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Figure 1: FaceForensics++ is a dataset of facial forgeries that enables researchers to train deep-learning-based approaches

in a supervised fashion. The dataset contains manipulations created with four state-of-the-art methods, namely, Face2Face,

FaceSwap, DeepFakes, and NeuralTextures.

Abstract

The rapid progress in synthetic image generation and

manipulation has now come to a point where it raises signif-

icant concerns for the implications towards society. At best,

this leads to a loss of trust in digital content, but could po-

tentially cause further harm by spreading false information

or fake news. This paper examines the realism of state-of-

the-art image manipulations, and how difficult it is to detect

them, either automatically or by humans.

To standardize the evaluation of detection methods, we

propose an automated benchmark for facial manipulation

detection1. In particular, the benchmark is based on Deep-

Fakes [1], Face2Face [56], FaceSwap [2] and NeuralTex-

tures [54] as prominent representatives for facial manipula-

tions at random compression level and size. The benchmark

is publicly available2 and contains a hidden test set as well

as a database of over 1.8 million manipulated images. This

dataset is over an order of magnitude larger than compara-

ble, publicly available, forgery datasets. Based on this data,

we performed a thorough analysis of data-driven forgery

detectors. We show that the use of additional domain-

specific knowledge improves forgery detection to unprece-

dented accuracy, even in the presence of strong compres-

sion, and clearly outperforms human observers.

1. Introduction

Manipulation of visual content has now become ubiqui-

tous, and one of the most critical topics in our digital so-

ciety. For instance, DeepFakes [1] has shown how com-

puter graphics and visualization techniques can be used to

defame persons by replacing their face by the face of a dif-

ferent person. Faces are of special interest to current manip-

ulation methods for various reasons: firstly, the reconstruc-

tion and tracking of human faces is a well-examined field

in computer vision [64], which is the foundation of these

editing approaches. Secondly, faces play a central role in

human communication, as the face of a person can empha-

size a message or it can even convey a message in its own

right [27].

Current facial manipulation methods can be separated

into two categories: facial expression manipulation and fa-

cial identity manipulation (see Fig. 2). One of the most

prominent facial expression manipulation techniques is the

method of Thies et al. [56] called Face2Face. It enables the

transfer of facial expressions of one person to another per-

son in real time using only commodity hardware. Follow-up

work such as “Synthesizing Obama” [52] is able to animate

the face of a person based on an audio input sequence.

1. kaldir.vc.in.tum.de/faceforensics_benchmark

2. github.com/ondyari/FaceForensics
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Figure 2: Advances in the digitization of human faces have become the basis for modern facial image editing tools. The

editing tools can be split in two main categories: identity modification and expression modification. Aside from manually

editing the face using tools such as Photoshop, many automatic approaches have been proposed in the last few years. The most

prominent and widespread identity editing technique is face swapping, which has gained significant popularity as lightweight

systems are now capable of running on mobile phones. Additionally, facial reenactment techniques are now available, which

alter the expressions of a person by transferring the expressions of a source person to the target.

Identity manipulation is the second category of facial

forgeries. Instead of changing expressions, these methods

replace the face of a person with the face of another per-

son. This category is known as face swapping. It became

popular with wide-spread consumer-level applications like

Snapchat. DeepFakes also performs face swapping, but via

deep learning. While face swapping based on simple com-

puter graphics techniques can run in real time, DeepFakes

need to be trained for each pair of videos, which is a time-

consuming task.

In this work, we show that we can automatically and re-

liably detect such manipulations, and thereby outperform

human observers by a significant margin. We leverage re-

cent advances in deep learning, in particular, the ability to

learn extremely powerful image features with convolutional

neural networks (CNNs). We tackle the detection problem

by training a neural network in a supervised fashion. To

this end, we generate a large-scale dataset of manipulations

based on the classical computer graphics-based methods

Face2Face [56] and FaceSwap [2] as well as the learning-

based approaches DeepFakes [1] and NeuralTextures [54].

As the digital media forensics field lacks a benchmark

for forgery detection, we propose an automated benchmark

that considers the four manipulation methods in a realistic

scenario, i.e., with random compression and random

dimensions. Using this benchmark, we evaluate the current

state-of-the-art detection methods as well as our forgery

detection pipeline that considers the restricted field of facial

manipulation methods.

Our paper makes the following contributions:

• an automated benchmark for facial manipulation de-

tection under random compression for a standardized

comparison, including a human baseline,

• a novel large-scale dataset of manipulated facial im-

agery composed of more than 1.8 million images from

1,000 videos with pristine (i.e., real) sources and tar-

get ground truth to enable supervised learning,

• an extensive evaluation of state-of-the-art hand-crafted

and learned forgery detectors in various scenarios,

• a state-of-the-art forgery detection method tailored to

facial manipulations.

2. Related Work

The paper intersects several fields in computer vision and

digital multimedia forensics. We cover the most important

related papers in the following paragraphs.

Face Manipulation Methods: In the last two decades, in-

terest in virtual face manipulation has rapidly increased. A

comprehensive state-of-the-art report has been published by

Zollhöfer et al. [64]. In particular, Bregler et al. [12] pre-

sented an image-based approach called Video Rewrite to au-

tomatically create a new video of a person with generated

mouth movements. With Video Face Replacement [19],

Dale et al. presented one of the first automatic face swap

methods. Using single-camera videos, they reconstruct a

3D model of both faces and exploit the corresponding 3D

geometry to warp the source face to the target face. Gar-

rido et al. [28] presented a similar system that replaces the

face of an actor while preserving the original expressions.

VDub [29] uses high-quality 3D face capturing techniques

to photo-realistically alter the face of an actor to match the

mouth movements of a dubber. Thies et al. [55] demon-

strated the first real-time expression transfer for facial reen-

actment. Based on a consumer level RGB-D camera, they

reconstruct and track a 3D model of the source and the

target actor. The tracked deformations of the source face

are applied to the target face model. As a final step, they

blend the altered face on top of the original target video.

Face2Face, proposed by Thies et al. [56], is an advanced
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real-time facial reenactment system, capable of altering fa-

cial movements in commodity video streams, e.g., videos

from the internet. They combine 3D model reconstruction

and image-based rendering techniques to generate their out-

put. The same principle can be also applied in Virtual Real-

ity in combination with eye-tracking and reenactment [57]

or be extended to the full body [58]. Kim et al. [38] learn

an image-to-image translation network to convert computer

graphic renderings of faces to real images. Instead of a pure

image-to-image translation network, NeuralTextures [54]

optimizes a neural texture in conjunction with a rendering

network to compute the reenactment result. In compari-

son to Deep Video Portraits [38], it shows sharper results,

especially, in the mouth region. Suwajanakorn et al. [52]

learned the mapping between audio and lip motions, while

their compositing approach builds on similar techniques to

Face2Face [56]. Averbuch-Elor et al. [7] present a reen-

actment method, Bringing Portraits to Life, which employs

2D warps to deform the image to match the expressions of a

source actor. They also compare to the Face2Face technique

and achieve similar quality.

Recently, several face image synthesis approaches us-

ing deep learning techniques have been proposed. Lu et

al. [45] provide an overview. Generative adversarial net-

works (GANs) are used to apply Face Aging [6], to gener-

ate new viewpoints [33], or to alter face attributes like skin

color [44]. Deep Feature Interpolation [59] shows impres-

sive results on altering face attributes like age, mustache,

smiling etc. Similar results of attribute interpolations are

achieved by Fader Networks [41]. Most of these deep learn-

ing based image synthesis techniques suffer from low image

resolutions. Recently, Karras et al. [36] have improved the

image quality using progressive growing of GANs, produc-

ing high-quality synthesis of faces.

Multimedia Forensics: Multimedia forensics aims to en-

sure authenticity, origin, and provenance of an image or

video without the help of an embedded security scheme.

Focusing on integrity, early methods are driven by hand-

crafted features that capture expected statistical or physics-

based artifacts that occur during image formation. Surveys

on these methods can be found in [25, 51]. More recent lit-

erature concentrates on CNN-based solutions, through both

supervised and unsupervised learning [9, 16, 11, 8, 34, 63].

For videos, the main body of work focuses on detecting ma-

nipulations that can be created with relatively low effort,

such as dropped or duplicated frames [60, 30, 43], varying

interpolation types [24], copy-move manipulations [10, 20],

or chroma-key compositions [46].

Several other works explicitly refer to detecting manip-

ulations related to faces, such as distinguishing computer

generated faces from natural ones [21, 14, 49], morphed

faces [48], face splicing [23, 22], face swapping [62, 37]

and DeepFakes [4, 42, 32]. For face manipulation detec-

tion, some approaches exploit specific artifacts arising from

the synthesis process, such as eye blinking [42], or color,

texture and shape cues [23, 22]. Other works are more gen-

eral and propose a deep network trained to capture the sub-

tle inconsistencies arising from low-level and/or high level

features [48, 62, 37, 4, 32]. These approaches show im-

pressive results, however robustness issues often remain un-

addressed, although they are of paramount importance for

practical applications. For example, operations like com-

pression and resizing are known for laundering manipula-

tion traces from the data. In real-world scenarios, these

basic operations are standard when images and videos are

for example uploaded to social media, which is one of the

most important application field for forensic analysis. To

this end, our dataset is designed to cover such realistic sce-

narios, i.e., videos from the wild, manipulated and com-

pressed with different quality levels (see Section 3). The

availability of such a large and varied dataset can help re-

searchers to benchmark their approaches and develop better

forgery detectors for facial imagery.

Forensic Analysis Datasets: Classical forensics datasets

have been created with significant manual effort under very

controlled conditions, to isolate specific properties of the

data like camera artifacts. While several datasets were

proposed that include image manipulations, only a few

of them also address the important case of video footage.

MICC F2000, for example, is an image copy-move manip-

ulation dataset consisting of a collection of 700 forged im-

ages from various sources [5]. The First IEEE Image Foren-

sics Challenge Dataset comprises a total of 1176 forged

images; the Wild Web Dataset [61] with 90 real cases

of manipulations coming from the web and the Realistic

Tampering dataset [40] including 220 forged images. A

database of 2010 FaceSwap- and SwapMe-generated im-

ages has been proposed by Zhou et al. [62]. Recently, Kor-

shunov and Marcel [39] constructed a dataset of 620 Deep-

fakes videos created from multiple videos for each of 43

subjects. The National Institute of Standards and Technol-

ogy (NIST) released the most extensive dataset for generic

image manipulation comprising about 50, 000 forged im-

ages (both local and global manipulations) and around 500

forged videos [31].

In contrast, we construct a database containing more than

1.8 million images from 4000 fake videos – an order of

magnitude more than existing datasets. We evaluate the im-

portance of such a large training corpus in Section 4.

3. Large-Scale Facial Forgery Database

A core contribution of this paper is our FaceForensics++

dataset extending the preliminary FaceForensics dataset
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(a) Gender (b) Resolution (c) Pixel Coverage of Faces

Figure 3: Statistics of our sequences. VGA denotes 480p,

HD denotes 720p, and FHD denotes 1080p resolution of

our videos. The graph (c) shows the number of sequences

(y-axis) with given bounding box pixel height (x-axis).

[50]. This new large-scale dataset enables us to train a state-

of-the-art forgery detector for facial image manipulation in

a supervised fashion (see Section 4). To this end, we lever-

age four automated state-of-the-art face manipulation meth-

ods, which are applied to 1,000 pristine videos downloaded

from the Internet (see Fig. 3 for statistics). To imitate realis-

tic scenarios, we chose to collect videos in the wild, specif-

ically from YouTube. However, early experiments with all

manipulation methods showed that the target face had to

be nearly front-facing to prevent the manipulation methods

from failing or producing strong artifacts. Thus, we per-

form a manual screening of the resulting clips to ensure a

high-quality video selection and to avoid videos with face

occlusions. We selected 1,000 video sequences containing

509, 914 images which we use as our pristine data.

To generate a large scale manipulation database, we

adapted state-of-the-art video editing methods to work fully

automatically. In the following paragraphs, we briefly de-

scribe these methods.

For our dataset, we chose two computer graphics-based

approaches (Face2Face and FaceSwap) and two learning-

based approaches (DeepFakes and NeuralTextures). All

four methods require source and target actor video pairs as

input. The final output of each method is a video composed

of generated images. Besides the manipulation output, we

also compute ground truth masks that indicate whether a

pixel has been modified or not, which can be used to train

forgery localization methods. For more information and

hyper-parameters we refer to supplemental material.

FaceSwap FaceSwap is a graphics-based approach to

transfer the face region from a source video to a target

video. Based on sparse detected facial landmarks the face

region is extracted. Using these landmarks, the method fits a

3D template model using blendshapes. This model is back-

projected to the target image by minimizing the difference

between the projected shape and the localized landmarks

using the textures of the input image. Finally, the rendered

model is blended with the image and color correction is ap-

plied. We perform these steps for all pairs of source and

target frames until one video ends. The implementation is

computationally lightweight and can be efficiently run on

the CPU.

DeepFakes The term Deepfakes has widely become a

synonym for face replacement based on deep learning, but it

is also the name of a specific manipulation method that was

spread via online forums. To distinguish these, we denote

said method by DeepFakes in the following paper.

There are various public implementations of DeepFakes

available, most notably FakeApp [3] and the faceswap

github [1]. A face in a target sequence is replaced by a

face that has been observed in a source video or image col-

lection. The method is based on two autoencoders with a

shared encoder that are trained to reconstruct training im-

ages of the source and the target face, respectively. A face

detector is used to crop and to align the images. To create

a fake image, the trained encoder and decoder of the source

face are applied to the target face. The autoencoder output is

then blended with the rest of the image using Poisson image

editing [47].

For our dataset, we use the faceswap github implemen-

tation. We slightly modify the implementation by replacing

the manual training data selection with a fully automated

data loader. We used the default parameters to train the

video-pair models. Since the training of these models is

very time-consuming, we also publish the models as part of

the dataset. This facilitates generation of additional manip-

ulations of these persons with different post-processing.

Face2Face Face2Face [56] is a facial reenactment system

that transfers the expressions of a source video to a target

video while maintaining the identity of the target person.

The original implementation is based on two video input

streams, with manual keyframe selection. These frames are

used to generate a dense reconstruction of the face which

can be used to re-synthesize the face under different illumi-

nation and expressions. To process our video database, we

adapt the Face2Face approach to fully-automatically cre-

ate reenactment manipulations. We process each video in

a preprocessing pass; here, we use the first frames in order

to obtain a temporary face identity (i.e., a 3D model), and

track the expressions over the remaining frames. In order to

select the keyframes required by the approach, we automat-

ically select the frames with the left- and right-most angle

of the face. Based on this identity reconstruction, we track

the whole video to compute per frame the expression, rigid

pose, and lighting parameters as done in the original im-

plementation of Face2Face. We generate the reenactment

video outputs by transferring the source expression param-

eters of each frame (i.e., 76 Blendshape coefficients) to the

target video. More details of the reenactment process can

be found in the original paper [56].
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NeuralTextures Thies et al. [54] show facial reenactment

as an example for their NeuralTextures-based rendering ap-

proach. It uses the original video data to learn a neu-

ral texture of the target person, including a rendering net-

work. This is trained with a photometric reconstruction

loss in combination with an adversarial loss. In our im-

plementation, we apply a patch-based GAN-loss as used

in Pix2Pix [35]. The NeuralTextures approach relies on

tracked geometry that is used during train and test times.

We use the tracking module of Face2Face to generate these

information. We only modify the facial expressions corre-

sponding to the mouth region, i.e., the eye region stays un-

changed (otherwise the rendering network would need con-

ditional input for the eye movement similar to Deep Video

Portraits [38]).

Postprocessing - Video Quality To create a realistic set-

ting for manipulated videos, we generate output videos with

different quality levels, similar to the video processing of

many social networks. Since raw videos are rarely found

on the internet, we compress the videos using the H.264

codec, which is widely used by social networks or video-

sharing websites. To generate high quality videos, we use a

light compression denoted by HQ (constant rate quantiza-

tion parameter equal to 23) which is visually nearly lossless.

Low quality videos (LQ ) are produced using a quantization

of 40.

4. Forgery Detection

We cast the forgery detection as a per-frame binary clas-

sification problem of the manipulated videos. The following

sections show the results of manual and automatic forgery

detection. For all experiments, we split the dataset into a

fixed training, validation, and test set, consisting of 720,

140, and 140 videos respectively. All evaluations are re-

ported using videos from the test set. For all graphs, we list

the exact numbers in the supplemental material.

4.1. Forgery Detection of Human Observers

To evaluate the performance of humans in the task of

forgery detection, we conducted a user study with 204 par-

ticipants consisting mostly of computer science university

students. This forms the baseline for the automated forgery

detection methods.

Layout of the User Study: After a short introduction to

the binary task, users are instructed to classify randomly se-

lected images from our test set. The selected images vary

in image quality as well as manipulation method; we used

a 50:50 split of pristine and fake images. Since the amount

time for inspection of an image may be important, and to

mimic scenario where a user only spends a limited amount

of time per image as is common on social media, we ran-

domly set a time limit of 2, 4 or 6 seconds after which we

hide the image. Afterwards, the users were asked whether

the displayed image is ‘real’ or ‘fake’. To ensure that the

users spend the available time on inspection, the question is

asked after the image has been displayed and not during the

observation time. We designed the study to only take a few

minutes per participant, showing 60 images per attendee,

which results in a collection of 12240 human decisions.

Evaluation: In Fig. 4, we show the results of our study

on all quality levels, showing a correlation between video

quality and the ability to detect fakes. With a lower video

quality, the human performance decreases in average from

68.7% to 58.7%. The graph shows the numbers averaged

across all time intervals since the different time constraints

did not result in significantly different observations.

Figure 4: Forgery detection results of our user study with

204 participants. The accuracy is dependent on the video

quality and results in a decreasing accuracy rate that is

68.69% in average on raw videos, 66.57% on high quality,

and 58.73% on low quality videos.

Note that the user study contained fake images of all four

manipulation methods and pristine images. In this setting,

Face2Face and NeuralTextures were particularly difficult to

detect by human observers, as they do not introduce a strong

semantic change, introducing only subtle visual artifacts in

contrast to the face replacement methods. NeuralTextures

texture seems particularly difficult to detect as human de-

tection accuracy is below random chance and only increases

in the challenging low quality task.

4.2. Automatic Forgery Detection Methods

Our forgery detection pipeline is depicted in Fig. 5.

Since our goal is to detect forgeries of facial imagery, we

use additional domain-specific information that we can ex-

tract from input sequences. To this end, we use the state-

of-the-art face tracking method by Thies et al. [56] to track

the face in the video and to extract the face region of the

image. We use a conservative crop (enlarged by a factor of

1.3) around the center of the tracked face, enclosing the re-

constructed face. This incorporation of domain knowledge
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Figure 5: Our domain-specific forgery detection pipeline

for facial manipulations: the input image is processed by a

robust face tracking method; we use the information to ex-

tract the region of the image covered by the face; this region

is fed into a learned classification network that outputs the

prediction.

improves the overall performance of a forgery detector in

comparison to a naı̈ve approach that uses the whole image

as input (see Sec. 4.2.2). We evaluated various variants of

our approach by using different state-of-the-art classifica-

tion methods. We are considering learning-based methods

used in the forensic community for generic manipulation

detection [9, 16], computer-generated vs natural image de-

tection [49] and face tampering detection [4]. In addition,

we show that the classification based on XceptionNet [13]

outperforms all other variants in detecting fakes.

4.2.1 Detection based on Steganalysis Features:

We evaluate detection from steganalysis features, follow-

ing the method by Fridrich et al. [26] which employs hand-

crafted features. The features are co-occurrences on 4 pixels

patterns along the horizontal and vertical direction on the

high-pass images for a total feature length of 162. These

features are then used to train a linear Support Vector Ma-

chine (SVM) classifier. This technique was the winning

approach in the first IEEE Image Forensic Challenge [15].

We provide a 128 × 128 central crop-out of the face as in-

put to the method. While the hand-crafted method outper-

forms human accuracy on raw images by a large margin, it

struggles to cope with compression, which leads to an accu-

racy below human performance for low quality videos (see

Fig. 6 and Table 1).

4.2.2 Detection based on Learned Features:

For detection from learned features, we evaluate five net-

work architectures known from the literature to solve the

classification task:

(1) Cozzolino et al. [16] cast the hand-crafted Steganal-

ysis features from the previous section to a CNN-based net-

work. We fine-tune this network on our large scale dataset.

(2) We use our dataset to train the convolutional neu-

ral network proposed by Bayar and Stamm [9] that uses a

constrained convolutional layer followed by two convolu-

tional, two max-pooling and three fully-connected layers.

The constrained convolutional layer is specifically designed

Figure 6: Binary detection accuracy of all evaluated archi-

tectures on the different manipulation methods using face

tracking when trained on our different manipulation meth-

ods separately.

Figure 7: Binary precision values of our baselines when

trained on all four manipulation methods simulatenously.

See Table 1 for the average accuracy values. Aside from

the Full Image XceptionNet, we use the proposed pre-

extraction of the face region as input to the approaches.

to suppress the high-level content of the image. Similar to

the previous methods, we use a centered 128× 128 crop as

input.

(3) Rahmouni et al. [49] adopt different CNN architec-

tures with a global pooling layer that computes four statis-

tics (mean, variance, maximum and minimum). We con-

sider the Stats-2L network that had the best performance.

(4) MesoInception-4 [4] is a CNN-based network in-

spired by InceptionNet [53] to detect face tampering in

videos. The network has two inception modules and two

classic convolution layers interlaced with max-pooling lay-

ers. Afterwards, there are two fully-connected layers. In-
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stead of the classic cross-entropy loss, the authors propose

the mean squared error between true and predicted labels.

We resize the face images to 256 × 256, the input of the

network.

(5) XceptionNet [13] is a traditional CNN trained on Im-

ageNet based on separable convolutions with residual con-

nections. We transfer it to our task by replacing the final

fully connected layer with two outputs. The other layers are

initialized with the ImageNet weights. To set up the newly

inserted fully connected layer, we fix all weights up to the fi-

nal layers and pre-train the network for 3 epochs. After this

step, we train the network for 15 more epochs and choose

the best performing model based on validation accuracy.

A detailed description of our training and hyper-

parameters can be found in the supplemental document.

Comparison of our Forgery Detection Variants: Fig. 6

shows the results of a binary forgery detection task using

all network architectures evaluated separately on all four

manipulation methods and at different video quality levels.

All approaches achieve very high performance on raw input

data. Performance drops for compressed videos, particu-

larly for hand-crafted features and for shallow CNN archi-

tectures [9, 16]. The neural networks are better at handling

these situations, with XceptionNet able to achieve com-

pelling results on weak compression while still maintaining

reasonable performance on low quality images, as it benefits

from its pre-training on ImageNet as well as larger network

capacity.

To compare the results of our user study to the perfor-

mance of our automatic detectors, we also tested the detec-

tion variants on a dataset containing images from all ma-

nipulation methods. Fig. 7 and Table 1 show the results on

the full dataset. Here, our automated detectors outperform

human performance by a large margin (cf. Fig. 4). We also

evaluate a naı̈ve forgery detector operating on the full im-

age (resized to the XceptionNet input) instead of using face

tracking information (see Fig. 7, rightmost column). Due

to the lack of domain-specific information, the XceptionNet

classifier has a significantly lower accuracy in this scenario.

To summarize, domain-specific information in combination

with a XceptionNet classifier shows the best performance

in each test. We use this network to further understand the

influence of the training corpus size and its ability to distin-

guish between the different manipulation methods.

Forgery Detection of GAN-based methods The experi-

ments show that all detection approaches achieve a lower

accuracy on the GAN-based NeuralTextures approach.

NeuralTextures is training a unique model for every ma-

nipulation which results in a higher variation of possible

artifacts. While DeepFakes is also training one model per

manipulation, it uses a fixed post-processing pipeline sim-

Compression Raw HQ LQ

[13] XceptionNet Full Image 82.01 74.78 70.52

[26] Steg. Features + SVM 97.63 70.97 55.98

[16] Cozzolino et al. 98.57 78.45 58.69

[9] Bayar and Stamm 98.74 82.97 66.84

[49] Rahmouni et al. 97.03 79.08 61.18

[4] MesoNet 95.23 83.10 70.47

[13] XceptionNet 99.26 95.73 81.00

Table 1: Binary detection accuracy of our baselines when

trained on all four manipulation methods. Besides the naı̈ve

full image XceptionNet, all methods are trained on a con-

servative crop (enlarged by a factor of 1.3) around the center

of the tracked face.

Figure 8: The detection performance of our approach us-

ing XceptionNet depends on the training corpus size. Espe-

cially, for low quality video data, a large database is needed.

ilar to the computer-based manipulation methods and thus

has consistent artifacts.

Evaluation of the Training Corpus Size: Fig. 8 shows

the importance of the training corpus size. To this end,

we trained the XceptionNet classifier with different train-

ing corpus sizes on all three video quality level separately.

The overall performance increases with the number of train-

ing images which is particularly important for low quality

video footage, as can be seen in the bottom of the figure.
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5. Benchmark

In addition to our large-scale manipulation database, we

publish a competitive benchmark for facial forgery detec-

tion. To this end, we collected 1000 additional videos

and manipulated a subset of those in a similar fashion as

in Section 3 for each of our four manipulation methods.

As uploaded videos (e.g., to social networks) will be post-

processed in various ways, we obscure all selected videos

multiple times (e.g., by unknown re-sizing, compression

method and bit-rate) to ensure realistic conditions. This

processing is directly applied on raw videos. Finally, we

manually select a single challenging frame from each video

based on visual inspection. Specifically, we collect a set of

1000 images, each image randomly taken from either the

manipulation methods or the original footage. Note that we

do not necessarily have an equal split of pristine and fake

images nor an equal split of the used manipulation meth-

ods. The ground truth labels are hidden and are used on

our host server to evaluate the classification accuracy of the

submitted models. The automated benchmark allows sub-

missions every two weeks from a single submitter to prevent

overfitting (similar to existing benchmarks [18]).

As baselines, we evaluate the low quality versions of

our previously trained models on the benchmark and report

the numbers for each detection method separately (see Ta-

ble 2). Aside from the Full Image XceptionNet, we use

the proposed pre-extraction of the face region as input to

the approaches. The relative performance of the classifica-

tion models is similar to our database test set (see Table 1).

However, since the benchmark scenario deviates from the

training database, the overall performance of the models

is lower, especially for the pristine image detection preci-

sion; the major changes being the randomized quality level

as well as possible tracking errors during test. Since our

proposed method relies on face detections, we predict fake

as default in case of a tracking failure.

The benchmark is already publicly available to the com-

munity and we hope that it leads to a standardized compar-

ison of follow-up work.

6. Discussion & Conclusion

While current state-of-the-art facial image manipulation

methods exhibit visually stunning results, we demonstrate

that they can be detected by trained forgery detectors. It

is particularly encouraging that also the challenging case

of low-quality video can be tackled by learning-based ap-

proaches, where humans and hand-crafted features exhibit

difficulties. To train detectors using domain-specific knowl-

edge, we introduce a novel dataset of videos of manipulated

faces that exceeds all existing publicly available forensic

datasets by an order of magnitude.

In this paper we focus on the influence of compression to

Accuracies DF F2F FS NT Real Total

Xcept. Full Image 74.55 75.91 70.87 73.33 51.00 62.40

Steg. Features 73.64 73.72 68.93 63.33 34.00 51.80

Cozzolino et al. 85.45 67.88 73.79 78.00 34.40 55.20

Rahmouni et al. 85.45 64.23 56.31 60.07 50.00 58.10

Bayar and Stamm 84.55 73.72 82.52 70.67 46.20 61.60

MesoNet 87.27 56.20 61.17 40.67 72.60 66.00

XceptionNet 96.36 86.86 90.29 80.67 52.40 70.10

Table 2: Results of the low quality trained model of each

detection method on our benchmark. We report precision

results for DeepFakes (DF), Face2Face (F2F), FaceSwap

(FS), NeuralTextures (NT), and pristine images (Real) as

well as the overall total accuracy.

the detectability of state-of-the-art manipulation methods,

proposing a standardized benchmark for follow-up work.

All image data, trained models, as well as our benchmark

are publicly available and are already used by other re-

searchers. In particular, transfer learning is of high inter-

est in the forensic community. As new manipulation meth-

ods appear by the day, methods must be developed that are

able to detect fakes with little to no training data. Our

database is already used for this forensic transfer learning

task, where knowledge of one source manipulation domain

is transferred to another target domain, as shown by Coz-

zolino et al [17]. We hope that the dataset and benchmark

become a stepping stone for future research in the field of

digital media forensics, and in particular with a focus on

facial forgeries.
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