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Abstract

Metric learning seeks to embed images of objects such

that class-defined relations are captured by the embedding

space. However, variability in images is not just due to dif-

ferent depicted object classes, but also depends on other

latent characteristics such as viewpoint or illumination. In

addition to these structured properties, random noise fur-

ther obstructs the visual relations of interest. The common

approach to metric learning is to enforce a representation

that is invariant under all factors but the ones of interest. In

contrast, we propose to explicitly learn the latent character-

istics that are shared by and go across object classes. We

can then directly explain away structured visual variability,

rather than assuming it to be unknown random noise.

We propose a novel surrogate task to learn visual char-

acteristics shared across classes with a separate encoder.

This encoder is trained jointly with the encoder for class

information by reducing their mutual information. On five

standard image retrieval benchmarks the approach signifi-

cantly improves upon the state-of-the-art. Code is available

at https://github.com/Confusezius/metric-learning-mining-

interclass-characteristics.

1. Introduction

Images live in a high dimensional space rich of struc-

tured information and unstructured noise. Therefore an im-

age can be described by a finite combination of latent char-

acteristics. The goal of computer vision is then to learn the

relevant latent characteristics needed to solve a given task.

Particularly in object classification, discriminative charac-

teristics (e.g. car shape) are used to group the images ac-

cording to predefined classes. To tackle the intra-class vari-

ability, modern classifiers can easily learn to be invariant to

unstructured noise (e.g. random clutter, occlusion, image

brightness). However, a considerable part of the variability

is due to structured information shared among classes (e.g.

view points and notions of color)

∗Indicates equal contribution

Figure 1. (Left) Images can be described by combinations of latent

characteristics and white noise. (Green) Standard metric learn-

ing encoders extract class-discriminative information α while dis-

regarding object-specific properties β (e.g. color, orientation).

Achieving invariance to such characteristics requires substantial

training data. (Brown) Instead, the model can explain them away

by learning their structure explicitly. Our novel approach explic-

itly separates class-specific and shared properties during training

to boost the performance of the discriminative encoding.

For metric learning this becomes especially important.

As metric learning approaches project images into a high-

dimensional feature space to measure similarities between

images, every learned feature contributes. This means that

finding a strong set latent characteristics is crucial. Learn-

ing the characteristics shared across classes should therefore

benefit the model [20], as it can better explain the object

variance within a class. Take for example a model trained

only on white cars of a certain category. This model will

very likely not be able to recognize a blue car of the same

category (Fig.1 top-right). In this example, the encoder ig-

nores the concept of ”color” for that particular class, even

though it can be learned from the data as a latent variable

shared across all cars (Fig.1 bottom-right). This is a typical

generalization problem and is traditionally solved by pro-

viding more labeled data. However, besides being a costly
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Figure 2. Overview of our approach. We aim to learn two separate encoding spaces s.t. class information α extracted by Eα is free from

shared properties β by explicitly describing them through an auxiliary encoder Eβ . Given a set of image/label pairs (x, y), their CNN

feature representation f(x) groups images by both class specific (car model) and shared (orientation, color) characteristics. We separate

these by training the class-discriminative encoder Eα with ground-truth labels (boundary color). Simultaneously, an auxiliary encoder

Eβ is trained on labels from a surrogate task (right) to explain away interclass features. The required surrogate labels are generated by

standardizing the embedded training data per class and performing clustering. This recovers labels representing the shared structures β

(contour line-styles). Training both tasks together, Eα learns a robust, β-free encoding, which is now explicitly explained by Eβ .

solution, metric learning models need to also generalize to

unknown classes, a task which should work independently

from the amount of labels provided.

Explicitly modeling intra-class variation has already

proven successful[20, 15, 1], such as spatial transformer

layers [15], which explicitly learn the possible rotations and

translations of an object category.

We therefore propose a model to discriminate between

classes while simultaneously learning the shared properties

of the objects. To strip intra-class characteristics away from

our primary class encoder, thereby facilitating the task of

learning good discriminative features, we utilize an auxil-

iary encoder. While the class encoder can be trained using

ground-truth labels, the auxiliary encoder is learned through

a novel surrogate task which extracts class-independent in-

formation without any additional annotations. Finally, an

additional mutual information loss further purifies the class

encoder from non-discriminative characteristics by elimi-

nating the information learned from the auxiliary encoder.

This solution can be utilized with any standard metric

learning loss, as shown in the result section. Our approach is

evaluated on three standard benchmarks for zero-shot learn-

ing, CUB200-2011 [37], CARS196 [19] and Stanford On-

line Products [28], as well as two more recent datasets, In-

Shop Clothes [43] and PKU VehicleID [21]. The results

show that the proposed approach consistently enhances the

performances of existing methods.

2. Related Work

After the success of deep learning in object classifica-

tion, many researchers have been investigating neural net-

works for metric learning. A network for classification

extracts only the necessary features for discrimination be-

tween classes. Instead, metric learning encodes the images

into an euclidean space where semantically similar ones are

grouped much closer together. This makes metric learn-

ing effective in various computer vision applications, such

as object retrieval [28, 39], zero-shot learning [39] and face

verification [7, 34]. The triplet paradigm [34] is the standard

in the field and much work has been done to improve upon

the original approach. As an exponential number of pos-

sible triplets makes the computation infeasible, many pa-

pers propose solutions for mining triplets more efficiently

[39, 34, 12, 11, 14]. Recently, Duan et al. [8] have pro-

posed a generative model to directly produce hard nega-

tives. ProxyNCA [24] generates a set of class proxies and

optimizes the distance of the anchor to said proxies, solving

the triplet complexity problem. Others have explored or-

thogonal directions by extending the triplet paradigm, e.g.
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Algorithm 1: Training a model via MIC

Input: data X , full encoder E, inter-/intra class

encoders {Eα, Eβ}, CNN f , class targets Yα,

batchsize bs, clusternumber C, update frequency TU ,

(adversarial) mutual information loss ld and weight

γ, projection network R, gradient reversal op r,

metric learning loss functions for Eα,β lα,β

Yβ ← Cluster(Stand(Embed(X , E, f)), C)

epoch← 0

while Not Converged do

repeat
bα, bβ ← GetBatch(X , Yα, Yβ , bs)

eα,β ← Embed(bα,β , Eα,β , f)

Lα ← lα(eα, Yα) + γ · ld(erα, R(erβ))

Eα, f ← Backward(Lα)

eα,β ← Embed(bα,β , Eα,β , f)

Lβ ← lβ(eβ , Yβ)+ γ · ld(erα, R(erβ))

Eβ , f ← Backward(Lβ)

until end of epoch;

if epoch mod TU == 0 then
Yβ ← Cluster(Embed(X,Eβ ,f), C)

end

epoch← epoch+ 1
end

making use of every sample in the (specifically constructed)

batch at once [28, 35], enforcing an angular triplet con-

straint [38], minimizing a cluster quality surrogate [27] or

optimizing the overlap between positive and negative sim-

ilarity histograms [36]. In addition, ensembles have been

quite successfully used by combining multiple encoding

spaces [29, 30, 41, 9] to maximize their efficiency.

Our work makes use of class-agnostic grouping of our

data (see e.g. [2, 3]) and shares similarities with propos-

als from Liu et al. [20], who explicitly decompose images

into class-specific and intra-class embeddings using a gen-

erative model, as well as Bai et al. [1], who, before train-

ing, divide each image class into subgroups to find an ap-

proximator for intra-class variances that can be included

into the loss. However, unlike [1] and [20], we explic-

itly search for structures shared between classes instead of

modelling the intra-class variance per sample [20] or class

[1]. In addition, unlike [1], we assume class-independent

intra-class variance and iteratively train a second encoder to

model intra-class features, thereby purifying the main en-

coder from non-discriminative features and achieving sig-

nificantly better results.

Finally, some works have exploited the latent structure

of the data as a supervisory signal [25, 26, 6, 4, 5, 33, 32].

In particular, Caron et al. [6] learn an unsupervised image

representation by clustering the data, starting from a Sobel

Figure 3. Example of clustering the data based on Z (see Sec3.3)

for two datasets: CARS196[19] and SOP[28]. We group the

dataset into 5 clusters (rows) and select the first 5 classes

(columns) with at least one sample per cluster. For each entry,

we selected the sample closest to the centroid per class. On the

left is our interpretation of the cluster structure. The results show

that subtraction of the class-specific features by standardization

helps to group images based on more generic properties, like car

orientation and bike parts.

filter prior initialization. Our approach includes such latent

data structures in a similar way, however we use it as auxil-

iary information to improve upon the metric learning task.

3. Improving Metric Learning

The main idea behind our method is the inclusion of

class-shared characteristics into the metric learning process

to help the model explain them away. In doing so, we would

gain robustness to intrinsic, non-disciminative properties of

the data, which is contrary to the common approach of sim-

ply forcing invariance towards them. However, three main

problems arise with this approach, namely: (i) Extracting

both class and class-independent characteristics using a sin-

gle encoder is infeasible and detrimental to the main goal.

(ii) We lack the labels for extracting these latent properties.

(iii) We need to explicitly remove unwanted properties from

the class embedding. We propose solutions to each of these

problems in sections 3.2, 3.3 and 3.4.

3.1. Preliminaries

Metric learning encodes the characteristics that discrim-

inate between classes into an embedding vector, with the

goal of training an encoder E such that images xi from the

same class y are nearby in the encoding space and samples

from different classes are far apart, given a standard dis-

tance in the embedding space.

In deep metric learning, image features are extracted us-

ing a neural network f : RHeight×Width×3 → R
F produc-

ing an image representation vector f(x), which is used as

input for the encoder of the embedding E : RF → R
D. The

latter is implemented as a fully connected layer generating
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R@k Dim 1 2 4 NMI

DVML[20] 512 52.7 65.1 75.5 61.4

BIER[29] 512 55.3 67.2 76.9 -

HTL[11] 512 57.1 68.8 78.7 -

A-BIER[30] 512 57.5 68.7 78.3 -

HTG[42] - 59.5 71.8 81.3 -

DREML[40] 9216 63.9 75.0 83.1 67.8

Semihard[34] - 42.6 55.0 66.4 55.4

Semihard* 128 57.2 69.4 79.9 63.9

MIC+semih 128 58.8 70.8 81.2 66.0

ProxyNCA[24] 64 49.2 61.9 67.9 64.9

ProxyNCA* 128 57.4 69.2 79.1 62.5

MIC+ProxyNCA 128 60.6 72.2 81.5 64.9

Margin[39] 128 63.6 74.4 83.1 69.0

Margin* 128 62.9 74.1 82.9 66.3

MIC+margin 128 66.1 76.8 85.6 69.7

Table 1. Recall@k for k nearest neighbor and NMI on CUB200-

2011 [37]. Our model outperforms all previous approaches, even

those using a larger number of parameters. (*) indicates our best

re-implementation with ResNet50.

an embedding vector of dimension D used for computing

similarities. The features f and the encoder E can then be

trained jointly by standard back-propagation.

With dij = ||E(f(xi)) − E(f(xj))||
2 defining the

euclidean distance between the images xi and xj , we

require that dij < dik if yj = yi and yk 6= yi. Given

a triplet (xi, xj , xk) with yj = yi and yk 6= yi, the loss

is then defined as l = max (dij − dik +m, 0) where m

is a margin parameter. Many variants of this loss have

been proposed recently, with margin loss[39] (adding an

additionally learnable margin β) proving to be best.

3.2. Auxiliary Encoder

To separate the process of extracting both inter- and

intra-class (shared) characteristics, we utilize two sepa-

rate encodings: a class encoder Eα which aims to extract

class-discriminative features and an auxiliary encoder Eβ to

find shared properties. These encoders are trained together

(Fig.2). To efficiently train the underlying deep neural net-

work, the two encoders share the same image representation

f(x) which is updated by both during training. In the first

training task, the class encoder Eα is trained using the pro-

vided ground truth labels y1, · · · , yN associated with each

image x1, · · · , xN with N the number of samples. A re-

spective, metric-based loss function can be selected arbi-

trarily (such as a standard triplet loss or the aforementioned

margin loss), as this part follows the generic training setup

for metric learning problems. Because labels are not pro-

vided for the training of our auxiliary encoder, we define an

automatic process to mine shared latent structure informa-

R@k Dim 1 2 4 NMI

HTG[42] - 76.5 84.7 90.4 -

BIER[29] 512 78.0 85.8 91.1 -

HTL[11] 512 81.4 88.0 92.7 -

DVML[20] 512 82.0 88.4 93.3 67.6

A-BIER[30] 512 82.0 89.0 93.2 -

DREML[40] 9216 86.0 91.7 95.0 76.4

Semihard[34] - 51.5 63.8 73.5 53.4

Semihard* 128 65.5 76.9 85.2 58.3

MIC+semih 128 70.5 80.5 87.4 61.6

ProxyNCA[24] 64 73.2 82.4 86.4 -

ProxyNCA* 128 73.0 81.3 87.9 59.5

MIC+ProxyNCA 128 75.9 84.1 90.1 60.5

Margin[39] 128 79.6 86.5 90.1 69.1

Margin* 128 80.0 87.7 92.3 66.3

MIC+margin 128 82.6 89.1 93.2 68.4

Table 2. Recall@k for k nearest neighbor and NMI on CARS196

[19]. DREML[40] is not comparable given the large embedding

dimension. (*) indicates our ResNet50 re-implementation.

tion from the original data. This information is then used

to provide a new set of training labels to train our auxiliary

encoder (Fig.2 right). As the training scheme is now equiv-

alent to the primary task, we may choose from the same set

of loss functions.

3.3. Extracting Inter­class Characteristics

We seek a task which, without human supervision, spots

structured characteristics within the data while ignoring

class-specific information. As structured properties are

generally defined by characteristics shared among several

images, they create homogeneous groups. To find these,

clustering offers a well established solution. This algo-

rithm associates images to surrogate labels c1, · · · , cN with

ci ∈ [1, · · · , C] and C being the predefined number of clus-

ters. However, applied directly to the data, this method is

biased towards class-specific structures since images from

the same class share many common properties, like color,

context and shape, mainly injected through the data collec-

tion process (e.g. a class may be composed of pictures of

the same object from multiple angles).

To remove the characteristics shared within the class,

we apply normalization guided by the ground truth classes.

For each class y we compute the mean µy and standard

deviation σy based on the features f(xi), ∀xi : yi = y.

Then we obtain the new standardized image representation

Z = [z1, · · · , zN ]with zi =
f(xi)−µyi

σyi

, where the class in-

fluence is now reduced. Afterwards, the auxiliary encoder

Eβ can be trained using the surrogate labels [c1, · · · , cN ]
produced by clustering the space Z.

For that to work as intended, a strong prior is needed.
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R@k Dim 1 10 100 NMI

DVML[20] 512 70.2 85.2 93.8 90.8

BIER[29] 512 72.7 86.5 94.0 -

ProxyNCA[24] 64 73.7 - - -

A-BIER[30] 512 74.2 86.9 94.0 -

HTL[11] 512 74.8 88.3 94.8 -

Margin[39] 128 72.7 86.2 93.8 90.7

Margin* 128 74.4 87.2 94.0 89.4

MIC+margin 128 77.2 89.4 95.6 90.0

Table 3. Recall@k for k nearest neighbor and NMI on Stan-

ford Online Products [28]. (*) indicates our ResNet50 re-

implementation.

R@k Dim 1 10 30 50

BIER[29] 512 76.9 92.8 96.2 97.1

HTG[42] - 80.3 93.9 96.6 97.1

HTL[11] 512 80.9 94.3 97.2 97.8

A-BIER[30] 512 83.1 95.1 97.5 98.0

DREML[40] 9216 78.4 93.7 96.7 -

Margin* 128 84.5 95.7 97.6 98.3

MIC+margin 128 88.2 97.0 98.0 98.8

Table 4. Recall@k for k nearest neighbor and NMI on In-Shop

[43]. (*) indicates our best re-implementation with ResNet50

Test Splits Small Large

R@k Dim 1 5 1 5

MixDiff+CCL[21] - 49.0 73.5 38.2 61.6

GS-TRS[1] - 75.0 83.0 73.2 81.9

BIER[29] 512 82.6 90.6 76.0 86.4

A-BIER[30] 512 86.3 92.7 81.9 88.7

DREML[40] 9216 88.5 94.8 83.1 92.4

Margin* 128 85.1 92.4 80.4 88.9

MIC+margin 128 86.9 93.4 82.0 91.0

Table 5. Recall@k for k nearest neighbor and NMI on PKU

VehicleID[21]. DREML[40] is not comparable given the large em-

bedding dimension. (*) our best ResNet50 re-implementation

It is standard procedure for deep metric learning to initial-

ize the representation backend f with weights pretrained on

ImageNet. This provides a sufficiently good starting point

for clustering, which is then reinforced through training Eβ .

Fig.3 shows some examples of clusters detected using

our surrogate task. This task and the encoder training are

summarized in Fig.2.

3.4. Minimizing Mutual Information

The class encoder Eα and auxiliary encoder Eβ can then

be trained using the respective labels. As we utilize two

different learning tasks, Eα and Eβ learn distinct charac-

teristics. However, as both share the same input, the image

features f(x), a dependency between the encoders can be

Figure 4. Qualitative nearest neighbor evaluation for CUB200-

2011, CARS196 and SOP based on Eα and Eβ encodings and

their combination. The results show that Eβ leverages class-

independent information (posture,parts) while Eα becomes inde-

pendent to those features and focuses on the class detection. The

combination of the two reintroduces both.

induced, therefore leading to both encoders learning some

similar properties. To reduce this effect and to constrain

the discriminative and shared characteristics into their re-

spective encoding space, we introduce a mutual information

loss, which we compute through an adversarial setup

ld = −
(

Er
α(f(x))⊙R(Er

β(f(x)))
)2

(1)

with R being a learned, small two-layered fully-connected

neural network with normalized output projecting Eβ to

the encoding space of Eα. ⊙ stands for an elementwise

product, while the r superscript notes a gradient reversal

layer [10] which flips the gradient sign s.t. when trying

to minimize ld, i.e. maximizing correlation, the similar-

ity between both encoders is actually decreased. A similar

method has been adopted by [30], where shared information

is minimized between an ensemble of encoders. In contrast,

our goal is to transfer non-discriminate characteristics to an

auxiliary encoder. Finally, as ld scales with R, we avoid

trivial solutions (e.g. R(Eβ)→∞) by enforcing R(Eβ) to

have unit length, similar to Eα and Eβ .

Finally, the total loss L to train our two encoders and

the representation f is computed by L = lα + lβ + γld,

where γ weights the contribution of the mutual information

loss with respect to the class triplet loss lα and the auxiliary

triplet loss lβ . The full training is described in Alg. 1.
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Figure 5. UMAP projection of Eα for CARS196. Seven clus-

ters are selected, showing six images near the centroid and their

ground-truth labels. We see that the encoding extracts class-

specific information and ignores other (e.g. orientation).

4. Experiments

In this section we offer a quantitative and qualitative

analysis of our method, also in comparison to previous

work. After providing technical information for reproduc-

ing the results of our model, we give some information re-

garding the standard benchmarks for metric learning and

provide comparisons to previous methods. Finally, we offer

insights into the model by studying its key components.

4.1. Implementation details

We implement our method using the PyTorch framework

[31]. As baseline architecture, we utilize ResNet50 [13] due

to its widespread use in recent metric learning work. All

experiments use a single NVIDIA GeForce Titan X. Practi-

cally, class and auxiliary encoders Eα and Eβ use the same

training protocol (following [39] with embedding dimen-

sions of 128) with alternating iterations to maximize the us-

able batch-size. The dimensionality of the auxiliary encoder

Eβ is fixed (except for ablations in sec. 5) to the dimen-

sionality of Eα to ensure similar computational efficiency

compared to previous work. However, due to GPU memory

limitations, we use a batchsize of 112 instead of a proposed

128, with no relevant changes in performance.

During training, we randomly crop images of size 224×
224 after resizing to 256 × 256, followed by random hori-

zontal flips. For all experiments, we use the original images

without bounding boxes. We train the model using Adam

[18] with a learning rate of 10−5 and set the other parame-

ters to default. We set the triplet parameters following [39],

initializing β = 1.2 for the margin loss and α = 0.2 as fixed

triplet margin. Per mini-batch, we sample m = 4 images

per class for a random set of classes, until the batch size is

reached. For γ (Sec. 3.4 eq.) we utilize dataset-dependent

values in [100, 2000] determined via cross-validation.

Figure 6. UMAP projection of Eβ for CARS196. Seven clusters

are selected, showing six images near the centroid and their GT

labels. The result shows that the encoding extracts intrinsic char-

acteristics of the object (car) independent from GT classes.

After class standardization, the clustering is performed

via standard k-means using the faiss framework [17]. Using

the hyperparameters proposed in this paragraph, the compu-

tational cost introduced by our approach is 10-20% of total

training time. For efficiency, the clustering can be com-

puted on GPU using faiss[17]. The number of clusters is

set before training to a fixed, problem-specific value: 30 for

CUB200-2011 [37], 200 for CARS196 [19], 50 for Stan-

ford Online Products [28], 150 for In-Shop Clothes [43] and

50 for PKU VehicleID [21]. We update the cluster labels

every other epoch. Notably, however, our model is robust

to both parameters since a large range of parameters give

comparable results. Later in section 5 we study the effect

of cluster numbers and cluster label update frequencies for

each dataset in more detail to motivate the chosen numbers.

Finally, class assignments by clustering, especially in the

initial training stages, becomes near arbitrary for samples

further away from cluster centers. To ensure that we do not

reinforce such a strong initial bias, we found it beneficial

to ease the class constraint by randomly switching samples

with samples from different cluster classes (with probability

p ≤ 0.2).

4.2. Datasets

Our model is evaluated on five standard benchmarks for

image retrieval typically used in deep metric learning. We

report the Recall@k metric [16] to evaluate image retrieval

and the normalized mutual information score (NMI) [22]

for the clustering quality. The training and evaluation

procedure follows the standard setup as used in [39].

CARS196[19] with 196 car models over 16,185 images.

We use the first 98 classes (8054 images) for training and

the remaining 98 (8131 images) for testing.

Stanford Online Products[28] with 120,053 product

images in 22,634 classes. 59,551 images (11,318 classes)
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Figure 7. Evaluation of Eα as a function of the Eβ capacity. For

CARS196 [19] and CUB200-2011 [37], we plot Eα Recall@1

against the Eβ dimension during training. The results show that

the increase in capacity of Eβ and thus the ability to learn proper-

ties shared among classes directly benefits the class encoder Eα.

are used for training, 60,502 (11,316 classes) for testing.

CUB200-2011[37] with 200 bird species over 11,788

images. Train and Test Sets contain the first and last 100

classes (5,864/5,924 images) respectively.

In-Shop Clothes[43] with 72,712 clothing images in 7,986

classes. 3,997 classes are used for training and 3,985

classes for evaluation. The test set is divided into a query

set (14,218 images) and a gallery set (12,612 images).

PKU VehicleID[21] with 221,736 surveillance images of

26,267 vehicles with shared car models. We follow [21] and

use 13,134 classes (110,178 images) for training. Testing

is done on a predefined small and large testing subset with

7,332 (small) and 20,038 (large) images respectively.

4.3. Quantitative and Qualitative Results

In this section we compare our approach with exist-

ing models from recent literature. Our method is ap-

plied on three different losses, the standard triplet loss with

semi-hard negative mining [34], Proxy-NCA [24] and the

state-of-the-art margin loss with weighted sampling [39].

For full transparency, we also provide results with our re-

implementation of the baselines.

The results show a consistent gain over the state of the

art for all datasets, see tables 1, 2, 3, 4 and 5. In particular,

our approach achieves better results than more complex en-

sembles. On CUB200-2011, we outperform even DREML

[40] which trains 48 ResNet models in parallel.

Qualitative results are shown in Fig.4: the class en-

coder Eα retrieves images sharing class-specific character-

istics, while the auxiliary encoder Eβ finds intrinsic, class-

independent object properties (e.g. posture, context). The

combination retrieves images with both characteristics.

5. Ablations

In this section, we investigate the properties of our model

and evaluate its components. We qualitatively examine the

proposed encoder properties by checking recalled images

Figure 8. Measure of the intra-class variance in the class embed-

ding Eα as function of the auxiliary encoder Eβ dimension. The

result shows that the intra-class variance decreases with an in-

crease in Eβ capacity. This points towards Eβ making it easier

for Eα to disregard class-independent information.

for both and study the influence of Eβ on the recall per-

formance, see Section 5.1. In Section 5 we measure the

relation between the intra-class variance and the capacity of

our auxiliary encoder Eβ . In addition, ablation studies are

performed to examine the relevance of each pipeline com-

ponent and hyper-parameter. We primarily utilize the most

common benchmarks CUB200-2011, CARS196 and SOP.

5.1. Embedding Properties

Firstly, we visualize the characteristics of the class en-

coder Eα (Fig.5) and auxiliary encoder Eβ (Fig.6) by

projecting the embedded test data to two dimensions us-

ing UMAP[23]. The figures show Eα extracting class-

discriminative information while Eβ encodes characteris-

tics shared across classes (e.g. car orientation).

To evaluate the effect of the auxiliary encoder Eβ on the

class encoder Eα, we study the properties of the class en-

coding as function of the capability of Eβ to learn shared

characteristics. First, we study the performance of Eα on

CARS196[19] and CUB200-2011[37] relative to the auxil-

iary encoder dimension. Utilizing varying Eβ dimension-

alities, Fig.7 shows a direct relation between Eβ capacity

and the retrieval capability. Eβ with dimension 0 indicates

the baseline method [39]. For all other evaluations, the Eβ

dimension is equal to Eα to keep the computational cost

comparable to the baseline [39] (see Sec.4.1).

To examine our initial assumption that learning shared

characteristics produces more compact classes, we study

the intra-class variance by computing the mean pairwise

distances per class, averaged over all classes. These

distances are normalized by the average inter-class dis-

tance, approximated by the distance between two class cen-

ters.Summarized in fig.8 we see higher intra-class variance

for basic margin loss (Eβ dimension equal to 0). But more

importantly, the class compactness is directly related to the

capacity of the auxiliary encoder Eβ .

We also offer a qualitative evaluation of the surrogate

task in Fig.3. After class-standardization, the clustering rec-

ognizes latent structures of the data shared across classes.
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Figure 9. Ablation study: influence of the number of clusters on

Recall@1. A fixed cluster label update period of 1 was used with

equal learning rate and consistent scheduling.

Clust Stand MutInfo CARS CUB SOP

- - - 80.0 62.9 73.2

+ - - 79.2 59.1 71.9

+ + - 81.3 64.9 75.8

+ + + 82.6 66.1 77.2

Table 6. Ablation study: Relevance of different contributions.

Each component is crucial for reaching the best performance.

(Clust: Eβ training with clusters, Stand: standardization before

clustering (Sec3.3), MutInfo: mutual information loss (Sec3.4))

5.2. Testing Components and Parameters

In order to analyze our modules, we evaluate different

models, each lacking one of the proposed contribution, see

tab. 6. The table shows how each component is needed for

the best performance. Comparing to the baseline in the first

line, we see that simply introducing an additional task based

on clustering the data deteriorates the performance, as we

add another class-discriminative training signal that intro-

duces worse or even contradictory information. However,

by utilizing standardization, we allow our second encoder

to explicitly learn new features to support the class encoder

instead of working against it, giving a significant perfor-

mance boost. A final mutual information loss emphasises

the feature separation to improve the results further.

Our approach can be combined with most existing metric

learning losses, which we evaluate on ProxyNCA[24] and

triplet loss with semihard sampling[34] in Tab.1 and 2. On

both CARS196 and CUB200-2011, we see improved image

retrieval performance.

To examine the newly introduced hyper-parameters,

Fig.9 compares the performances on the three benchmarks

using a range of cluster numbers. The plot shows how the

number of clusters influences the final performances, mean-

ing the quality of the latent structure extracted by the aux-

iliary encoder Eβ is crucial for a better classification. At

Figure 10. Ablation study: influence of the cluster label update

frequency on Recall@1. An optimal number of clusters (see Sec.

4.1) and consistent scheduling was used.

the same time, an optimal performance, within a range of

±1% Recall@1, is reached by a large set of cluster val-

ues, making the model robust to this hyper-parameter. For

these cumulative tests, a higher learning rate and less train-

ing epochs were used to both reduce computation time and

avoid overfitting to the test set. Based on these examina-

tions, we set a fixed, but dataset-dependent cluster number

for all other training runs, see Sec. 4.1.

A similar evaluation has been performed on the update

frequency for the auxiliary labels (Fig.10). Updating the

cluster frequently clearly provides a boost to our model,

suggesting that the auxiliary encoder Eβ improves upon the

initial clustering. However, within a reasonable range of

values (between an update every 1 to 10 epochs) the model

has no significant drop in performance. Thus we fix this pa-

rameter to update every two epochs for all the experiments.

6. Conclusion

In this paper we have introduced a novel extension for

standard metric learning methods to incorporate structured

intra-class information into the learning process. We do

so by separating the encoding space into two distinct

subspaces. One incorporates information about class-

dependent characteristics, with the remaining encoder

handling shared, class-independent properties. While the

former is trained using standard metric learning setups, we

propose a new learning task for the second encoder to learn

shared characteristics and explain a combined training

setup. Experiments on several standard image retrieval

datasets show that our method consistently boost standard

approaches, outperforming the current state-of-the-art

methods and reducing intra-class variance.
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