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Abstract

Landmark localization in images and videos is a clas-

sic problem solved in various ways. Nowadays, with deep

networks prevailing throughout machine learning, there are

revamped interests in pushing facial landmark detectors to

handle more challenging data. Most efforts use network

objectives based on L1 or L2 norms, which have several

disadvantages. First of all, the generated heatmaps trans-

late to the locations of landmarks (i.e. confidence maps)

from which predicted landmark locations (i.e. the means)

get penalized without accounting for the spread: a high-

scatter corresponds to low confidence and vice-versa. For

this, we introduce a LaplaceKL objective that penalizes for

low confidence. Another issue is a dependency on labeled

data, which are expensive to obtain and susceptible to error.

To address both issues, we propose an adversarial training

framework that leverages unlabeled data to improve model

performance. Our method claims state-of-the-art on all of

the 300W benchmarks and ranks second-to-best on the An-

notated Facial Landmarks in the Wild (AFLW) dataset. Fur-

thermore, our model is robust with a reduced size: 1/8 the

number of channels (i.e. 0.0398 MB) is comparable to the

state-of-the-art in real-time on CPU. Thus, this work is of

high practical value to real-life application.

1. Introduction

To localize landmarks is to find pixel locations in visual

media corresponding to points of interest. In face align-

ment, these points correspond to face parts. For bodies and

hands, landmarks correspond to projections of joints on to

the camera plane [31, 35]. Historically, landmark detection

and shape analysis tasks date back decades: from Active

Shape Models [4] to Active Appearance Models [3], with

the latter proposed to analyze and detect facial landmarks.

A need for more advanced models to handle increasingly

tricky views has triggered revamped interest in facial land-

mark localization. Thus, came a wave of different types
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Figure 1. Heatmaps generated by softargmax-based models (mid-

dle block) and the proposed LaplaceKL (right block), each with

heatmaps on the input images (left) and a zoomed-in view of an

eye region (right). These heatmaps are confidence scores (i.e.

probabilities) that a pixel is a landmark. softargmax-based meth-

ods generate highly scattered mappings (low certainty), while the

same network trained with our loss is concentrated (i.e. high cer-

tainty). We further validate the importance of minimizing scatter

experimentally (Table 2). Best if viewed electronically.

of deep neural architectures that pushed state-of-the-art on

more challenging datasets. These modern-day networks are

trained end-to-end on paired labeled data (d, s), where d is

the image and s are the actual landmark coordinates. Many

of these used encoder-decoder style networks to generate

feature maps (i.e. heatmaps) to transform into pixel coordi-

nates [23, 24, 40]. The network must be entirely differen-

tiable to train end-to-end. Hence, the layer (or operation)

for transforming the K heatmaps to pixel coordinates must

be differentiable [15]. Note that each of the K heatmaps

corresponds to the coordinates of a landmark. Typically, the

softargmax operation determines the location of a landmark

as the expectation over the generated 2D heatmaps. Thus,

metrics like or determine the distance between the actual
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and predicted coordinates s̃, i.e. e = s̃− s.

There are two critical shortcomings of the methodology

discussed above. (1) These losses only penalize for differ-

ences in mean values in coordinate space, and with no ex-

plicit penalty for the variance of heatmaps. Thus, the gen-

erated heatmaps are highly scattered: high variance means

low confidence. (2) This family of objectives is entirely de-

pendent on paired training samples (i.e. (d, s)). However,

obtaining high-quality data for this is expensive and chal-

lenging. Not only does each sample require several marks,

but unintentional, and often unavoidable, labels are of pixel-

level marks subject to human error (i.e. inaccurate and im-

precise ground-truth labels). All the while, plenty of unla-

beled face data are available for free.

In this paper, we propose a practical framework to satisfy

the two shortcomings. Thus, our first contribution alleviates

the first issue. For this, we introduce a new loss function

that penalizes for the difference in distribution defined by

location and scatter (Fig. 1). Independently, we treat land-

marks as random variables with Laplace(s, 1) distributions,

from which the KL-divergence between the predicted and

ground-truth distributions defines the loss. Hence, the goal

is to match distributions, parameterized by both a mean and

variance, to yield heatmaps of less scatter (i.e. higher confi-

dence). We call this objective the LaplaceKL loss.

Our second contribution is an adversarial training frame-

work for landmark localization. We propose this to tackle

the problem of paired data requirements by leveraging un-

labeled data for free. We treat our landmark detection net-

work as a generator (G) of normalized heatmaps (i.e. prob-

ability maps) that pass to the discriminator (D) to learn

to distinguish between the true and generated heatmaps.

This allows for large amounts of unlabeled data to further

boost the performance of our LaplaceKL-based models. In

the end, D proves to improve the predictive power of the

LaplaceKL-based model by injecting unlabeled data into

the pipeline during training. As supported by experiments,

the adversarial training framework complements the pro-

posed LaplaceKL loss (i.e. an increase in unlabeled data re-

sults in a decrease in error). To demonstrate this, we first

show the effectiveness of the proposed loss by claiming

state-of-the-art without adversarial training to then further

improve with more unlabeled data added during training!

Furthermore, we reduced the size of the model by us-

ing 1
16 , 1

8 , 1
4 , and 1

2 the original number of convolution

filters, with the smallest costing only 79 Kb on disk. We

show an accuracy drop for models trained with the pro-

posed LaplaceKL as far less than the others trained with a

softargmax-based loss. So again, it is the case that more un-

labeled training data results in less of a performance drop at

reduced sizes. It is essential to highlight that variants of our

model at or of larger size than 1/8 the original size compare

well to the existing state-of-the-art. We claim that the pro-

posed contributions are instrumental for landmark detection

models used in real-time production, mobile devices, and

other practical purposes.

Our contributions are three-fold: (1) A novel Laplace

KL-divergence objective to train landmark localization

models that are more certain about predictions; (2) An ad-

versarial training framework that leverages large amounts of

unlabeled data during training; (3) Experiments that show

our model outperforms recent works in face landmark de-

tection, along with ablation studies that, most notably, re-

veal our model compares well to state-of-the-art at 1/8 its

original size (i.e. <160 Kb) and in real-time (i.e. >20 fps).

2. Related work

In this section, we review relevant works on landmark

localization and generative adversarial network (GAN).

Landmark localization has been of interest to re-

searchers for decades. At first, most methods were based

on Active Shape Models [4] and Active Appearance Mod-

els [3]. Then, Cascaded Regression Methods (CRMs) were

introduced, which operate sequentially; starting with the av-

erage shape, then incrementally shifting the shape closer to

the target shape. CRMs offer high speed and accuracy (i.e.

>1,000 fps on CPU [26, 19]).

More recently, deep-learning-based approaches have

prevailed in the community due to end-to-end learning and

improved accuracy. Initial works mimicked the iterative na-

ture of cascaded methods using recurrent convolutional neu-

ral networks [24, 32, 37, 38]. Besides, several have been

several methods for dense landmark localization [12, 18]

and 3D face alignment [33, 47] proposed: all of which are

fully-supervised and, thus, require labels for each image.

Nowadays, there is an increasing interest in semi-

supervised methods for landmark localization. Recent work

used a sequential multitasking method which was capable

of injecting labels of two types into the training pipeline,

with one type constituting the annotated landmarks and

the other type consisting of facial expressions (or hand-

gestures) [15]. The authors argued that the latter label

type was more easily obtainable, and showed the benefits

of using both types of annotations by claiming state-of-

the-art on several tasks. Additionally, they explore other

semi-supervised techniques (e.g. equivariance loss). In [8],

a supervision-by-registration method was proposed, which

significantly utilized unlabeled videos for training a land-

mark detector. The fundamental assumption was that the

neighboring frames of the detected landmarks should be

consistent with the optical flow computed between the

frames. This approach demonstrated a more stable detector

for videos, and improved accuracy on public benchmarks.

Landmark localization data resources have significantly

evolved as well, with the 68-point mark-up scheme of the

MultiPIE dataset [11] widely adopted. Despite the initial
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Labelled

(dl, sl)
<latexit sha1_base64="nLvPqyWPe+B/B4mrjYOTrLm3y1I=">AAACBXicbVDLSgMxFL1TX7W+Rl2JLoJFqCBlRgRdFty4rGAf0NaSyWTaYCYzJBmhDN248Rv0C9y4UMSt/+DOvzHTVtDWAxfOPeeG3Hu8mDOlHefLys3NLywu5ZcLK6tr6xv25lZdRYkktEYiHsmmhxXlTNCaZprTZiwpDj1OG97NeeY3bqlULBJXehDTToh7ggWMYG2krr1XaodY970g9YfX/Aj9dMp0h1276JSdEdAscSekCBNUu/Zn249IElKhCcdKtVwn1p0US80Ip8NCO1E0xuQG92jLUIFDqjrp6IohOjCKj4JImhIajdTfL1IcKjUIPTOZLammvUz8z2slOjjrpEzEiaaCjD8KEo50hLJIkM8kJZoPDMFEMrMrIn0sMdEmuIIJwZ0+eZbUj8uuU3YvT4qVnYcMj5CHXdiHErhwChW4gCrUgMAdPMELvFr31rP1Zr2Pk8tZkwi34Q+sj28i5pvF</latexit><latexit sha1_base64="nLvPqyWPe+B/B4mrjYOTrLm3y1I=">AAACBXicbVDLSgMxFL1TX7W+Rl2JLoJFqCBlRgRdFty4rGAf0NaSyWTaYCYzJBmhDN248Rv0C9y4UMSt/+DOvzHTVtDWAxfOPeeG3Hu8mDOlHefLys3NLywu5ZcLK6tr6xv25lZdRYkktEYiHsmmhxXlTNCaZprTZiwpDj1OG97NeeY3bqlULBJXehDTToh7ggWMYG2krr1XaodY970g9YfX/Aj9dMp0h1276JSdEdAscSekCBNUu/Zn249IElKhCcdKtVwn1p0US80Ip8NCO1E0xuQG92jLUIFDqjrp6IohOjCKj4JImhIajdTfL1IcKjUIPTOZLammvUz8z2slOjjrpEzEiaaCjD8KEo50hLJIkM8kJZoPDMFEMrMrIn0sMdEmuIIJwZ0+eZbUj8uuU3YvT4qVnYcMj5CHXdiHErhwChW4gCrUgMAdPMELvFr31rP1Zr2Pk8tZkwi34Q+sj28i5pvF</latexit><latexit sha1_base64="nLvPqyWPe+B/B4mrjYOTrLm3y1I=">AAACBXicbVDLSgMxFL1TX7W+Rl2JLoJFqCBlRgRdFty4rGAf0NaSyWTaYCYzJBmhDN248Rv0C9y4UMSt/+DOvzHTVtDWAxfOPeeG3Hu8mDOlHefLys3NLywu5ZcLK6tr6xv25lZdRYkktEYiHsmmhxXlTNCaZprTZiwpDj1OG97NeeY3bqlULBJXehDTToh7ggWMYG2krr1XaodY970g9YfX/Aj9dMp0h1276JSdEdAscSekCBNUu/Zn249IElKhCcdKtVwn1p0US80Ip8NCO1E0xuQG92jLUIFDqjrp6IohOjCKj4JImhIajdTfL1IcKjUIPTOZLammvUz8z2slOjjrpEzEiaaCjD8KEo50hLJIkM8kJZoPDMFEMrMrIn0sMdEmuIIJwZ0+eZbUj8uuU3YvT4qVnYcMj5CHXdiHErhwChW4gCrUgMAdPMELvFr31rP1Zr2Pk8tZkwi34Q+sj28i5pvF</latexit><latexit sha1_base64="nLvPqyWPe+B/B4mrjYOTrLm3y1I=">AAACBXicbVDLSgMxFL1TX7W+Rl2JLoJFqCBlRgRdFty4rGAf0NaSyWTaYCYzJBmhDN248Rv0C9y4UMSt/+DOvzHTVtDWAxfOPeeG3Hu8mDOlHefLys3NLywu5ZcLK6tr6xv25lZdRYkktEYiHsmmhxXlTNCaZprTZiwpDj1OG97NeeY3bqlULBJXehDTToh7ggWMYG2krr1XaodY970g9YfX/Aj9dMp0h1276JSdEdAscSekCBNUu/Zn249IElKhCcdKtVwn1p0US80Ip8NCO1E0xuQG92jLUIFDqjrp6IohOjCKj4JImhIajdTfL1IcKjUIPTOZLammvUz8z2slOjjrpEzEiaaCjD8KEo50hLJIkM8kJZoPDMFEMrMrIn0sMdEmuIIJwZ0+eZbUj8uuU3YvT4qVnYcMj5CHXdiHErhwChW4gCrUgMAdPMELvFr31rP1Zr2Pk8tZkwi34Q+sj28i5pvF</latexit>
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LKL
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Unlabelled
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Figure 2. The proposed semi-supervised framework for landmarks localization. The labeled and unlabeled branched are marked with blue

and red arrows, respectfully. Given an input image, G produces K heatmaps, one for each landmark. Labels are used to generate real

heatmaps as ω(sl). G produces fake samples from the unlabeled data. Source images are concatenated on heatmaps and passed to D.

excitement for MultiPIE throughout the landmark localiza-

tion community [48], it is now considered one of the easy

datasets captured entirely in a controlled lab setting. A

more challenging dataset, Annotated Facial Landmarks in

the Wild (AFLW) [20], was then released with up to 21 fa-

cial landmarks per face (i.e. occluded or “invisible” land-

marks were not marked). Finally, came the 300W dataset

made-up of face images from the internet, labeled with the

same 68-point mark-up scheme as MultiPIE, and promoted

as a data challenge [27]. Currently, 300W is among the

most widely used benchmarks for facial landmark localiza-

tion. In addition to 2D datasets, the community created sev-

eral datasets annotated with 3D keypoints [1].

GANs were recently introduced [10], quickly becoming

popular in research and practice. GANs have been used to

generate images [25] and videos [28, 34], and to do image

manipulation [9], text-to-image[42], image-to-image [45],

video-to-video [36] translation and re-targeting [30].

An exciting feature of GANs are the ability to trans-

fer visual media across different domains. Thus, vari-

ous semi-supervised and domain-adaptation tasks adopted

GANs [6, 13, 29, 41]. Many have leveraged synthetic data

to improve model performance on real data. For example,

a GAN transferred images of human eyes from the real do-

main to bootstrap training data [29]. Other researchers used

them to synthetically generate photo-realistic images of out-

door scenes, which also aided in bettering performance in

image segmentation [13]. Sometimes, labeling images cap-

tured in a controlled setting is manageable (i.e. versus an

uncontrolled setting). For instance, 2D body pose anno-

tations were available in-the-wild, while 3D annotations

mostly were for images captured in a lab setting. There-

fore, images with 3D annotations were used in adversarial

training to predict 3D human body poses as seen in-the-

wild [41]. [6] formulated one-shot recognition as a prob-

lem data imbalance and augmented additional samples in

the form of synthetically generated face embeddings.

Our work differs from these others in several ways.

Firstly, a majority, if not all, used a training objective that

only accounts for the location of landmarks [15, 32, 38],

i.e. no consideration for variance (i.e. confidence). Thus,

landmarks distributions have been assumed to be describ-

able with a single parameter (i.e. a mean). Networks trained

this way yield an uncertainty about the prediction, while

still providing a reasonable location estimate. To miti-

gate this, we explicitly parametrize the distribution of land-

marks using location and scale. For this, we propose a KL-

divergence based loss to train the network end-to-end. Sec-

ondly, previous works used GANs for domain adaptation in

some fashion. In this work, we do not perform any adap-

tation between domains as in [13, 29], nor do we use any

additional training labels as in [15]. Specifically, we have

D do the quality assessment on the predicted heatmaps for

a given image. The resulting gradients are used to improve

the ability of the generator to detect landmarks. We show

that both contributions improve accuracy when used sepa-

rately. Then, the two contributions are combined to further

boost state-of-the-art results.

3. Method

Our training framework utilizes both labeled and unla-

beled data during training. Shown in Fig. 2 are the high-

level graphical depiction of cases where labels are available

(blue arrows) and unavailable (red arrows). ?. Notice the

framework has two branches, supervised (Eq. 3) and unsu-

pervised (Eq. 7), where only the supervised (blue arrow)

uses labels to train. Next, are details for both branches.
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3.1. Fully Supervised Branch

We define the joint distribution of the image d ∈
R

h×w×3 and landmarks s ∈ R
K×2 as p(d, s), where K is

the total number of landmarks. The form of the distribution

p(d, s) is unknown; however, joint samples are available

when labels are present (i.e. (d, s) ∼ p(d, s)). During train-

ing, we aim to learn a conditional distribution qθ(s|d) mod-

eled by a neural network with parameters θ. Landmarks are

then detected done by sampling s̃ ∼ qθ(s|d). We now omit

parameters θ from notation for cleaner expressions. The

parameter values are learned by maximizing the likelihood

that the process described by the model did indeed produce

the data that was observed, i.e. trained by minimizing the

following loss function w.r.t. its parameters:

L(θ) = E(d,s)∼p(d,s)‖s̃− s‖2. (1)

Alternatively, it is possible to train a neural network to

predict normalized probability maps(i.e. heatmaps): h̃ ∼
q(h|d), where h ∈ R

K×h×w and each hk ∈ R
h×w repre-

sents a normalized probability map for landmark k, where

k = 1..K. To get the pixel locations, one could per-

form the argmax operation over the heatmaps by setting

s̃ = argmax(h̃)). However, this operation is not differen-

tiable and, therefore, unable to be trained end-to-end.

A differentiable variant of argmax (i.e. softargmax [2])

was recently used to localize landmarks [15]. For the 1D

case, the softargmax operation is expressed

softargmax(βh) =
∑

x

softmax(βhx) · x

=
∑

x

eβhx

∑

j e
βhj
· x

=
∑

x

p(x) · x = Eh[x],

(2)

where hx is the predicted probability mass at location x,
∑

j e
βhj is the normalization factor, and β is the temper-

ature factor controlling the predicted distribution [2]. We

denote coordinate in boldface (i.e. x = (x1, x2)), and write

2D softargmax operation as s̃ = Eh[x] with LSAM = L(θ).
Essentially, the softargmax operation is the expectation

of the pixel coordinate over the selected dimension. Hence,

the softargmax-based loss assumes the underlying distribu-

tion is describable by just its mean (i.e. location), regard-

less of how sure a prediction, the objective then is to match

mean values. To avoid cases in which the trained model

is uncertain about the predicted mean, while still yielding

a low error, we parametrize the distribution using {µ, σ},
where µ is the mean or the location and σ is the variance or

the scale, respectfully, for the selected distribution.

We want the model to be certain about the predictions

(i.e. a small variance or scale). We consider two para-

metric distributionsGaussian(µ, σ) and Laplace(µ, b) with

Data: {(dl
i, s

l
i)}i=1,...,n, {(du

i )}i=1,...,m

θD, θG ← initialize network parameters

while t ≤ T do

(Dl
t,S

l
t)← sample mini-batch from labeled data

(Du
t )← sample mini-batch from unlabeled data

Hfake ← G(Du
t )

Hreal ← ω(Sl
t)

Ladv ←
logD([Dl

t,Hreal]) + log(1−D([Du
t ,Hfake])

LG ← compute loss using Eq. 2 or Eq. 3

// update model parameters

θD
+
←− −∇θDLadv

θG
+
←− −∇θG(LG − λLadv)

end

Algorithm 1: Training the proposed model.

σ2 = Eh[(x − Eh[x])
2] and b = Eh[|x − Eh[x]|]. We de-

fine a function τ(h̃) to compute the scale (or variance) of

the predicted heatmaps h̃ using the location, where the lo-

cations are now the expectation of being a landmark in the

heatmap space. Thus, τ(h̃) =
∑

p(x)||x − s̃||αα, where

s̃ = Eh[x], α = 1 for Laplacian, and α = 2 for Gaussian.

Thus, s̃ and τ(h̃)) are used to parameterize a Laplace (or

Gaussian) distribution for the predicted landmarks q(h|d).

Denoting the true conditional distribution of the land-

marks as p(s|d) we define the objective as follows:

LKL = E(d,s)∼p(d,s)

[

DKL(q(s|d)||p(s|d))
]

, (3)

where DKL is the KL-divergence. We assumed a true

distribution for the case of Gaussian (i.e. Gaussian(µ, 1),
where µ is the ground-truth locations of the landmarks).

For the case with Laplace, we sought Laplace(µ, 1). KL-

divergence conveniently has a closed-form solution for this

family of exponential distributions [14]. Alternatively, sam-

pling yields an approximation. The blue arrow in Fig. 2

represent the labeled branch of the framework.

Statistically speaking, given two estimators with differ-

ent variances, we would prefer one that has a smaller vari-

ance (see [7] for an analysis of the bias-variance trade-off).

A lower variance implies higher confidence in the predic-

tion. To this end, we found an objective measuring distance

between distributions is accurate and robust. The neural

network must satisfy an extra constraint on variance and,

thus, yields predictions of higher certainty. See higher con-

fident heatmaps in Fig. 1 and Fig. 3. The experimental eval-

uation further validates this (Table 2 and Table 3). Also,

Fig. 5 shows sample results.
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3.2. Unsupervised Branch

The previous section discusses several objectives to train

the neural network with the available paired or fully labeled

data (i.e. (dl, sl)). We denote data samples with the super-

script l to distinguish them from unpaired or unlabeled data

(du). In general, it is difficult for a human to label many

images with landmarks. Hence, unlabeled data are abun-

dant and easier to obtain, which calls for capitalizing on

this abundant data to improve training. In order to do so,

we adapt the adversarial learning framework for landmark

localization. We treat our landmarks predicting network as

a generator (G), G = q(h|d). discriminator (D) takes the

form D([d,h]), where [·, ·] is a tensor concatenation opera-

tion . We define the real samples for D as {dl,h = ω(sl)},
where ω(·) generates the true heatmaps given the locations

of the ground-truth landmarks. Fake samples are given by

{du, h̃ ∼ q(h|du)}. With this notation, and we define the

min-max objective for landmark localization as:

min
G

max
D
Ladv(D,G), (4)

where Ladv(D,G) writes as:

E(dl,sl)∼p(d,s)

[

logD([dl, ω(sl)])
]

+

E(du)∼p(d)

[

log(1−D([du, G(du))])
]

. (5)

In this setting, provided an input image, the goal of D
is to learn to decipher between the real and fake heatmaps

from appearance. Thus, the goal of G is to produce fake

heatmaps that closely resemble the real. Within this frame-

work, D intends to provide additional guidance for G by

learning from both labeled and unlabeled data. The objec-

tive in Eq. 4 is solved using alternating updates.

3.3. Training

We fused the softargmax-based and adversarial losses as

min
G

(

max
D

(

λ · Ladv(G,D)
)

+ LSAM(G)
)

, (6)

with the KL-divergence version of the objective defined as:

min
G

(

max
D

(

λ · Ladv(G,D)
)

+ LKL(G)
)

, (7)

with the weight for the adversarial loss λ = 0.001. This

training objective includes both labeled and unlabeled data

in the formulation. In the experiments, we show that this

combination significantly improves the accuracy of our ap-

proach. We also argue that the softargmax-based version

cannot fully utilize the unlabeled data since the predicted

heatmaps differ too much from the real heatmaps. See Al-

gorithm 1 for the training procedure for T steps of the pro-

posed model. We show the unlabeled branch of the frame-

work is shown graphically in red arrows (Fig. 2).

Table 1. Architecture of the generator (G). Layers listed with the

size and number of filters (i.e. h× w × n). DROP, MAX, and UP

stand for dropout (probability 0.2), max-pooling (stride 2), and bi-

linear upsampling (2x). Note the skip connections about the bot-

tleneck: coarse-to-fine, connecting encoder (i.e. EID) to the de-

coder (i.e. DID) by concatenating feature channels before fusion

via fully-connected layers. Thus, all but the 2 topmost layers had

feature dimensions and the number of feature maps preserved (i.e.

layers that transformed feature maps to K heatmaps). A stride of

1 and padded such to produce output sizes listed.

Layers Tensor Size

Input RGB image, no data augmentation 80 x 80 x 3

Conv(E1) 3 × 3 × 64, LReLU, DROP, MAX 40 × 40 × 64

Conv(E2) 3 × 3 × 64, LReLU, DROP, MAX 20 × 20 × 64

Conv(E3) 3 × 3 × 64, LReLU, DROP, MAX 10 × 10 × 64

Conv(E4) 3 × 3 × 64, LReLU, DROP, MAX 5 × 5 × 64

Conv(D4) 1 × 1 × 64 +E4, LReLU, DROP, UP 10 × 10 × 128

Conv(DF ) 5 × 5 × 128, LReLU 20 × 20 × 128

Conv(D3 1 × 1 × 64 +E3, LReLU, DROP, UP 20 × 20 × 128

Conv(DF ) 5 × 5 × 128, LReLU, DROP 40 × 40 × 128

Conv(D2) 1 × 1 × 64 +E2, LReLU, DROP, UP 40 × 40 × 128

Conv(DF ) 5 × 5 × 128, LReLU, DROP 80 × 80 × 128

Conv(D1) 1 × 1 × 64 +E1, LReLU, DROP, UP 80 × 80 × 128

Conv(DF ) 5 × 5 × 128, LReLU, DROP 80 × 80 × 128

Conv(DF ) 1 × 1 × 68, LReLU, DROP 80 × 80 × 68

Output 1 × 1 × 68 80 × 80 × 68

3.4. Implementation

We follow the ReCombinator network (RCN) initially

proposed in [16]. Specifically, we use a 4-branch RCN as

our base model, with input images and output heatmaps of

size 80×80. Convolutional layers of the encoder consist of

64 channels, while the convolutional layers of the decoder

output 64 channels out of the 128 channels at its input (i.e.

64 channels from the previous layer concatenated with the

64 channels skipped over the bottleneck via branching). We

applied Leaky-ReLU, with a negative slope of 0.2, on all

but the last convolution layer. See Table 1 for details on the

generator architecture. Drop-out followed this, after all but

the first and last activation. We use Adam optimizer with

a learning rate of 0.001 and weight decay of 10−5. In all

cases, networks were trained from scratch, using no data

augmentation nor any other ’training tricks.’

D was a 4-layered PatchGAN [17]. Before each con-

volution layer Gaussian noise (σ = 0.2) was added [34],

and then batch-normalization (all but the top and bottom

layers) and Leaky-ReLU with a negative slope of 0.2 (all

but the top layer). The original RGB image was stacked

on top of the K heatmaps from G and fed as the input

of D (Fig. 2). Thus, D takes in (K + 3) channels. We

set β = 1 for 2. Pytorch was used to implement the en-

tire framework. An important note to make is that mod-

els optimized with Laplace distribution consistently outper-

formed the Gaussian-based. For instance, our LaplaceKL

baseline had a Normalized Mean Square Error (NMSE) of
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Table 2. NMSE on AFLW and 300W normalized by the square

root of BB area and interocular distance, respectfully.

AFLW
300W

Common Challenge Full

SDM [39] 5.43 5.57 15.40 7.52

LBF [26] 4.25 4.95 11.98 6.32

MDM [32] - 4.83 10.14 5.88

TCDCN [44] - 4.80 8.60 5.54

CFSS [46] 3.92 4.73 9.98 5.76

CFSS [21] 2.17 4.36 7.56 4.99

RCSR [38] - 4.01 8.58 4.90

RCN+ (L+ELT) [15] 1.59 4.20 7.78 4.90

CPM + SBR [8] 2.14 3.28 7.58 4.10

Softargmax 2.26 3.48 7.39 4.25

Softargmax+D(10K) - 3.34 7.90 4.23

Softargmax+D(30K) - 3.41 7.99 4.31

Softargmax+D(50K) - 3.41 8.06 4.32

Softargmax+D(70K) - 3.34 8.17 4.29

LaplaceKL 1.97 3.28 7.01 4.01

LaplaceKL+D(10K) - 3.26 6.96 3.99

LaplaceKL+D(30K) - 3.29 6.74 3.96

LaplaceKL+D(50K) - 3.26 6.71 3.94

LaplaceKL+D(70K) - 3.19 6.87 3.91

4.01 on 300W, while Gaussian-based got 4.71. Thus, the

sharper,“peakier” Laplace distribution proved to be more

numerically stable under current network configuration, as

Gaussian required a learning rate a magnitude smaller to

avoid vanishing gradients. Indeed, we used Laplace.

4. Experiments

We evaluated the proposed on two widely used bench-

mark datasets for face alignment. No data augmentation

techniques used when training our models nor was the

learning rate dropped: this leaves no ambiguity into whether

or not the improved performance came from training tricks

or the learning component itself. All results for the pro-

posed were from models trained for 200 epochs.

We next discuss the metric used to evaluate performance,

NMSE, with differences between datasets in the normaliza-

tion factor. Then, the experimental settings, results, and

analysis for each dataset are covered separately. Finally,

ablation studies show characterizations of critical hyper-

parameters and, furthermore, the robustness of the proposed

LaplaceKL+D(70K) with a comparable performance with

just 1/8 the number of feature channels and >20 fps.

4.1. Metric

Per convention [1, 5, 27], NMSE, a normalized average

of euclidean distances, was used. Mathematically speaking:

NMSE =

K
∑

k=1

‖sk − s̃k‖2
K × d

, (8)

where the number of visible landmarks set as K, k =
{1, 2, ...,K} are the indices of the visible landmark, the nor-

malization factor d depends on the face size, and sk ∈ R
2

and s̃k ∈ R
2 are the ground-truth and predicted coordinates,

respectfully. The face size d ensured that the NMSE scores

across faces of different size were fairly weighted. Follow-

ing predecessors, NMSE was used to evaluate both datasets,

except with different points referenced to calculate d. The

following subsections provide details for finding d.

4.2. 300W + MegaFace

The 300W dataset is amongst the most popular datasets

for face alignment. It has 68 visible landmarks (i.e. K =
68) for 3,837 images (i.e. 3,148 training and 689 test). We

followed the protocol of the 300W challenge [27] and evalu-

ated using NMSE (Eq. 8), where d is set as the inter-ocular

distance (i.e. distance between outer corners of the eyes).

Per convention, we evaluated different subsets of 300W (i.e.

common and challenge, which together form full).

We compared the performance of the proposed objec-

tive trained in a semi-supervised fashion. During training,

300W dataset made-up the labeled data (i.e. real), and a ran-

dom selection from MegaFace provided the unlabeled data

(i.e. fake) [22]. MTCNN1 was used to detect five landmarks

(i.e. eye pupils, corners of the mouth, and middle of nose

and chin) [43], which allowed for similar face crops from

either dataset. Specifically, we extended the square hull that

enclosed the five landmarks by 2× the radii in each direc-

tion. In other words, the smallest bounding box spanning

the 5 points (i.e. the outermost points lied on the parame-

ter), and then transformed from rectangles-to-squares with

sides of length 2×max(height, width). Note that the mid-

point of the original rectangle was held constant to avoid

shift translations (i.e. rounded up a pixel if the radius was

even and extended in all directions).

The LaplaceKL+D(70K) model obtained state-of-the-

art on 300W, yielding the lowest error on 300W

(Table 2 (300W columns)). LaplaceKL+D(N ) and

softargmax+D(N ) denote the models trained with unlabeled

data, where N representing the number of unlabeled images

added from MegaFace.

First, notice that LaplaceKL trained without unlabeled

data still achieved state-of-the-art. The LaplaceKL-based

models then showed relative improvements with more un-

labeled data added. The softargmax-based models cannot

fully take advantage of the unlabeled data without mini-

mizing for variance (i.e. generates heatmaps of less con-

fidence and, thus, more spread). Our LaplaceKL, on the

other hand, penalizes for spread (i.e. scale), making the job

of D more challenging. As such, LaplaceKL-based models

benefit from increasing amounts of unlabeled data.

Also, notice the largest gap between the baseline mod-

els [8] and our best LaplaceKL+D(70K) model on the dif-

ferent sets of 300W. Adding more unlabeled helps more (i.e.

1https://github.com/davidsandberg/facenet
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L-KL+D(70K)

SAM+D(80K)

L-KL+D(70K)

SAM+D(80K)

Figure 3. Random samples (300W). Heatmaps predicted by

our LaplaceKL+D(70K) (middle, i.e. L-KL+D(70K)) and

softargmax+D(70K) (right, i.e. SAM+D(70K)) alongside face im-

ages with ground-truth sketched on the face (left). For this, colors

were set by value for the K heatmaps generated for each landmark

(i.e. range of [0, 1] as shown in color bar), and then were superim-

posed on the original face. Note that the KL-divergence loss yields

predictions of much greater confidence and, hence, produced sep-

arated landmarks when visualized heatmap space. In other words,

the proposed has minimal spread about the mean, as opposed to

the softargmax-based model with heatmaps with individual land-

marks smudged together. Best viewed electronically.

LaplaceKL vs. LaplaceKL+D(70K) improvement is about

2.53%). However, it is essential to use samples not cov-

ered in the labeled set. To demonstrate this, we set the real

and fake sets to 300W (i.e. dl = d
u in the second term

of Eq. 7). NMSE results for this experiment are listed as

follows: LaplaceKL+D(300W) 4.06 (baseline– 4.01) and

softargmax+D(300W) 4.26 (baseline– 4.24). As hypothe-

sized, all the information from the labeled set had already

been extracted in the supervised branch, leaving no benefit

of using the same set in the unsupervised branch. There-

fore, more unlabeled data yields more hard negatives to

train with, which improves the accuracy of the rarely seen

samples (Table 2 (300W challenge set)). Our best model

was≈2.7% better than [8] on easier samples (i.e. common),

≈4.7% better on average (i.e. full), and, moreover, ≈9.8%

better on the more difficult (i.e. challenge),≈4.7% better on

average (full), and, moreover,≈9.8% better on the more dif-

ficult (challenge). These results further highlight the advan-

tages of training with the proposed LaplaceKL loss, along

with the adversarial training framework.

Additionally, the adversarial framework further boosted

our 300W baseline was further boosted by (i.e. more unla-

beled data yields a lower NMSE). Specifically, we demon-

strated this by pushing state-of-the-art of the proposed on

300W from a NMSE of 4.01 to 3.91 (i.e. no unlabeled data

to 70K unlabeled pairs, respectfully). There were boosts at

each step size of full (i.e. larger N → NMSE).

We randomly selected unlabeled samples for

LaplaceKL+D(70K) and softargmax+D(70K) to visu-

alize predicted heatmaps (Fig. 3). In each case, the

heatmaps produced by the softargmax-based models spread

wider, explaining the worsened quantitative scores (Ta-

ble 2). The models trained with the proposed contributions

tend to yield higher probable pixel location (i.e. a more

concentrated predicted heatmaps). For most images, the

heatmaps generated by models trained with the LaplaceKL

loss have distributions for landmarks that were more con-

fident and properly distributed: our LaplaceKL+D(70K)

yielded heatmaps that vary 1.02 pixels from the mean,

while softargmax+D(70K) has a variation of 2.59. Learn-

ing the landmark distributions with our LaplaceKL loss is

conceptually and theoretically intuitive (Fig. 1). Moreover,

it is experimentally proven (Table 2).

4.3. The AFLW dataset

We evaluated the LaplaceKL loss on the AFLW

dataset [20]. AFLW contains 24,386 faces with up to 21

landmarks annotations and 3D head pose labels. Follow-

ing [15], 20,000 faces were used for training with the other

4,386 for testing. We ignored the two landmarks for the left

and right earlobes, leaving up to 19 landmarks per face [8].

Since faces of AFLW have such variety head poses, most

faces have landmarks out of view (i.e. missing). Thus,

most samples were not annotated with the complete 19

landmarks, meaning that it does not allow for a constant

sized tensor (i.e. real heatmaps) for the adversarial training.

Therefore, we compared the softargmax and KL-based ob-

jectives with existing state-of-the-art. The face size d for

the NMSE was the square root of the bounding box hull [1].

Our LaplaceKL-based model scored results comparable

to existing state-of-the-art (i.e. RCN+ (L+ELT) [15]) on the

larger, more challenging AFLW dataset while outperform-

ing all others. It is essential to highlight here that [15] puts

great emphasis on data augmentation, while we do not ap-

ply any. Also, since landmarks are missing in some samples

(i.e. no common reference points exist across all samples),

we were unable to prepare faces for our semi-supervised

component– a subject for future work.

4.4. Ablation Study

The error is next measured as a function of model size

(Table 3), along with differentβ values (Eq. 2) and scales

b used to parameterize the Laplacian (Fig. 4). The latter
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Table 3. NMSE on 300W (full set) for networks trained with fewer

channels in each convolutional layer by 1/16, 1/8, 1/4, 1/2, and

unmodified in size (i.e. the original) listed from left-to-right. We

measured performance with a 2.8GHz Intel Core i7 CPU.

Number of parameters, millions

0.0174 0.0389 0.1281 0.4781 1.8724

Softargmax 9.79 6.86 4.83 4.35 4.25

Softargmax+D(70K) 9.02 6.84 4.85 4.38 4.29

LaplaceKL 7.38 5.09 4.39 4.04 4.01

LaplaceKL+D(70K) 7.01 4.85 4.30 3.98 3.91

Storage (MB) 0.076 0.162 0.507 1.919 7.496

Speed (fps) 26.51 21.38 16.77 11.92 4.92

N
M

S
E

4.0

4.0

4.1

4.1

4.2

4.2

β

0.1 1 10 20 100

b = 1

N
M

S
E

3.9

4.5

5.0

5.6

6.1

6.7

scale (b)

0.5 1 2 5 10

β = 1

Figure 4. Results of ablation study on LaplaceKL.

characterizes the baseline and supports the values used for

these hyper-parameters, while the former reveals a critical

characteristic for the practicality of the proposed.

Specifically, we decreased the model size by reducing

the number of channels at each convolutional layer by fac-

tors of 2. The softargmax-based model worsened by about

47% and 79% in NMSE at an and the channel count, re-

spectfully (i.e. 4.25 → 6.86 and 9.79). LaplaceKL, on the

other hand, decreased by about 24% with an 8th and 59%

with a 16th the number of channels (i.e. 4.01 → 5.09 and

7.38, respectfully). Our model trained with unlabeled data

(i.e. LaplaceKL+D(70K)) dropped just about 21% and 57%

at factors of 8 and 16, respectfully (i.e. 3.91 → 4.85 and

7.01). In the end, LaplaceKL+D(70K) proved best with re-

duced sizes: with <0.040M parameters, it still compares to

previous state-of-the-art [15, 21, 38], which is a clear advan-

tage. For instance, SDM [39], requires 1.693M parameters

(25.17MB) for 7.52 in NMSE (300W full).2 Yet our small-

est and next-to-smallest get 7.01 and 4.85 with only 0.174M

(0.076 MB) and 0.340M (0.166 MB) parameters.

The processing speed also boosts with fewer channels

(i.e. to train and at inference). For instance, the model re-

duced by a factor of 16 processes 26.51 frames per second

(fps) on a CPU of Macbook Pro (i.e. 2.8GHz Intel Core i7),

with the original running at 4.92 fps. Our best LaplaceKL-

based model proved robust to size reduction, obtaining 4.85

NMSE at 21.38 fps when reduced by 1/8.

2https://github.com/tntrung/sdm_face_alignment

Figure 5. Random samples of landmarks predicted using

LaplaceKL (white), with the ground truth drawn as line segments

(red). Notice the predicted points tend to overlap with the ground-

truth. Best viewed in color. Zoom-in for greater detail.

5. Conclusions

We demonstrated the benefits of the proposed

LaplaceKL loss and leveraging unlabeled data in an

adversarial training framework. Hypothetically and

empirically, we showed the importance of penalizing a

landmark predictor’s uncertainty. Thus, training with the

proposed objective yields predictions of higher confidence,

outperforming previous state-of-the-art methods. We also

revealed the benefits of adding unlabeled training data to

boost performance via adversarial training. In the end,

our model performs state-of-the-art on all three splits

of the renown 300W (i.e. common, challenge, and full),

and second-to-best on the AFLW benchmark. Also, we

demonstrate the robustness of the proposed by significantly

reducing the number of parameters. Specifically, with

1/8 the number of channels (i.e. <170Kb on disk), the

proposed still yields an accuracy comparable to the previ-

ous state-of-the-art in real-time (i.e. 21.38 fps). Thus, the

contributions of the proposed framework are instrumental

for models intended for use in real-world production.
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