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Abstract

One of the most successful approaches in Multi-View

Stereo estimates a depth map and a normal map for each

view via PatchMatch-based optimization and fuses them

into a consistent 3D points cloud. This relies on photo-

consistency to evaluate the goodness of a depth estimate.

It generally produces very accurate results, however, the re-

constructed model often lacks completeness, especially in

correspondence of broad untextured areas where the photo-

consistency metrics are unreliable. Assuming the untex-

tured areas piecewise planar, in this paper we generate

novel PatchMatch hypotheses so to expand reliable depth

estimates in neighboring untextured regions. At the same

time, we modify the photo-consistency measure such to fa-

vor standard or novel PatchMatch depth hypotheses de-

pending on the textureness of the considered area. Finally,

we propose a depth refinement step to filter out wrong esti-

mates and to fill gaps on both the depth and normal maps,

while preserving discontinuities. Our method proved its ef-

fectiveness against several state of the art algorithms in the

publicly available ETH3D dataset containing a wide vari-

ety of high and low-resolution images.

1. Introduction

Multi-View Stereo (MVS) aims at recovering a dense 3D

representation of the scene perceived by a set of calibrated

images, for instance, to map cities, to create a digital li-

brary of cultural heritage or to help robots navigating an

environment. Thanks to the availability of public datasets

[22, 25, 9], several successful MVS algorithms have been

proposed in the last decade, and their performance keeps

increasing.

Depth map estimation represents one of the fundamen-

tal and most challenging steps on which most MVS meth-

ods rely. Depth maps are then fused together directly into

a point cloud [32, 19], or into a volumetric representa-

tion, such as a voxel grid [18, 3] or Delaunay triangulation

[11, 27, 10, 15, 13]. In the latter case a 3D mesh is ex-

tracted and can be further refined via variational methods

(a) RGB image (b) COLMAP

(c) DeepMVS (d) TAPA-MVS
Figure 1. Example of the depth map produced by the proposed

method with respect to the state-of-the-art

[27, 2, 14, 17] and eventually labelled with semantics [16].

Although Machine Learning methods have begun to ap-

pear [7, 28, 31], PatchMatch-based algorithms, emerged

some years ago, are still among the top performing ap-

proaches for efficient and accurate depth map estimation.

The core idea of PatchMatch, pioneered by Barnes et al. [1]

and extended for depth estimation by Bleyer et al. [4], is to

choose for each pixel a random guess of the depth and then

propagate the most likely estimates to their neighborhood.

Starting from this idea, Schönberger et al. [19] recently pro-

posed a robust framework able to jointly estimate the depth,

the normals, and the pixel-wise camera visibility for each

view.

One of the major drawbacks of PatchMatch methods is

that most of the untextured regions are not managed cor-

rectly (Figure 1(b)). Indeed the optimization highly relies

on the photometric measure to discriminate which random

estimate is the best guess and to filter out unstable estimates.

The depth of the untextured regions is hard to define with

enough confidence since they are homogeneous and thus,

the photometric measure alone hardly discerns neighboring

regions.

In this paper, we specifically address the untextured re-
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gions drawback by leveraging on the assumption that they

are often piecewise flat (Figure 1(d)). The framework pre-

sented, named TAPA-MVS, proposes:

• a metric to define the textureness of each image pixel;

it serves as a proxy to understand how much the photo-

consistency metric is reliable.

• to subdivide the image into superpixels and, for each

iteration of the optimization procedure, to fit one plane

for each superpixel; for each pixel, a new depth-normal

hypothesis together with the textureness defined be-

fore, is evenly integrated in the optimization frame-

work considering the likelihood of the plane fitting

procedure.

• a novel depth refinement method that filters the depth

and normal maps and fills each missing estimates

with an approximate bilateral weighted median of the

neighbors.

We tested the proposals against the 38 sequences of the

publicly available ETH3D dataset [20] (Section 6) and the

results show that our method is able to significantly improve

the completeness of the reconstruction while preserving a

very good accuracy. Our approach improves COLMAP re-

sults also in fountain-P11, HerzJesu-P8 [25], Tower of Lon-

don and NotreDame [29] (see Supplementary materials).

2. Patch-Match for Multi-View Stereo

The PatchMatch seminal paper by Barnes et al. [1] pro-

posed a general method to efficiently compute an approxi-

mate nearest neighbor function defining the pixelwise cor-

respondence among patches of two images. The idea is

to use a collaborative search exploiting local coherency.

PatchMatch initializes each pixel of an image with a ran-

dom guess about the location of the nearest neighbor in the

second image. Then, each pixel propagates its estimate to

the neighboring pixels and, among these estimates, the most

likely is assigned to the pixel itself. As a result the best es-

timates spread along the entire image.

Bleyer et al. [4] re-framed this method into the stereo

matching realm. Indeed, for each image patch, stereo

matching looks in the second image for the corresponding

patch, i.e. the nearest neighbor in the sense of photometric

consistency. To improve its robustness the matching func-

tion is defined on slanted support windows. Heise et al. [6]

produce smoother depth estimates while preserving edges

discontinuities, by regularizing the estimate with quadratic

relaxation.

The natural extension of PatchMatch from pair-wise

stereo matching to Multi-View Stereo was proposed by

Shen [24]. The author selects a subset of camera pairs de-

pending on the number of shared points computed by Struc-

ture from Motion and their mutual parallax angle. Then

he estimates a depth map for the selected subset of camera

pairs through a simplified version of the method of Bleyer

et al. [4]. The algorithm refines the depth maps by enforc-

ing consistency among multiple views, and it finally merges

the depth maps into a point cloud.

Galliani et al. [5] modify the PatchMatch propagation

scheme so to better exploit parallelization of GPUs. Dif-

ferently, from Shen [24], they aggregate, for each refer-

ence camera, a set of matching costs computed from dif-

ferent source images. One of the major drawbacks of these

approaches is the decoupled depth estimation and camera

pairs selection. Xu and Tao [30] recently proposed an at-

tempt to overcome this issue; they extended [5] with a more

efficient propagation pattern and, in particular, their opti-

mization procedure jointly considers all the views and all

the depth hypotheses.

Rather than considering the whole set of images to com-

pute the matching costs, Zheng et al. [32] proposed an ele-

gant method to deal with view selection. They framed the

joint depth estimation and pixel-wise view selection prob-

lem into a variational approximation framework. Following

a generalized Expectation Maximization paradigm, they al-

ternate between depth update with PatchMatch, keeping the

view selection fixed, and pixel-wise view inference with the

forward-backward algorithm, keeping the depth fixed.

Schönberger et al. [19] extended this method to jointly

estimate per-pixel depths and normals, such that, differently

from [32], the knowledge of the normals enables slanted

support windows to avoid the fronto-parallel assumption.

Then they add view-dependent priors to select views that

more likely induce robust matching cost computation.

The PatchMatch based methods described thus far, have

been proven to be among the top performing approachs

in several MVS benchmarks [23, 25, 9, 21]. However,

some issues are still open. In particular, most of them

strongly rely on photo-consistency measures to discriminate

among depth hypotheses. Even if this works remarkably

for textured areas and the propagation scheme partially in-

duces smoothness, untextured regions are often poorly re-

constructed. For this reason, we propose two proxies to im-

prove the reconstruction where untextured areas appear. On

the one hand, we seamlessly extend the probabilistic frame-

work to explicitly detect and handle untextured regions by

extending the set of PatchMatch hypotheses. On the other

side, we complete the depth estimation with a refinement

procedure to fill the missing depth estimates.

3. Review of the COLMAP framework

In this section we review the state-of-the-art framework

proposed by Schönberger et al. [19] which builds on top of

the method presented by Zheng et al. [32]. Let note that in

the following, we express the coordinate of the pixel only

with a value l, since both frameworks sweep independently
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every single line of the image alternating between rows and

columns.
Given a reference image Xref and a set of source images

X
src = {Xm|m = 1 . . .M}, the framework estimates the

depth θl and the normal nl of each pixel l, together with a
binary variable Zm

l ∈ {0, 1}, which indicates if l is visible
in image m. This is framed into a Maximum-A Posteriori
(MAP) estimation where the posterior probability is:

P (Z, θ,N|X) =
P (Z, θ,N,X)

P (X)
=

=
1

P (X)

L
∏

l=1

M
∏

m=1

[

P
(

Z
m
l,t|Z

m
l−1,t, Z

m
l,t−1

)

P
(

X
m
l |Z

m
l , θl,nl, X

ref
)

P
(

θl,nl|θ
m
l ,n

m
l

)

]

, (1)

where L is the number of pixels considered in the current

line sweep, X =
{

X
src,Xref

}

and N = {nl|l = 1 . . . L}.

The likelihood term

P
(

X
m
l |Z

m
l , θl

)

=







1
NA

exp

(

−
(1−ρm

l (θl))
2

2σ2
ρ

)

if Zm
l = 1

1
N

U if Zm
l = 0,

(2)

represents the photometric consistency of the patch Xm
l ,

which belongs to a non-occluded source image m and is

around the pixel corresponding to the point at l, with re-

spect to the patch X
ref
l around l in the reference image.

The photometric consistency ρ is computed as a bilaterally

weighted NCC, A =
∫ 1

−1
exp

{

− (1−ρ)2

2σ2
ρ

}

dρ and the con-

stant N cancels out in the optimization. The likelihood term

P (θl,nl|θ
m
l ,nm

l ) represents the geometric consistency and

enforces multi-view depth and normal coherence. Finally

P
(

Zm
l,t|Z

m
l−1,t, Z

m
l,t−1

)

favors image occlusion indicators

which are smooth both spatially and along the successive

iteration of the optimization procedure.

Being Equation (1) intractable, Zheng et al. [32] pro-

posed to use variational inference to approximate the real

posterior with a function q(Z, θ,N) such that the KL di-

vergence of the two functions is minimized. Schönberger

et al. [19] factorize q(Z, θ,N) = q(Z)q(θ,N) and, to es-

timate such approximation, they propose a variant of the

Generalized Expectation-Maximization algorithm [12]. In

the E step, the values (θ,N) are kept fixed, and, in the

resulting Hidden Markov Model, the function q(Zm
l,t) is

computed by means of message passing. In the M step,

viceversa, the values of Zm
l,t are fixed, the function q(θ,N)

is constrained to the family of Kroneker delta functions

q(θl,nl) = q(θl = θ∗l ,n
∗
l ). The new optimal values of

θl and Nl are computed as:

(

θ̂
opt
l

, n̂
opt

l

)

= argmin
θ∗
l
,n∗

l

1

|S|

∑

m∈S

(

1 − ρ
m
l

(

θ
∗

l ,n
∗

l

))

, (3)

where S is a subset of sources images, randomly sampled

according to a probability Pl(m). Probability Pl(m) favors

images not occluded, and coherent with three priors which

(a) (b)

Figure 2. Depth map after the first iteration (a). Unstable regions

have been filtered in (b)

encourage good inter-cameras parallax, similar resolution

and camera, front-facing the 3D point defined by θ∗l ,n
∗
l .

According to the PatchMatch scheme proposed in [19],
the pair (θ∗l ,n

∗
l ) evaluated in Equation (3) is chosen among

the following set of hypotheses:

{

(θl,nl) ,
(

θ
prp

l−1
,nl−1

)

,
(

θrnd
l

,nl

)

,
(

θl,n
rnd
l

)

,

(

θrnd
l

,nrnd
l

)

,
(

θ
prt

l
,nl

)

,
(

θl,n
prt

l

)}

, (4)

where (θl,nl) comes from the previous iteration,

(θl−1,nl−1) is the estimate from the previous pixel of the

scan,
(

θrndl ,nl

)

is a random hypothesis and finally, θ
prt
l and

n
prt
l are two small perturbations of the estimates θl and nl.

4. Textureness-Aware Joint PatchMatch and

View Selection

The core ingredient that makes a Multi-View Stereo al-

gorithm successful is the quality and the discriminative ef-

fectiveness of the stereo comparison among patches belong-

ing to different cameras. Such comparison relies on a pho-

tometric measure, computed as Normalized Cross Correla-

tion or similar metrics such as Sum of Squared Differences

(SSD), or Bilateral Weighted NCC. The major drawback

arises in correspondence of untextured regions. Here the

discriminative capabilities of NCC become unreliable be-

cause all the patches belonging to the untextured area are

similar among each other.

Under these assumptions, the idea behind our proposal

is to segment images into superpixels such that each su-

perpixel would span a region of the image with a texture

mostly homogeneous and it likely stops in correspondence

to an image edge. Then, we propagate the depth/normal es-

timates belonging to photometrically stable regions around

the edges to the entire superpixel. In the following we as-

sume the first iteration of the framework presented in Sec-

tion 3 is executed so that we have a very first estimation of

the depth map, which is reliable only in correspondence of

highly textured regions (Figure 2).
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x

π
n

θsuper

Figure 3. Depth hypothesis generation. The depth θ is the distance

from the camera to the the plane π, estimated with the 3D points

corresponding to the superpixel extracted on the image

4.1. Piecewise Planar Hypotheses generation

The idea of the method is to augment the set of Patch-

Match depth hypotheses in Equation 4 with novel hypothe-

ses that model a piecewise planar prior corresponding to

untextured areas.

In the first step we extract the superpixels S =
{s1, s2, . . . , sNsuper

} of each image by means of the algo-

rithm SEEDS [26]. Since, a superpixel sk generally con-

tains homogeneous texture, we assume that each pixel cov-

ered by a superpixel sk roughly belongs to the same plane.

After running the first iteration of depth estimation, we

filter out the small isolated speckles of the depth map ob-

tained (in this paper, with area smaller than imagearea
5000 ). As

a consequence, the area of sk in the filtered depth map likely

contains a set P inl
k of reliable 3D points estimates which

roughly corresponds to real 3D points. In the presence of

untextured regions, these points mostly belong to the areas

near edges (Figure 2).

We fit a plane πk on the 3D points in P inl
k with RANSAC,

classifying the points farther than 10 cm from the plane as

outliers. Let us define θ̂x the tentative depth hypothesis for

a pixel x corresponding to the 3D point on the plane πk

and n̂x the corresponding plane normal (Figure 3) Then,

let us define the inlier ratio rinlk = num. inliers
|P inl

k
|

, whose value

expresses the confidence of the plane estimate.

The actual hypotheses (θx,nx) for a pixel x ∈ sk is gen-

erated as follows. To deal with fitting uncertainty, we first

define P
(

(θx,nx) = (θ̂x, n̂x)
)

= rinlk ; so that if the value

vran sampled from a uniform distribution is vran <= rinlk

then θx = θ̂x. To propagate the hypotheses from superpix-

els with good inlier ratio to the neighbors with bad one, if

vran > rinlk the value of θx is sampled from the neighboring

superpixels belonging to a set Nk. Since we aim at spread-

ing the depth hypotheses among superpixels with a similar

appearance, we sample from Nk proportionally to the Bhat-

tacharya distance among the RGB histograms of sk and the

elements of Nk.

0

1

0
1tx

w
+

0

1

0
1tx

w
−

(a) (b)

Figure 4. Weights adopted to tune the photo-consistency and the

geometric cost according to the textureness tx

Experimentally, we noticed that the choice of Nsuper,

i.e., the number of superpixels, influences how the untex-

tured areas are treated and modeled in our method. With

small values of Nsuper large areas of the images are nicely

covered, but at the same time, limited untextured regions

are improperly fused. Vice-versa, a big Nsuper better mod-

els small regions while underestimating large areas. For

this reason, we choose to adopt both a coarse and a fine

superpixel segmentation of the image such that both small

and large untextured areas are modeled properly. There-

fore, for each pixel, we generate two depth hypotheses:

(θfine
x ,nfine

x ) and (θcoarse
x ,ncoarse

x ). In our experiments we

choose Nfine
super = imagewidth

20 and N coarse
super = imagewidth

30 .

4.2. Textureness­Aware Hypotheses Integration

To integrate the novel hypotheses into the estimation

framework, it is possible to simply add (θfine
x ,nfine

x ) and

(θcoarse
x ,ncoarse

x ) to the set of hypotheses defined in Equation

4. However, in this case, these hypotheses would be treated

with no particular attention to untextured areas. Indeed, the

optimization framework would compare them against the

baseline hypotheses relying on the photo-consistency met-

ric; in the presence of flat evenly colored surfaces, the unre-

liability of the metric would still affect the estimation pro-

cess. Instead, the goal of the proposed method is to favor

(θfine
x ,nfine

x ) and (θcoarse
x ,ncoarse

x ) where the image presents

untextured areas, so to guide the optimization to choose

them instead of other guesses.

For these reasons, we first define a pixel-wise textureness

coefficient to measure the amount of texture that surrounds

a pixel x. With a formulation similar to those presented in

[27], we define it as:

tx =
V arx + ǫvar

V arx + ǫvar

tmin

(5)

where V arx is the variance of the 5x5 patch around pixel

x, ǫvar is a constant we fixed experimentally at 0.00005,

i.e., two order of magnitude smaller than the average vari-
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(a) (b)

Figure 5. One image from ETH3D dataset (a) and the correspond-

ing textureness coefficients (b)

ance we found in the ETH3D training dataset (Section 6),

finally, tmin = 0.5 is the minimum value we choose for the

textureness coefficient; the higher the variance, the closer

the coefficient is to 1.0. Figure 5 shows an example of a

textureness coefficients image.

To seamlessly integrate the novel hypotheses we use the

textureness coefficient to reweight the photometric-based

cost Cphoto = 1 − ρ(θ,n) (Equation 3). Given a pixel

x let define two weights: w+(x) = 0.8 + 0.2 · tx and

w−(x) = 1.0− 0.2 · tx.

We use the metric ¯Cphoto = w− · Cphoto for the hy-

potheses contained in the set of Equation 4 and ¯Cphoto =
w+ · Cphoto for (θfine

x ,nfine
x ) and (θcoarse

x ,ncoarse
x ) so that re-

gions with low texture favors novel hypotheses. Vice-versa,

it is better to force a higher geometric consistency Cgeom

when we are dealing with the novel hypothesis in the pres-

ence of untextured areas. So to keep the formulation simple

we use w+ and w− again turning ¯Cgeom = w+ ·Cgeom for

the standard set of hypotheses and ¯Cgeom = w− ·Cgeom for

the proposed ones.

5. Joint Depth and Normal Depth Refinement

The hypotheses proposed in the previous section im-

prove the framework estimate accuracy and completeness in

correspondence of untextured regions. However, two issues

remain open. First, the filtering scheme adopted in [19] fil-

ters out all the estimates that are not photometrically and ge-

ometrically consistent among the views. Due to their pho-

tometric instability, the photo-consistency check removes

most of the new depth estimates corresponding to unfiltered

areas; therefore, in our case, we neglect this filtering step.

This leads us to the second issue. The resulting depth

map contains wrong and noisy estimates sparsely spread

along the depth image (Figure 6(a)). For this reason, we

complemented the estimation process with a depth refine-

ment step. To get rid of wrong estimates that have not con-

verged to a stable solution, we first apply a classical speck-

les filter to remove small blobs containing non-continuous

depths values. We fixed, experimentally, the maximum

speckle size of continuous pixels to imagearea
5000 . We con-

sider two pixels as continuous when the depth difference is

at most 10% of the scene size.

The output of the filtering procedure contains now small

regions where the depth and normal estimates are missing

(Figure 6(b)). To recover them, we designed the following

refinement step. Let xmiss be a pixel where depth and normal

estimates are missing and Nmiss the set of neighboring pix-

els. The simplest solution is to fill the missing estimate by

averaging the depth and normal values contained in Nmiss.

A better choice would be to weight the contribution to the

average with the bilateral coefficients adopted in the bilat-

eral NCC computation; they give more importance to the

pixels close to xmiss both in the image and in color space.

To better deal with depth discontinuities, we can improve

even further the refinement process by using a weighted me-

dian of depth and normal instead of the weighted average.

The pixel-wise median and, in particular, the weighted me-

dian is computational demanding, thus, to approximate the

median computation, we populate a three bins histogram

with the depths of the pixels in Nmiss. We choose the bin

with the highest frequency so to get rid of the outliers, and

we compute a bilaterally weighted average of the depth and

normals that populates this bin (Figure 6(c)). The computed

depth/normal values are assigned to xmiss.

6. Experiments

We tested the proposed method on an Intel(R) Xeon(R)

CPU E5-2687W with a GeForce GTX 1080 against the

publicly available ETH3D datasets [20], fountain-P11,

HerzJesu-P8 [25]. In the Supplementary materials we also

reported a qualitatively comparison against Tower of Lon-

don and NotreDame [29].

ETH3D dataset is split into test/training and low-/high-

resolution for a total of 38 sequences. Parameter tuning is

only permitted with the training sequences that are available

with the ground truth. The comparison is carried out by

computing the distance from the 3D model to the ground-

truth (GT) 3D scans and vice-versa; then, accuracy, com-

pleteness, and F1-score are computed considering the per-

centage of model-to-GT distances below a fixed threshold

τ . For a complete description of the evaluation procedure,

we refer the reader to [20]. To generate the 3D model

out of the depth map estimated with the proposed method,

we adopted the depth filtering and fusion implemented in

COLMAP. Since depth estimate corresponding to untex-

tured regions can get noisy, we changed the default fusion

parameter such that the reprojection error permitted, is more

strict (half for high-resolution sequences a quarter for low-

resolution ones). On the other hand, even the normal esti-

mate could be noisy, but, usually, the corresponding depths

are reasonable. For this reason, we allow for larger normal

errors (double the normal error permitted by COLMAP) and

demand the outlier filtering to the reprojection error check.
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Original Depth Map(a) After Speckles Removal(b) After Depth Refinement(c)

Figure 6. Depth map refinement

1 2 5 10 20 50 100 200 500
0

20

30

40

50

60

70

80

90

100

L1 depth error (cm)

%
p

ix
el

s

DeepMVS[7]

COLMAP[19]

TAPA-MVS(Proposed)

Figure 7. Depth map error distribution

Table 1 shows the F1-scores computed with a threshold

of 2 cm, which is the default values adopted for the dataset

leaderboard. TAPA-MVS, i.e., the method proposed in this

paper, is ranked first according to the overall F1-score of

both the Training and Test sequences. It is worth notic-

ing that TAPA-MVS, improves significantly the results of

the baseline COLMAP framework. The reason for such

successful reconstruction has to be ascribed to the texture

aware mechanism which is able to accurately reconstruct

the photometrically stable areas and to recover the missing

geometry where the photo-consistent measure is unreliable.

Figure 8 shows the models recovered by TAPA-MVS and

the top performing algorithms in some of the ETH3D se-

quences. The models reconstructed by TAPA-MVS are sig-

nificantly more complete and contain less noise.

To further test the effectiveness of our method, we

compared directly the accuracy of the depth map in the

13 training high-resolution sequences against the baseline

COLMAP [19] and the recent deep learning-based Deep-

MVS [30]. Figure 7 illustrates the error distribution, i.e., the

percentage of pixels in the depth maps whose error is lower

than a variable threshold (x-axis). TAPA-MVS clearly

shows better completeness with respect to both methods,

especially when considering small errors. In Figure 9 we

define image regions with respect to increasing textureness

values relying of the term tx described in Section 4.2. Given

a value v in the x-axis, we consider the image areas where

the textureness coefficient tx < v and we plot in the three

graphs the percentage of pixels in these areas with a depth

error lesser than 10cm, 20 cm or 50cm. These graphs

demonstrate the robustness of the proposed method against

untextured regions, indeed even in low-textured areas, the

percentage of pixel correctly estimated is comparable to the

highly textured regions.

Finally, we compared our method against DeepMVS and

COLMAP in the fountain-P11 and HerzJesu-P8. Figure 10

shows how even if the two sequences capture two well tex-

tured scenes the proposed method beats DeepMVS and it is

still able to slighlty improve the results of COLMAP.

Ablation study To assess the effectiveness of all the pro-

posal of the paper, Table 2 shows the accuracy, complete-

ness and F1-score of our method in the training high-

resolution sequences whose ground truth is publicly avail-

able. In the table, the rows represent increasing values of

the distance threshold τ . We listed the results without the

Texture Weighting (TW), without using the Coarse or the

Fine Superpixels (CS and FS) and finally without the Depth

Refinement step (DR). We also added to the comparison

the COLMAP performance [19] which is the baseline al-

gorithm prior to the novel steps suggested by this paper.

As expected COLMAP achieves the best accuracy at

the cost of lower completeness since it produces depth es-

timates only in correspondence of textured regions. The

data clearly shows that all the single proposal described

in the previous sections are crucial to the balance between

model completeness and accuracy obtained by TAPA-MVS.

In particular, texture weighting is fundamental to avoid the

framework treating the proposed hypothesis with the same

importance as the old ones, no matter how much texture the

image contains, this induces, in some cases, severe errors

that led the optimization into local minima. The Superpix-

els plane fitting steps at coarse and fine levels, are both rele-
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Method Training sequences Test sequences

Overall Low-Res High-Res Overall Low-Res High-Res

TAPA-MVS (Proposed) 71.42 55.13 77.69 73.13 58.67 79.15

OpenMVS 70.44 55.58 76.15 72.83 56.18 79.77

ACMH [30] 65.37 51.50 70.71 67.68 47.97 75.89

COLMAP [19] 62.73 49.91 67.66 66.92 52.32 73.01

LTVRE [10] 59.44 53.25 61.82 69.57 53.52 76.25

CMPMVS [8] 47.48 9.53 62.49 51.72 7.38 70.19

Table 1. f1 scores on the ETH3D Dataset with tolerance τ =2cm (used by default for the dataset leaderboard page).
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Figure 9. Percentage of pixels with error < 10cm, 20cm and 50cm with respect to textureness

τ COLMAP[19] w/o TW w/o CS w/o FS w/o DR TAPA-MVS

C A F1 C A F1 C A F1 C A F1 C A F1 C A F1

1 38.65 84.34 51.99 32.68 74.40 44.58 41.72 75.30 53.18 41.35 75.10 52.86 47.78 72.13 56.31 51.66 75.37 60.85

2 55.13 91.85 67.66 52.57 85.70 63.08 64.13 85.98 72.54 63.69 85.77 72.26 64.27 83.32 71.84 71.45 85.88 77.69

5 69.91 97.09 80.5 69.31 94.08 78.62 81.08 93.69 86.68 80.84 93.58 86.51 78.62 92.51 84.37 84.83 94.31 88.91

10 79.47 98.75 87.61 78.10 96.91 85.64 88.80 96.53 92.38 88.61 96.45 92.22 86.33 95.94 90.47 90.98 96.79 93.69

20 88.24 99.37 93.27 84.93 98.34 90.53 93.64 98.12 95.77 93.61 98.05 95.72 91.26 97.75 94.25 94.72 98.23 96.38

50 96.03 99.70 97.78 92.07 99.30 95.19 97.33 99.23 98.25 97.54 99.20 98.34 95.65 99.21 97.23 97.60 99.30 98.41

Table 2. Ablation study: without Texture Weighting (TW), Coarse Superpixels (CS), Fine Superpixels (FS), Depth Refinement (DR)
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Figure 10. Error distribution in fountain-P11 (left) and HerzJesu-

P8 (right) datasets

vant to obtain good guesses for untextured regions. Finally,

depth refinement not only improves the completeness of the

results, but, by filtering out wrong estimates and replacing

them with a careful neighbors interpolations at the missing

estimate, it improves the accuracy as well.

7. Conclusions and Future Works

In this paper we presented a PatchMatch-based frame-

work for Multi-View Stereo which is robust in correspon-

dence of untextured regions. By choosing a set of novel

PatchMatch hypotheses, the optimization framework ex-

pands the photometrically stable depth estimates, mainly

corresponding to image edges and textured areas, to the

neighboring untextured regions. We demonstrated that a

modification of the cost function used by the framework to

evaluate the goodness of such hypotheses is effective choice

to evenly integrate these hypothesis, in particular, by favor-

ing them when the textureness is low. We finally proposed

a depth and normal map refinement method which approx-

imates a weighted median filter, leadin to an improvement

of both the reconstruction accuracy and completeness.

In the future, we plan to build a complete textureness-

aware MVS pipeline including also a mesh reconstruction

and refinement stages. In particular, we are interested in

a robust meshing stage embedding piecewise planar pri-

ors where the point clouds correspond to untextured ar-

eas. Moreover, we would like to define a mesh refinement

method that balances regularization and data-driven opti-

mization depending on image textureness.
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Pollefeys. Semantic 3d reconstruction with continuous reg-

ularization and ray potentials using a visibility consistency

constraint. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 5460–5469,

2016.

[19] Johannes L. Schönberger, Enliang Zheng, Jan-Michael

Frahm, and Marc Pollefeys. Pixelwise view selection for

unstructured multi-view stereo. In European Conference on

Computer Vision, pages 501–518. Springer, 2016.

[20] Thomas Schops, Johannes L. Schonberger, Silvano Galliani,

Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-

dreas Geiger. A multi-view stereo benchmark with high-

resolution images and multi-camera videos. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3260–3269, 2017.
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