
Learned Video Compression

Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson, Alexander G. Anderson, Lubomir Bourdev

WaveOne, Inc.

{oren, sanjay, carissa, steve, alex, lubomir}@wave.one

Abstract

We present a new algorithm for video coding, learned

end-to-end for the low-latency mode. In this setting, our ap-

proach outperforms all existing video codecs across nearly

the entire bitrate range. To our knowledge, this is the first

ML-based method to do so.

We evaluate our approach on standard video compres-

sion test sets of varying resolutions, and benchmark against

all mainstream commercial codecs in the low-latency mode.

On standard-definition videos, HEVC/H.265, AVC/H.264

and VP9 typically produce codes up to 60% larger than

our algorithm. On high-definition 1080p videos, H.265 and

VP9 typically produce codes up to 20% larger, and H.264

up to 35% larger. Furthermore, our approach does not

suffer from blocking artifacts and pixelation, and thus pro-

duces videos that are more visually pleasing.

We propose two main contributions. The first is a novel

architecture for video compression, which (1) generalizes

motion estimation to perform any learned compensation be-

yond simple translations, (2) rather than strictly relying on

previously transmitted reference frames, maintains a state

of arbitrary information learned by the model, and (3) en-

ables jointly compressing all transmitted signals (such as

optical flow and residual).

Secondly, we present a framework for ML-based spatial

rate control — a mechanism for assigning variable bitrates

across space for each frame. This is a critical component

for video coding, which to our knowledge had not been de-

veloped within a machine learning setting.

1. Introduction

Video content consumed more than 70% of all inter-

net traffic in 2016, and is expected to grow threefold by

2021 [1]. At the same time, the fundamentals of existing

video compression algorithms have not changed consider-

ably over the last 20 years [46, 36, 35, . . .]. While they

have been very well engineered and thoroughly tuned, they

are hard-coded, and as such cannot adapt to the growing de-

mand and increasingly versatile spectrum of video use cases

such as social media sharing, object detection, VR stream-

ing, and so on.

Meanwhile, approaches based on deep learning have rev-

olutionized many industries and research disciplines. In

particular, in the last two years, the field of image compres-

sion has made large leaps: ML-based image compression

approaches have been surpassing the commercial codecs by

significant margins, and are still far from saturating to their

full potential (survey in Section 1.3).

The prevalence of deep learning has further catalyzed the

proliferation of architectures for neural network accelera-

tion across a spectrum of devices and machines. This hard-

ware revolution has been increasingly improving the per-

formance of deployed ML-based technologies — rendering

video compression a prime candidate for disruption.

In this paper, we introduce a new algorithm for video

coding. Our approach is learned end-to-end for the low-

latency mode, where each frame can only rely on informa-

tion from the past. This is an important setting for live trans-

mission, and constitutes a self-contained research problem

and a stepping-stone towards coding in its full generality.

In this setting, our approach outperforms all existing video

codecs across nearly the entire bitrate range.

We thoroughly evaluate our approach on standard

datasets of varying resolutions, and benchmark against all

modern commercial codecs in this mode. On standard-

definition (SD) videos, HEVC/H.265, AVC/H.264 and VP9

typically produce codes up to 60% larger than our algo-

rithm. On high-definition (HD) 1080p videos, H.265 and

VP9 typically produce codes up to 20% larger, and H.264

up to 35% larger. Furthermore, our approach does not suf-

fer from blocking artifacts and pixelation, and thus produces

videos that are more visually pleasing (see Figure 1).

In Section 1.1, we provide a brief introduction to video

coding in general. In Section 1.2, we proceed to describe

our contributions. In Section 1.3 we discuss related work,

and in Section 1.4 we provide an outline of this paper.

1.1. Video coding in a nutshell

1.1.1 Video frame types

Video codecs are designed for high compression efficiency,

and achieve this by exploiting spatial and temporal redun-

dancies within and across video frames ([51, 47, 36, 34]

provide great overviews of commercial video coding tech-

niques). Existing video codecs feature 3 types of frames:

3454

0.5 1.0 1.5 2.0
Bits Per Pixel

0.92

0.94

0.96

0.98

M
S-

SS
IM

Ours
AVC/H.264
AVC/H.264 [slower]
HEVC/H.265
HEVC/H.265 [slower]
HEVC HM
VP9

0.5 1.0 1.5
Bits Per Pixel

0.980

0.985

0.990

0.995

M
S-

SS
IM

Ours
AVC/H.264
AVC/H.264 [slower]
HEVC/H.265
HEVC/H.265 [slower]
HEVC HM
VP9

Ours

0.0570 BPP

AVC/H.264

0.0597 BPP

AVC/H.265

0.0651 BPP

Ours

0.0227 BPP

AVC/H.264

0.0247 BPP

AVC/H.265

0.0231 BPP

Figure 1. Examples of reconstructions by different codecs for the same bits per pixel (BPP) value. Videos taken from the Xiph HD library2,

commonly used for compression evaluation. Comprehensive benchmarking results can be found in Section 5. Top left: raw input frame,

with boxes around areas zoomed-in on. Top right: rate-distortion curves for each video. Bottom rows: crops from the reconstruction by

each codec for visual comparisons of fine details (better viewed electronically).

1. I-frames (”intra-coded”), compressed using an image

codec and do not depend on any other frames;

2. P-frames (”predicted”), extrapolated from frames in

the past; and

3. B-frames (”bi-directional”), interpolated from previ-

ously transmitted frames in both the past and future.

While introducing B-frames enables higher coding effi-

ciency, it increases the latency: to decode a given frame,

future frames have to first be transmitted and decoded.

1.1.2 Compression procedure

In all modern video codecs, P-frame coding is invariably

accomplished via two separate steps: (1) motion compensa-

tion, followed by (2) residual compression.

Motion compensation. The goal of this step is to lever-

age temporal redundancy in the form of translations. This

is done via block-matching (overview at [30]), which re-

constructs the current target, say xt for time step t, from a

handful of previously transmitted reference frames. Specif-

ically, different blocks in the target are compared to ones

within the reference frames, across a range of possible dis-

placements. These displacements can be represented as an

optical flow map f t, and block-matching can be written as

a special case of the flow estimation problem (see Section

1.3). In order to minimize the bandwidth required to trans-

mit the flow f t and reduce the complexity of the search, the

flows are applied uniformly over large spatial blocks, and

discretized to precision of half/quarter/eighth-pixel.

Residual compression. Following motion compensation,

the leftover difference between the target and its motion-

compensated approximation mt is then compressed. This

difference ∆t = xt − mt is known as the residual, and

is independently encoded with an image compression algo-

rithm adapted to the sparsity of the residual.

1.2. Contributions

This paper presents several novel contributions to video

codec design, and to ML modeling of compression:

Compensation beyond translation. Traditional codecs

are constrained to predicting temporal patterns strictly in

the form of motion. However, there exists significant redun-

dancy that cannot be captured via simple translations. Con-

sider, for example, an out-of-plane rotation such as a person

turning their head sideways. Traditional codecs will not be

able to predict a profile face from a frontal view. In con-

trast, our system is able to learn arbitrary spatio-temporal

patterns, and thus propose more accurate predictions, lead-

ing to bitrate savings.

3455

Propagation of a learned state. In traditional codecs all

“prior knowledge” propagated from frame to frame is ex-

pressed strictly via reference frames and optical flow maps,

both embedded in raw pixel space. These representations

are very limited in the class of signals they may charac-

terize, and moreover cannot capture long-term memory.

In contrast, we propagate an arbitrary state autonomously

learned by the model to maximize information retention.

Joint compression of motion and residual. Each codec

must fundamentally decide how to distribute bandwidth

among motion and residual. However, the optimal trade-

off between these is different for each frame. In traditional

methods, the motion and residual are compressed sepa-

rately, and there is no easy way to trade them off. Instead,

we jointly compress the compensation and residual signals

using the same bottleneck. This allows our network to re-

duce redundancy by learning how to distribute the bitrate

among them as a function of frame complexity.

Flexible motion field representation. In traditional

codecs, optical flow is represented with a hierarchical block

structure where all pixels within a block share the same

motion. Moreover, the motion vectors are quantized to a

particular sub-pixel resolution. While this representation is

chosen because it can be compressed efficiently, it does not

capture complex and fine motion. In contrast, our algorithm

has the full flexibility to distribute the bandwidth so that ar-

eas that matter more have arbitrarily sophisticated motion

boundaries at an arbitrary flow precision, while unimpor-

tant areas are represented very efficiently. See comparisons

in Figure 2.

Multi-flow representation. Consider a video of a train

moving behind fine branches of a tree. Such a scene is

highly inefficient to represent with traditional systems that

use a single flow map, as there are small occlusion patterns

that break the flow. Furthermore, the occluded content will

have to be synthesized again once it reappears. We propose

a representation that allows our method the flexibility to de-

compose a complex scene into a mixture of multiple simple

flows and preserve occluded content.

Spatial rate control. It is critical for any video compres-

sion approach to feature a mechanism for assigning differ-

ent bitrates at different spatial locations for each frame. In

ML-based codec modeling, it has been challenging to con-

struct a single model which supports R multiple bitrates,

and achieves the same results as R separate, individual

models each trained exclusively for one of the bitrates. In

this work we present a framework for ML-driven spatial rate

control which meets this requirement.

1.3. Related Work

ML-based image compression In the last two years, we

have seen a great surge of ML-based image compression ap-

(a) H.265 motion vectors. (b) Our optical flow.

Figure 2. Optical flow maps for H.265 and our approach, for the

same bitrate. Traditional codecs use a block structure to represent

motion, and heavily quantize the motion vectors. Our algorithm

has the flexibility to represent arbitrarily sophisticated motion.

proaches [15, 44, 45, 5, 4, 14, 25, 43, 38, 23, 2, 27, 6, 3, 10,

32, 33]. These learned approaches have been reinventing

many of the hard-coded techniques developed in traditional

image coding: the coding scheme, transformations into and

out of a learned codespace, quality assessment, and so on.

ML-based video compression. To our knowledge, the

only pre-existing end-to-end ML-based video compression

approachs are [52, 8, 16]. [52] first encodes key frames, and

proceeds to hierarchically interpolate the frames between

them. [8] designs neural networks for the predictive and

residual coding steps. [16] proposes a variational inference

approach for video compression on 64x64 video samples.

Enhancement of traditional coding using ML. There

have been several important contributions demonstrating

the effectiveness of replacing or enhancing different compo-

nents of traditional codecs with counterparts based on neu-

ral networks. These include improved motion compensa-

tion and interpolation [54, 21, 58, 31], intra-prediction cod-

ing [40], post-processing refinement [7, 55, 26, 56, 48, 57,

41, 17], and rate control [28].

Optical flow estimation. The problem of optical flow es-

timation has been widely studied over the years, with thou-

sands of solutions developed using tools from partial dif-

ferential equations [18, 29, 12, 13, . . .] to, more recently,

machine learning [50, 11, 22, 37, . . .].

Given two similar frames x1,x2 ∈ R
C×H×W , the task

is to construct an optical flow field f
∗ ∈ R

2×H×W of hori-

zontal and vertical displacements, spatially “shuffling” val-

ues from x1 to best match x2. This can be more concretely

written as

f
∗ = min

f

L (x2,F(x1, f)) + λR(f)

for some metric L (·, ·), smoothness regularization R(·)
and where F(·, ·) is the inverse optical flow operator

[F(x, f)]chw = xc,h+f1hw,w+f2hw
. Note that while h,w are

integer indices, f1hw, f2hw can be real-valued, and so the

right-hand side is computed using lattice interpolation. In

this work we strictly discuss inverse flow, but often simply

write “flow” for brevity.

3456

1.4. Paper organization

The paper is organized in the following way:

• In Section 2, we motivate the overall design of our

model, and present its architecture.

• In Section 3, we describe our coding procedure of gen-

erating variable-length bitstreams from the fixed-size

codelayer tensors.

• In Section 4, we present our framework for ML-based

spatial rate control, and discuss how we train/deploy it.

• In Section 5, we discuss our training/evaluation proce-

dures, and present the results of our benchmarking and

ablation studies.

• In Appendix A, we completely specify the architec-

tural details of our model.

2. Model Architecture

Notation. We seek to encode a video with frames

x1, . . . ,xT ∈ R
3×H×W . Throughout this section, we dis-

cuss different strategies for video model construction. At a

high level, all video coding models share the generic input-

output structure in the below pseudo-code.

Algorithm Video coder structure for time step t

Input:

1: Target frame xt ∈ R
3×H×W

2: Previous state St−1

Output:

1: Bitstream et ∈ {0, 1}ℓ(e) to be transmitted

2: Frame reconstruction x̂t ∈ R
3×H×W

3: Updated state St

The state St is made of one or more tensors, and intu-

itively corresponds to some prior memory propagated from

frame to frame. This concept will be clarified below.

2.1. State propagator

To motivate and provide intuition behind the final ar-

chitecture, we present a sequence of steps illustrating how

a traditional video encoding pipeline can be progressively

adapted into an ML-based pipeline that is increasingly more

general (and cleaner).

Note that in this section, we only aim to provide a high-

level description of our model: we completely specify all

the finer architectural details in Appendix A.

Step #1: ML formulation of the flow-residual paradigm.

Our initial approach is to simulate the traditional flow-

residual pipeline featured by the existing codecs (see Sec-

tion 1.1), using building blocks from our ML toolbox. We

first construct a learnable flow estimator network M(·),
which outputs an (inverse) flow f t ∈ R

2×H×W that motion-

compensates the last reconstructed frame x̂t−1 towards the

current target xt.

We then construct a learnable flow compresso‘’r with en-

coder Ef and decoder Df networks, which auto-encode f t
through a low-bandwidth bottleneck and reconstructs it as

Motion compensation

Residual compression

Figure 3. Graph of Step #1, which formulates the traditional flow-

residual pipeline using tools from ML. Blue tensors correspond

to frames and green to flows, both embedded in raw pixel space.

Yellow operators are learnable networks, and gray operators are

hard-coded differentiable functions. M(·) is a flow estimator and

F(·, ·) is the optical flow operator described in Section 1.3.

f̂ t. Traditional codecs further increase the coding efficiency

of the flow by encoding only the difference f t − f̂ t−1 from

the previously-reconstructed flow.

Next, we use our reconstruction of the flow to compute

a motion-compensated reconstruction of the frame itself as

mt = F(x̂t−1, f̂ t), where F(·, ·) denotes the inverse optical

flow operator (see Section 1.3).

Finally, we build a residual compressor with learnable

encoder Er(·) and decoder Dr(·) networks to auto-encode

the residual ∆t = xt −mt. Any state-of-the-art ML-based

image compression architectures can be used for the core

encoders/decoders of the flow and residual compressors.

See Figure 3 for a visualization of this graph. While

this setup generalizes the traditional approach via end-to-

end learning, it still suffers from several important impedi-

ments, which we describe and alleviate in the next steps.

Step #2: Joint compression of flow and residual. In

the previous step, we encoded the flow and residual sepa-

rately through distinct codes. Instead, it is advantageous in

many ways to compress them jointly through a single bot-

tleneck: this removes redundancies among them, and allows

the model to automatically ascertain how to distribute band-

width among them as function of input complexity. To that

end, we consolidate to a single encoder E(·) network and

single decoder D(·) network. See Figure 4 for a graph of

this architecture.

Figure 4. Graph of Step #2, which generalizes the traditional ar-

chitecture of Step #1 by jointly compressing the flow and residual.

3457

Figure 5. Graph of Step #3. Rather than relying on reference

frames and flows embedded in pixel space, we instead propagate a

generalized state containing information learned by the model.

Step #3: Propagation of a learned state. We now ob-

serve that all prior memory being propagated from frame

to frame is represented strictly through the previously re-

constructed frame x̂t−1 and flow f̂ t−1, both embedded in

raw pixel space. These representations are not only com-

putationally inefficient, but also highly suboptimal in their

expressiveness, as they can only characterize a very lim-

ited class of useful signals and cannot capture longer-term

memory. Hence, it is greatly beneficial to define a generic

and learnable state St of one or more tensors, and provide

the model with a mechanism to automatically decide how

to populate it and update it across time steps.

Our state propagation can be understood as an extension

of a recursive neural network (RNN), where St accumu-

lates temporal information through recursive updates. Un-

like a traditional RNN, updates to St must pass through a

low-bandwidth bottleneck, which we achieve through in-

tegration with modules for encoding, decoding, bitstream

compression, compensation, and so on. Each frame recon-

struction x̂t is computed from the updated state St using a

module we refer to as state-to-frame, and denote as G(·).

We provide an example skeleton of this architecture in

Figure 5. In Figure 9, it can be seen that introducing a

learned state results in 10-20% bitrate savings.

Step #4: Arbitrary compensation. We can further gen-

eralize the architecture proposed in the previous step. We

observe that the form of compensation in G(·) still simu-

lates the traditional flow-based approach, and hence is lim-

ited to compensation of simple translations only. That is,

flow-based compensation only allows us to “move pixels

around”, but does not allow us change their actual values.

However, since we have a tool for end-to-end training, we

can now learn any arbitrary compensation beyond motion.

Hence, we can generalize G(·) to generate multiple flows

instead of a single one, as well as multiple reference frames

to which the flows can be applied respectively.

2.2. Architecture building blocks

We have empirically found that a multiscale dual path

backbone works well as a fundamental building block

within our architecture. Specifically, we combine the mul-

tiscale rendition [19] of DenseNet [20] with dual path [9].

The core of our video encoder and decoder is simply re-

peated application of this block. Full descriptions of the

choices for E(·),D(·),G(·) can be found in Appendix A.

3. Coding procedure
We assume we have applied our encoder network, and

have reached a fixed-size tensor c ∈ [−1, 1]C×Y×X (we

omit timestamps for notational clarity). The goal of the cod-

ing procedure is to map c to a bitstream e ∈ {0, 1}ℓ(e) with

variable length ℓ(e). The coder is expected to achieve high

coding efficiency by exploiting redundancy injected into c

by the regularizer (see below) through the course of train-

ing. We follow the coding procedure described in detail in

[38] and summarized in this section.

Bitplane decomposition. We first transform c into a bi-

nary tensor b ∈ {0, 1}B×C×Y×X by decomposing it into

B bitplanes. This operation transformation maps each value

cchw into its binary expansion b1chw, . . . , bBchw of B bits.

This is a lossy operation, since the precision of each value

is truncated. In practice, we use B = 6.

Adaptive entropy coding (AEC). The AEC maps the bi-

nary tensor b into a bitstream e. We train a classifier to com-

pute the probability of activation P[bbcyx = 1 |C] for each

bit value bbcyx conditioned on some context C. The con-

text consists of values of neighboring pre-transmitted bits,

leveraging structure within and across bitplanes.

Adaptive codelength regularization. The regularizer is

designed to reduce the entropy content of b, in a way that

can be leveraged by the entropy coder. In particular, it

shapes the distribution of elements of the quantized code-

layer ĉ to feature an increasing degree of sparsity as a func-

tion of bitplane index. This is done with the functional form

R(ĉ) =
αi

CY X

∑

cyx

log |ĉcyx|

for iteration i and scalar αi. The choice of αi allows

training the mean codelength to match a target bitcount

Eĉ[ℓ(e)] −→ ℓtarget. Specifically, during training, we use

the coder to monitor the average codelength. We then mod-

ulate αi using a feedback loop as a function of the discrep-

ancy between the target codelength and its observed value.

4. Spatial Rate Control
It is critical for any video compression approach to in-

clude support for spatial rate control — namely, the ability

to independently assign arbitrary bitrates rh,w at different

spatial locations across each frame. A rate controller al-

gorithm then determines appropriate values for these rates,

as function of a variety of factors: spatiotemporal recon-

struction complexity, network conditions, quality guaran-

tees, and so on.

Why not use a single-bitrate model? Most of the ML-

based image compression approaches train many individual

models — one for each point on the R-D curve [5, 38, 6,

. . .]. It is tempting to extend this formulation to video cod-

ing, and use a model that codes at a fixed bitrate level. How-

ever, one will quickly discover that this leads to fast accu-

mulation of error due to variability of coding complexity

3458

(a) Target frame xt. (b) Target - previous xt − xt−1 (c) Output optical flow f̂ t. (d) Residual xt −mt.

(e) Output reconstruction x̂t. (f) Final error xt − x̂t. (g) MS-SSIM map. (h) Output bitrate map.

Figure 6. Visualization of intermediate outputs for an example video from the Xiph HD dataset. (a) The original target frame. (b) The

difference between the target and previous frame. There are several distinct types of motion: camera pan, turning wheels, and moving

tractor. (c) The output optical flow map as produced by the algorithm, compensating for the motion patterns as described in (b). (d) The

leftover residual following motion compensation. (e) Output after addition of the residual reconstruction. (f) The difference between the

target and its final reconstruction. (g) A map of the errors between the target and its reconstruction, as evaluated by MS-SSIM. Brighter

color indicates larger error. (h) A map of the bitrates assigned by the spatial rate controller as a function of spatial location.

over both space and time. Namely, for a given frame, areas

that are hard to reconstruct at a high quality using our fixed

bitrate budget are going to be even more difficult in the next

frame, since their quality will only degrade further. In the

example in Figure 6, it can be seen that different bitrates are

assigned adaptively as function of reconstruction complex-

ity. In Figure 9, it can be seen that introducing a spatial rate

controller results in 10-20% better compression.

Traditional video codecs enable rate control via variation

of the quantization parameters: these control the numerical

precision of the code at each spatial location, and hence pro-

vide a tradeoff between bitrate and accuracy.

In ML-based compression schemes, however, it has been

quite challenging to design a high-performing mechanism

for rate control. Concretely, it is difficult to construct a sin-

gle model which supports R multiple bitrates, and achieves

the same results as R separate, individual models each

trained exclusively for one of the bitrates.

In Section 4.1, we present a framework for spatial rate

control in a neural network setting, and in Section 4.2 dis-

cuss our controller algorithm for rate assignment. In Ap-

pendix A, we fully specify all architectural choices for the

spatial rate controller.

4.1. Spatial multiplexing framework
Here we construct a mechanism which assigns variable

bitrates across different spatial locations for each video

frame. Specifically, we assume our input is a spatial map

of integer rates p ∈ {1, 2, . . . , R}Y×X . Our goal is to con-

struct a model that can arbitrarily vary the BPP/quality at

each location (y, x), as function of the chosen rate pyx.

To that end, we generalize our model featuring a sin-

gle codelayer c to instead support R distinct codelayers

cr ∈ R
Cr×Yr×Xr . Each codelayer is associated with a dif-

ferent rate, and is trained with a distinct entropy coder and

codelength regularization (see Section 3) to match a differ-

ent target codelength ℓtarget
r .

Our rate map p then specifies which codelayer is active

at each spatial location. In particular, we map p into R bi-

nary masks ur ∈ {0, 1}Cr×Yr×Xr , one for each codelayer,

of which a single one is active at each spatial location:

ur,cyx = Ipyx=r , r = 1, . . . , R

where I is the indicator function. Each map ur masks code-

layer cr during entropy coding. The final bitstream then

corresponds to encodings of all the active values in each

codelayer, as well as the rate mask itself (since it must be

available on the decoder side as well).

In terms of the architecture, towards the end of the

encoding pipeline, the encoder is split into R branches

E1, . . . ,ER, each mapping to a corresponding codelayer.

Each decoder Dr then performs the inverse operation, map-

ping each masked codelayer back to a common space in

which they are summed (see Figure 7). To avoid incurring

considerable computational overhead, we choose the indi-

vidual codelayer branches to be very lightweight: each en-

Shared
encoder

Shared
decoder

SRC

Figure 7. The architecture of the spatial multiplexer for rate control

(Section 4.1). At each location, a value is chosen from one of the

R codelayers, as function of the rate specified in the rate map p.

Full detail of the architecture in Appendix A.

3459

CDVL SD

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Bits Per Pixel

0.9875

0.9900

0.9925

0.9950

0.9975

M
S-

SS
IM

Ours
AVC/H.264
AVC/H.264 [slower]
HEVC/H.265
HEVC/H.265 [slower]
HEVC HM
VP9

MS-SSIM H.264 H.265 HEVC HM VP9

0.990 133% 122% 102% 123%

0.992 144% 133% 111% 133%

0.994 156% 148% 128% 152%

0.996 159% 152% 136% 154%

0.998 159% 160% 148% 160%

Xiph HD

0.2 0.4 0.6 0.8 1.0 1.2
Bits Per Pixel

0.975

0.980

0.985

0.990

M
S-

SS
IM

Ours
AVC/H.264
AVC/H.264 [slower]
HEVC/H.265
HEVC/H.265 [slower]
HEVC HM
VP9

MS-SSIM H.264 H.265 HEVC HM VP9

0.980 121% 112% 95% 102%

0.984 132% 120% 108% 112%

0.988 131% 116% 111% 111%

0.992 115% 108% 106% 105%

0.994 120% 113% 109% 108%

Figure 8. Compression results for the CDVL SD and Xiph HD datasets. We benchmark against the default and slower presets of

HEVC/H.265 and AVC/H.264, VP9, and the HEVC HM reference implementation, all in the low-latency setting (no B-frames). We

tune each baseline codec to the best of our abilities. All details of the evaluation procedure can be found in Section 5.2. Top row: Rate-

distortion curves averaged across all videos for each dataset. Bottom row: Average compressed sizes relative to ours, for representative

MS-SSIM levels covering the BPP range for each dataset.

coder/decoder branch consists of only a single convolution.

In practice, we found that choosing target BPPs as

ℓtarget
r = 0.01×1.5r leads to a satisfactory distribution of bi-

trates. We train a total of 5 different models, each covering

a different part of the BPP range. During training, we sim-

ply sample p uniformly for each frame. Below we describe

our use of the spatial multiplexer during deployment.

4.2. Rate controller algorithm

Video bitrate can be controlled in many ways, as function

of the video’s intended use. For example, it might be desir-

able to maintain a minimum guaranteed quality, or abide to

a maximum bitrate to ensure low buffering under constrain-

ing network conditions (excellent overviews of rate control

at [53, 39]). One common family of approaches is based

on Lagrangian optimization, and revolves around assign-

ing bitrates as function of an estimate of the slope of the

rate-distortion curve. This can be intuitively interpreted as

maximizing the quality improvement per unit bit spent.

Our rate controller is inspired by this idea. Concretely,

during video encoding, we define some slope threshold λ.

For a given time step, for each spatial location (y, x) and

rate r, we estimate the slope
Lr+1,yx−Lr,yx

BPPr+1,yx−BPPr,yx
of the local

R-D curve, for some quality metric L (·, ·). We then choose

our rate map p such that at each spatial location, pyx is the

largest rate such that the slope is at least threshold λ.

5. Results

5.1. Experimental setup

Training data. Our training set comprises high-definition

action scenes downloaded from YouTube. We found these

work well due to their relatively undistorted nature, and

higher coding complexity. We train our model on 128×128

video crops sampled uniformly spatiotemporally, filtering

out clips which include scene cuts.

Training procedure. During training (and deployment)

we encode the first frame using a learned image compressor;

we found that the choice of this compressor does not sig-

nificantly impact performance. We then unroll each video

across 5 frames. We find diminishing returns from addi-

tional unrolling. We optimize the models with Adam [24]

with momentum of 0.9 and learning rate of 2× 10−4 which

reduces by a factor of 5 twice during training. We use a

batch size of 8, and for a total of 400, 000 iterations. In

general, we observed no sign of overfitting, but rather the

oppposite: the model has not reached the point of perfor-

mance saturation as function of capacity, and seems to ben-

efit from increasing its width and depth.

Metrics and color space. For each encoded video, we

measure BPP as the total file size, including all header in-

formation, averaged across all pixels in the video.

We penalize discrepancies between the final frame re-

constructions x̂t and their targets xt using the Multi-Scale

Structural Similarity Index (MS-SSIM) [49], which has

been designed for and is known to match the human visual

system significantly better than alternatives such as PSNR

or ℓp-type losses. We penalize distortions in all intermediate

motion-compensated reconstructions using the Charbonnier

loss, known to work well for flow-based distortions [42].

Since the human visual system is considerably more sen-

sitive to distortions in brightness than color, most existing

video codecs have been designed to operate in the YCbCr

color space, and dedicate higher bandwidth to luminance

over chrominance. Similarly, we represent all colors in the

3460

YCbCr domain, and weigh all metrics with Y, Cb, Cr com-

ponent weights 6/8, 1/8, 1/8.

5.2. Evaluation procedure
Baseline codecs. We benchmark against all mainstream

commercial codecs: HEVC/H.265, AVC/H.264, VP9, and

the HEVC HM 16.0 reference implementation. We evalu-

ate H.264 and H.265 in both the default preset of medium,

as well as slower. We use FFmpeg for all codecs, apart

from HM for which we use its official implementation.

We tune all codecs to the best of our ability. To remove

B-frames, we use H.264/5 with the bframes=0 option,

VP9 with -auto-alt-ref 0 -lag-in-frames 0,

and use the HM encoder lowdelay P main.cfg pro-

file. To maximize the performance of the baselines over the

MS-SSIM metric, we tune them using the -ssim flag.

Video test sets. We benchmark all the above codecs on

standard video test sets in SD and HD, frequently used for

evaluation of video coding algorithms. In SD, we evalu-

ate on a VGA resolution dataset from the Consumer Digital

Video Library (CDVL)1. This dataset has 34 videos with a

total of 15,650 frames. In HD, we use the Xiph 1080p video

dataset2, with 22 videos and 11,680 frames. We center-crop

all 1080p videos to height 1024 (for now, our approach re-

quires each dimension to be divisible by 32). Lists of the

videos in each dataset can be found in the appendix.

Curve generation. Each video features a separate R-D

curve computed from all available compression rates for a

given codec: as a number of papers [5, 38] discuss in detail,

different ways of summarizing these R-D curves can lead to

very different results. In our evaluations, to compute a given

curve, we sweep across values of the independent variable

(such as bitrate). We interpolate the R-D curve for each

video at this independent variable value, and average all the

results across the dependent variable. To ensure accurate

interpolation, we generate results for all available rates for

each codec.

5.3. Performance
Rate-distortion curves. On the top row of Figure 8, we

present the average MS-SSIM across all videos for each

dataset and for each codec (Section 5.2), as function of BPP.

Relative compressed sizes. On the bottom row of Fig-

ure 8, we present average file sizes relative to our approach

for representative MS-SSIM values. For each MS-SSIM

point, we average the BPP for all videos in the dataset and

compute the ratio to our BPP. Note that for this comparison,

we are constrained to use MS-SSIM values that are valid

for all videos in the dataset, which is 0.990-0.998 for the

SD dataset and 0.980-0.994 for the HD dataset.

Ablation studies. In Figure 9, we present performance

of different models with and without different components.

The different configurations evaluated include:

• The full model presented in the paper;

0.1 0.2 0.3 0.4 0.5 0.6
Bits Per Pixel

0.975

0.980

0.985

0.990

0.995

M
S-

SS
IM Full model

No RC
No state
No state + no RC
Naive ML
Naive ML + no RC

Figure 9. Ablation studies demonstrating the impact of individ-

ual architectural components on performance on the CDVL SD

dataset. Factors of variation include introduction of a learned state,

use of flow-based motion compensation, and spatial rate control

(all described in Sections 2 and 4).

• The model described in Step #2, using previous frames

and flows as prior knowledge, but without learning an

arbitrary state; and

• A Naı̈ve ML model, which does not include a learned

state, and reconstructs the target frame directly without

any motion compensation.

We evaluate all the above models with and without the spa-

tial rate control framework described in Section 4.

Runtime. On an NVIDIA Tesla V100 and on VGA

videos, our decoder runs on average at a speed of around

10 frames/second, and encoder at around 2 frames/second

irrespective of bitrate. However, our algorithm should be

regarded as a reference implementation: the current speed

is not sufficient for real-time deployment, but is to be sub-

stantially improved in future work. For reference, on the

same videos, HEVC HM encodes at around 0.3 frames/sec-

ond for low BPPs and 0.04 frames/second for high BPPs.

6. Conclusion
In this work we introduced the first ML-based video

codec that outperforms all commercial codecs, across

nearly the entire bitrate range in the low-latency mode.

However, our presented approach only supports the low-

latency mode. Two clear directions of future work are to

increase the computational efficiency of the model to en-

able real-time coding, as well as extend the model to sup-

port temporal interpolation modes (i.e, using B-frames).

Acknowledgements. We are grateful to Josh Fromm,

Trevor Darrell, Sven Strohband, Michael Gelbart, Albert

Azout, Bruno Olshausen and Vinod Khosla for meaningful

discussions and input along the way.

1The Consumer Digital Video Library can be found at http://

www.cdvl.org/. To retrieve the SD videos, we searched for VGA res-

olution at original and excellent quality levels. There were a few instances

of near-duplicate videos: in those cases we only retrieved the first.
2The Xiph test videos can be found at https://media.xiph.

org/video/derf/. We used all videos with 1080p resolution.

3461

References

[1] White paper: Cisco vni forecast and methodology, 2016-

2021. 2016.

[2] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen,

Lukas Cavigelli, Radu Timofte, Luca Benini, and Luc V

Gool. Soft-to-hard vector quantization for end-to-end learn-

ing compressible representations. In I. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, editors, Advances in Neural In-

formation Processing Systems 30, pages 1141–1151. Curran

Associates, Inc., 2017.

[3] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer,

Radu Timofte, and Luc Van Gool. Generative adversarial

networks for extreme learned image compression. arXiv

preprint arXiv:1804.02958, 2018.

[4] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-

to-end optimization of nonlinear transform codes for percep-

tual quality. In Picture Coding Symposium (PCS), 2016,

pages 1–5. IEEE, 2016.

[5] Johannes Ballé, Valero Laparra, and Eero P Simoncelli.

End-to-end optimized image compression. arXiv preprint

arXiv:1611.01704, 2016.

[6] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin

Hwang, and Nick Johnston. Variational image compres-

sion with a scale hyperprior. In International Conference

on Learning Representations, 2018.

[7] Lukas Cavigelli, Pascal Hager, and Luca Benini. Cas-cnn:

A deep convolutional neural network for image compres-

sion artifact suppression. In Neural Networks (IJCNN), 2017

International Joint Conference on, pages 752–759. IEEE,

2017.

[8] Tong Chen, Haojie Liu, Qiu Shen, Tao Yue, Xun Cao, and

Zhan Ma. Deepcoder: A deep neural network based video

compression. 2017 IEEE Visual Communications and Image

Processing (VCIP), pages 1–4, 2017.

[9] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin,

Shuicheng Yan, and Jiashi Feng. Dual path networks. In

Advances in Neural Information Processing Systems, pages

4467–4475, 2017.

[10] Thierry Dumas, Aline Roumy, and Christine Guille-

mot. Autoencoder based image compression: can the

learning be quantization independent? arXiv preprint

arXiv:1802.09371, 2018.

[11] Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip

Häusser, Caner Hazırbaş, Vladimir Golkov, Patrick Van der

Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learn-

ing optical flow with convolutional networks. arXiv preprint

arXiv:1504.06852, 2015.

[12] David Fleet and Yair Weiss. Optical flow estimation. In

Handbook of mathematical models in computer vision, pages

237–257. Springer, 2006.

[13] Denis Fortun, Patrick Bouthemy, and Charles Kervrann. Op-

tical flow modeling and computation: a survey. Computer

Vision and Image Understanding, 134:1–21, 2015.

[14] Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo

Danihelka, and Daan Wierstra. Towards conceptual com-

pression. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I.

Guyon, and R. Garnett, editors, Advances in Neural Informa-

tion Processing Systems 29, pages 3549–3557. Curran Asso-

ciates, Inc., 2016.

[15] Karol Gregor and Yann LeCun. Learning representations by

maximizing compression. 2011.

[16] Jun Han, Salvator Lombardo, Christopher Schroers, and

Stephan Mandt. Deep probabilistic video compression.

arXiv preprint arXiv:1810.02845, 2018.

[17] Xiaoyi He, Qiang Hu, Xintong Han, Xiaoyun Zhang, and

Weiyao Lin. Enhancing hevc compressed videos with

a partition-masked convolutional neural network. arXiv

preprint arXiv:1805.03894, 2018.

[18] Berthold KP Horn and Brian G Schunck. Determining opti-

cal flow. Artificial intelligence, 17(1-3):185–203, 1981.

[19] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens

van der Maaten, and Kilian Weinberger. Multi-scale dense

networks for resource efficient image classification. In Inter-

national Conference on Learning Representations, 2018.

[20] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works.

[21] Shuai Huo, Dong Liu, Feng Wu, and Houqiang Li. Convo-

lutional neural network-based motion compensation refine-

ment for video coding. In Circuits and Systems (ISCAS),

2018 IEEE International Symposium on, pages 1–4. IEEE,

2018.

[22] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,

Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-

tion of optical flow estimation with deep networks.

[23] Nick Johnston, Damien Vincent, David Minnen, Michele

Covell, Saurabh Singh, Troy Chinen, Sung Jin Hwang, Joel

Shor, and George Toderici. Improved lossy image compres-

sion with priming and spatially adaptive bit rates for recur-

rent networks. arXiv preprint arXiv:1703.10114, 2017.

[24] Diederik Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[25] Anders Boesen Lindbo Larsen, Sren Kaae Snderby, Hugo

Larochelle, and Ole Winther. Autoencoding beyond pixels

using a learned similarity metric. In Maria Florina Balcan

and Kilian Q. Weinberger, editors, Proceedings of The 33rd

International Conference on Machine Learning, volume 48

of Proceedings of Machine Learning Research, pages 1558–

1566, New York, New York, USA, 20–22 Jun 2016. PMLR.

[26] Chen Li, Li Song, Rong Xie, Wenjun Zhang, and Coopera-

tive Medianet Innovation Center. Cnn based post-processing

to improve hevc.

[27] Mu Li, Wangmeng Zuo, Shuhang Gu, Debin Zhao, and

David Zhang. Learning convolutional networks for content-

weighted image compression.

[28] Ye Li, Bin Li, Dong Liu, and Zhibo Chen. A convolutional

neural network-based approach to rate control in hevc intra

coding. In Visual Communications and Image Processing

(VCIP), 2017 IEEE, pages 1–4. IEEE, 2017.

[29] Bruce D Lucas, Takeo Kanade, et al. An iterative image

registration technique with an application to stereo vision.

1981.

[30] LC Manikandan and RK Selvakumar. A new survey on block

matching algorithms in video coding.

[31] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep

multi-scale video prediction beyond mean square error.

arXiv preprint arXiv:1511.05440, 2015.

3462

[32] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen,

Radu Timofte, and Luc Van Gool. Conditional probability

models for deep image compression.

[33] David Minnen, Johannes Ballé, and George Toderici. Joint

autoregressive and hierarchical priors for learned image

compression. arXiv preprint arXiv:1809.02736, 2018.

[34] Debargha Mukherjee, Jim Bankoski, Adrian Grange, Jingn-

ing Han, John Koleszar, Paul Wilkins, Yaowu Xu, and

Ronald Bultje. The latest open-source video codec vp9-an

overview and preliminary results. In Picture Coding Sympo-

sium (PCS), 2013, pages 390–393. IEEE, 2013.

[35] J-R Ohm, Gary J Sullivan, Heiko Schwarz, Thiow Keng

Tan, and Thomas Wiegand. Comparison of the coding ef-

ficiency of video coding standardsincluding high efficiency

video coding (hevc). IEEE Transactions on circuits and sys-

tems for video technology, 22(12):1669–1684, 2012.

[36] Mahsa T Pourazad, Colin Doutre, Maryam Azimi, and Panos

Nasiopoulos. Hevc: The new gold standard for video com-

pression: How does hevc compare with h. 264/avc? IEEE

consumer electronics magazine, 1(3):36–46, 2012.

[37] Zhe Ren, Junchi Yan, Bingbing Ni, Bin Liu, Xiaokang Yang,

and Hongyuan Zha. Unsupervised deep learning for optical

flow estimation. 2017.

[38] Oren Rippel and Lubomir Bourdev. Real-time adaptive im-

age compression. In Doina Precup and Yee Whye Teh, ed-

itors, Proceedings of the 34th International Conference on

Machine Learning, volume 70 of Proceedings of Machine

Learning Research, pages 2922–2930, International Conven-

tion Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[39] Werner Robitza. Understanding rate control modes (x264,

x265, vpx). 2017.

[40] Rui Song, Dong Liu, Houqiang Li, and Feng Wu. Neural

network-based arithmetic coding of intra prediction modes

in hevc. In Visual Communications and Image Processing

(VCIP), 2017 IEEE, pages 1–4. IEEE, 2017.

[41] Xiaodan Song, Jiabao Yao, Lulu Zhou, Li Wang, Xiaoyang

Wu, Di Xie, and Shiliang Pu. A practical convolutional neu-

ral network as loop filter for intra frame. arXiv preprint

arXiv:1805.06121, 2018.

[42] Deqing Sun, Stefan Roth, and Michael J Black. Secrets of

optical flow estimation and their principles. In Computer

Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-

ence on, pages 2432–2439. IEEE, 2010.

[43] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc

Huszar. Lossy image compression with compressive autoen-

coders. 2016.

[44] George Toderici, Sean M O’Malley, Sung Jin Hwang,

Damien Vincent, David Minnen, Shumeet Baluja, Michele

Covell, and Rahul Sukthankar. Variable rate image com-

pression with recurrent neural networks. arXiv preprint

arXiv:1511.06085, 2015.

[45] George Toderici, Damien Vincent, Nick Johnston, Sung Jin

Hwang, David Minnen, Joel Shor, and Michele Covell.

Full resolution image compression with recurrent neural net-

works. arXiv preprint arXiv:1608.05148, 2016.

[46] Jarno Vanne, Marko Viitanen, Timo D Hamalainen, and

Antti Hallapuro. Comparative rate-distortion-complexity

analysis of hevc and avc video codecs. IEEE Transactions

on Circuits and Systems for Video Technology, 22(12):1885–

1898, 2012.

[47] Anthony Vetro, Charilaos Christopoulos, and Huifang

Sun. Video transcoding architectures and techniques: an

overview. IEEE Signal processing magazine, 20(2):18–29,

2003.

[48] Tingting Wang, Mingjin Chen, and Hongyang Chao. A novel

deep learning-based method of improving coding efficiency

from the decoder-end for hevc. In Data Compression Con-

ference (DCC), 2017, pages 410–419. IEEE, 2017.

[49] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multi-

scale structural similarity for image quality assessment. In

Signals, Systems and Computers, 2004., volume 2, pages

1398–1402. Ieee, 2003.

[50] Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and

Cordelia Schmid. Deepflow: Large displacement optical

flow with deep matching. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1385–1392,

2013.

[51] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and

Ajay Luthra. Overview of the h. 264/avc video coding stan-

dard. IEEE Transactions on circuits and systems for video

technology, 13(7):560–576, 2003.

[52] Chao-Yuan Wu, Nayan Singhal, and Philipp Krähenbühl.

Video compression through image interpolation. In ECCV,

2018.

[53] Zongze Wu, Shengli Xie, Kexin Zhang, and Rong Wu. Rate

control in video coding. In Recent Advances on Video Cod-

ing. InTech, 2011.

[54] Ning Yan, Dong Liu, Houqiang Li, and Feng Wu. A convo-

lutional neural network approach for half-pel interpolation in

video coding. In Circuits and Systems (ISCAS), 2017 IEEE

International Symposium on, pages 1–4. IEEE, 2017.

[55] Ren Yang, Mai Xu, and Zulin Wang. Decoder-side hevc

quality enhancement with scalable convolutional neural net-

work. In 2017 IEEE International Conference on Multimedia

and Expo (ICME), pages 817–822. IEEE, 2017.

[56] Ren Yang, Mai Xu, Zulin Wang, and Zhenyu Guan. En-

hancing quality for hevc compressed videos. arXiv preprint

arXiv:1709.06734, 2017.

[57] Ren Yang, Mai Xu, Zulin Wang, and Tianyi Li. Multi-frame

quality enhancement for compressed video.

[58] Zhenghui Zhao, Shiqi Wang, Shanshe Wang, Xinfeng

Zhang, Siwei Ma, and Jiansheng Yang. Cnn-based bi-

directional motion compensation for high efficiency video

coding. In Circuits and Systems (ISCAS), 2018 IEEE Inter-

national Symposium on, pages 1–4. IEEE, 2018.

3463

