to rank personal photos for pub-

lic sharing. In International Conference on Web Search and

Data Mining, 2018. 1

[21] Ben Hardwood, Vijay Kumar B G, Gustavo Carneiro, Ian

Reid, and Tom Drummond. Smart mining for deep metric

learning. In ICCV, 2017. 1, 2

[22] Ben Harwood, G Carneiro, I Reid, and T Drummond. Smart

mining for deep metric learning. In ICCV, 2017. 2

[23] Tamir Hazan, Joseph Keshet, and David A. McAllester. Di-

rect loss minimization for structured prediction. In NIPS,

2010. 3

[24] Kun He, Fatih Cakir, Sarah Adel Bargal, and Stan Sclaroff.

Hashing as tie-aware learning to rank. In CVPR, 2018. 1, 2,

3, 4, 6, 7

[25] Kun He, Yan Lu, and Stan Sclaroff. Local descriptors op-

timized for average precision. In CVPR, 2018. 1, 2, 3, 4,

6

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 5

[27] Paul Henderson and Vittorio Ferrari. End-to-end training of

object class detectors for mean average precision. In ACCV,

2016. 3

[28] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In de-

fense of the triplet loss for person re-identification. arXiv

preprint, 2017. 2

[29] Hervé Jégou and Ondřej Chum. Negative evidences and

co-occurences in image retrieval: The benefit of PCA and

whitening. In ECCV. 2012. 6

[30] Hervé Jégou and Andrew Zisserman. Triangulation embed-

ding and democratic aggregation for image search. In CVPR,

2014. 2, 6

[31] Yannis Kalantidis, Clayton Mellina, and Simon Osindero.

Cross-dimensional weighting for aggregated deep convolu-

tional features. In ECCVW, 2016. 6, 8

[32] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint, 2014. 5

[33] Kazuaki Kishida. Property of average precision and its gen-

eralization: An examination of evaluation indicator for infor-

mation retrieval experiments. NII Technical Reports, 2005.

3

[34] Tie-Yan Liu. Learning to Rank for Information Retrieval.

Springer, 2011. 1, 2

[35] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou

Tang. DeepFashion: Powering robust clothes recognition

and retrieval with rich annotations. In CVPR, 2016. 1

[36] David G. Lowe. Distinctive image features from scale-

invariant keypoints. IJCV, 2004. 2

[37] R Manmatha, Chao-Yuan Wu, Alexander J Smola, and

Philipp Krähenbühl. Sampling matters in deep embedding

learning. In ICCV, 2017. 1, 2

[38] Anastasiia Mishchuk, Dmytro Mishkin, Filip Radenović,

and Jiri Matas. Working hard to know your neighbor’s mar-

gins: Local descriptor learning loss. In NIPS, 2017. 1, 2

5115

[39] Pritish Mohapatra, C.V. Jawahar, and M. Pawan Kumar. Ef-

ficient optimization for average precision SVM. In NIPS,

2014. 3

[40] Yair Movshovitz-Attias, Alexander Toshev, Thomas K. Le-

ung, Sergey Ioffe, and Saurabh Singh. No fuss distance met-

ric learning using proxies. In ICCV, 2017. 2

[41] Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand,

and Bohyung Han. Large-scale image retrieval with attentive

deep local features. In ICCV, 2017. 8

[42] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and

Andrew Zisserman. Object retrieval with large vocabularies

and fast spatial matching. In CVPR, 2007. 5

[43] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and

Andrew Zisserman. Lost in quantization: Improving particu-

lar object retrieval in large scale image databases. In CVPR,

2008. 5

[44] Filip Radenović, Giorgos Tolias, and Ondřej Chum. CNN

image retrieval learns from BoW: Unsupervised fine-tuning

with hard examples. In ECCV, 2016. 1, 2, 3, 6

[45] Filip Radenović, Giorgos Tolias, and Ondej Chum. Fine-

tuning CNN image retrieval with no human annotation.

TPAMI, 2018. 1, 2, 5, 6, 7, 8

[46] Filip Radenovi, Ahmet Iscen, Giorgos Tolias, Yannis

Avrithis, and Ondej Chum. Revisiting Oxford and Paris:

Large-scale image retrieval benchmarking. In CVPR, 2018.

5, 6, 7, 8

[47] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan,

and Stefan Carlsson. CNN features off-the-shelf: An as-

tounding baseline for recognition. In CVPRW, 2014. 1, 2

[48] Oren Rippel, Manohar Paluri, Piotr Dollar, and Lubomir

Bourdev. Metric learning with adaptive density discrimina-

tion. In ICLR, 2016. 2

[49] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C Berg, and Li

Fei-Fei. ImageNet large scale visual recognition challenge.

IJCV, 2015. 5

[50] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

FaceNet: A unified embedding for face recognition and clus-

tering. In CVPR, 2015. 2

[51] Hailin Shi, Yang Yang, Xiangyu Zhu, Shengcai Liao, Zhen

Lei, Weishi Zheng, and Stan Z Li. Embedding deep metric

for person re-identification: A study against large variations.

In ECCV, 2016. 2

[52] Kihyuk Sohn. Improved deep metric learning with multi-

class n-pair loss objective. In NIPS, 2016. 1, 2

[53] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio

Savarese. Deep metric learning via lifted structured feature

embedding. In CVPR, 2016. 1

[54] Yang Song, Alexander Schwing, Richard, and Raquel Urta-

sun. Training deep neural networks via direct loss minimiza-

tion. In ICML, 2016. 3

[55] Eleftherios Spyromitros-Xioufis, Symeon Papadopoulos,

Ioannis Kompatsiaris, Grigorios Tsoumakas, and I Vlahavas.

A comprehensive study over VLAD and product quantiza-

tion in large-scale image retrieval. IEEE Transactions on

Multimedia, 2014. 2

[56] G. Tolias, R. Sicre, and H. Jégou. Particular object retrieval

with integral max-pooling of CNN activations. In ICLR,

2016. 2, 5, 7, 8

[57] Andrew Trotman. Learning to rank. Information Retrieval,

2005. 2

[58] Evgeniya Ustinova and Victor Lempitsky. Learning deep

embeddings with histogram loss. In NIPS. 2016. 1, 2, 4,

6

[59] Chong Wang, Xipeng Lan, and Xue Zhang. How to train

triplet networks with 100k identities? In ICCVW, 2017. 2

[60] Wenguan Wang, Yuanlu Xu, Jianbing Shen, and Song-Chun

Zhu. Attentive fashion grammar network for fashion land-

mark detection and clothing category classification. In

CVPR, 2018. 1

[61] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten

Joachims. A support vector method for optimizing average

precision. In SIGIR, 2007. 3

5116

