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Abstract

Despite the outstanding performance of convolutional

neural networks (CNNs) for many vision tasks, the required

computational cost during inference is problematic when

resources are limited. In this context, we propose Convo-

lutional Neural Mixture Models (CNMMs), a probabilis-

tic model embedding a large number of CNNs that can be

jointly trained and evaluated in an efficient manner. Within

the proposed framework, we present different mechanisms

to prune subsets of CNNs from the mixture, allowing to eas-

ily adapt the computational cost required for inference. Im-

age classification and semantic segmentation experiments

show that our method achieve excellent accuracy-compute

trade-offs. Moreover, unlike most of previous approaches,

a single CNMM provides a large range of operating points

along this trade-off, without any re-training.

1. Introduction

Convolutional neural networks (CNNs) form the basis

of many state-of-the-art computer vision models. Despite

their outstanding performance, the computational cost of in-

ference in these CNN-based models is typically very high.

This holds back applications on mobile platforms, such as

autonomous vehicles, drones, or phones, where computa-

tional resources are limited, concurrent data-streams need

to be processed, and low-latency prediction is critical.

To accelerate CNNs we can reduce their complexity be-

fore training, e.g. by decreasing the number of filters or

network layers. This solution, however, may lead to sub-

optimal results given that over-parametrization plays a crit-

ical role in the optimization of deep networks [7, 9]. Fortu-

nately, other studies have found a complementary phenom-

ena: given a trained CNN, a large number of its filters are

redundant and do not have a significant impact on the fi-

nal prediction [26]. Motivated by these two findings, much

research has focused on accelerating CNNs using network

pruning [11, 19, 22, 35, 38, 41, 47, 56]. Pruning can be

applied at multiple levels, e.g. by removing independent fil-

ters [35, 41], groups of them [11, 19], or entire layers [56].
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Figure 1. A Convolutional Neural Mixture Model embeds a large

number of CNNs. Weight sharing enables efficient joint training of

all networks and computation of the mixture output. The learned

mixing weights can be used to remove networks from the mixture,

and thus reduce the computational cost of inference.

Despite the encouraging results of these methods, their abil-

ity to provide a wide range of operating points along the

trade-off between accuracy and computation is limited. The

reason is that these approaches typically require to train a

separate model for each specific pruning level.

In this paper, we propose Convolutional Neural Mix-

ture Models (CNMMs), which provide a novel perspec-

tive on network pruning. A CNMM define a distribution

over a large number of CNNs. The mixture is naturally

pruned by removing networks with low probabilities, see

Figure 1. Despite the appealing simplicity of this approach,

it presents several challenges. First, learning a large en-

semble of CNNs may require a prohibitive amount of com-

putation. Second, even if many networks in the mixture

are pruned, their independent evaluation during inference

is likely to be less efficient than computing the output of a

single large model. In order to ensure tractability, we de-

sign a parameter-sharing scheme between different CNNs.

This enables us to (i) jointly train all the networks, and (ii)

efficiently compute an approximation of the mixture output

without independently evaluating all the networks.

Image classification and semantic segmentation exper-

iments show that CNMMs achieve an excellent trade-off

between prediction accuracy and computational cost. Un-

like most previous network pruning approaches, a single

CNMM model achieves a wide range of operating points

along this trade-off without any re-training.
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2. Related work

Neural network ensembles. Learning ensembles of neu-

ral networks is a long-standing research topic. Seminal

works explored different strategies to combine the out-

puts of different networks to obtain more accurate predic-

tions [30, 46, 61]. Recently, the success of deep models has

renewed interest in ensemble methods.

For this purpose, many approaches have been explored.

For instance, [31, 62] used bagging [3] and boosting [49]

to train multiple networks. Other works have considered to

learn diverse models by employing different parameter ini-

tializations [34], or re-training a subset of layers [60]. While

these strategies are effective to learn diverse networks, their

main limitation is the required training cost. In practice,

training a deep model can take multiple days, and therefore

large ensembles may have a prohibitive cost. To reduce the

training time, it has been suggested [18, 39] to train a single

network and to use parameters from multiple iterations of

the optimization process to define the ensemble. Despite the

efficiency of this method during training, this approach does

not reduce inference cost, since multiple networks must be

evaluated independently at test time.

An alternative strategy to allow efficient training and in-

ference is to use implicit ensembles [11, 21, 32, 47]. By

relying on sampling, these methods allow to jointly train

all the individual components in the ensemble and per-

form approximate inference during testing. Bayesian neu-

ral networks (BNNs) fall in this paradigm and use a dis-

tribution over parameters, rather than a single point esti-

mate [11, 28, 40, 47]. A sample from the parameter dis-

tribution can be considered as an individual network. Other

works have implemented the notion of implicit ensembles

by using dropout [52] mechanisms. Dropping neurons can

be regarded as sampling over a large ensemble of differ-

ent networks [2]. Moreover, scaling outputs during test-

ing according to the dropout probability can be understood

as an approximated inference mechanism. Motivated by

this idea, different works have applied dropout over indi-

vidual weights [10], network activations [50], or connec-

tions in multi-branch architectures [12, 32]. Interestingly,

it has been observed that ResNets [13] behave like an en-

semble of models, where some residual connections can

be removed without significantly reducing prediction accu-

racy [55]. This idea was used by ResNets with stochas-

tic depth [21], where different dropout probabilities are as-

signed to the residual connections.

Our proposed Convolutional Neural Mixture Model is

an implicit ensemble defining a mixture distribution over

an exponential number of CNNs. This allows to use the

learned probabilities to prune the model by removing non-

relevant networks. Using a mixture of CNNs for model

pruning is a novel approach, which contrasts to previous

methods employing ensembles for other purposes such as

boosting performance [8, 34], improving learning dynam-

ics [21], or uncertainty estimation [24, 31].

Efficient inference in deep networks. A number of strate-

gies have been developed to reduce the inference time of

CNNs, including the design of efficient convolutional op-

erators [16, 23, 58], knowledge distillation [4, 15], neural

architecture search [14, 63], weight compression [43, 54],

and quantization [25, 36]. Network pruning has emerged

as one of the most effective frameworks for this pur-

pose [11, 33, 35, 56]. Pruning methods aim to remove

weights which do not have a significant impact on the net-

work output. Among these methods, we can differentiate

between two main strategies: online and offline pruning.

In offline pruning, a network is first optimized for a given

task using standard training. Subsequently, non-relevant

weights are identified using different heuristics including

their norm [35], similarity to other weights [51], or second

order derivatives [33]. The main advantage of this strategy

is that it can be applied to any pre-trained network. How-

ever, these approaches require a costly process involving

several prune/retrain cycles in order to recover the origi-

nal network performance. Online approaches, on the other

hand, perform pruning during network training. For exam-

ple, sparsity inducing regularization can be used over in-

dividual weights [38, 40], groups of them [11, 19, 47], or

over the connections in multi-branch architectures [1, 56].

These methods typically have a hyper-parameter, to be set

before training, determining the trade-off between the final

performance and the pruning ratio.

In contrast to previous approaches, we prune entire

CNNs by removing the networks with the smallest probabil-

ities in the mixture. This approach offers two main advan-

tages. First, it does not require to define a hyper-parameter

before training to determine the balance between the po-

tential compression and the final performance. Second, the

number of removed networks can be controlled after op-

timization. Therefore, a learned CNMM can be deployed

at multiple operating points to trade-off computation and

prediction accuracy. For example, across different devices

with varying computational resources, or on the same de-

vice with different computational constraints depending on

the processor load of other processes. The recently pro-

posed Slimmable Neural Networks [57] have also focused

on adapting the accuracy-efficiency trade-off at run time.

This is achieved by embedding a small set of CNNs with

varying widths into a single model. Different from this ap-

proach, our CNMMs embed a large number of networks

with different depths, which allows for a finer granularity to

control the computational cost during pruning.
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Figure 2. (Left) Illustration of how a large collection of CNNs is represented in a CNMM. Each network is uniquely identified by a

non-decreasing sequence s0:T , containing numbers from 0 to T . Consecutive entries in the sequence determine the functions fst
st−1

applied to compute the CNN output. In this manner, sequences with common sub-sequences share functions and their parameters in the

corresponding networks. (Right) Illustration of the distribution p(s0:T ) that defines the mixing weights over the CNN models, here T = 4.

Each p(st−1|st) is a Bernoulli distribution on whether st−1 equals st or t−1. This defines a binary tree generating all the valid sequences.

3. Convolutional Neural Mixture Models

Without loss of generality, we consider a CNN as a

function F(H0) = HT mapping an RGB image H0 ∈
R
W0×H0×3 to a tensor HT ∈ R

W×H×C . In particular, we

assume that F is defined as a sequence of T operations:

F(H0) = fTT−1(. . . (f
2
1 (f

1
0 (H0)))), (1)

where Ht = f tt−1(Ht−1) is computed from the previ-

ous feature map Ht−1. We assume that the functions

f tt−1 can be either the identity function, or a standard

CNN block composed of different operations such as batch-

normalization, convolution, activation functions, or spatial

pooling. In this manner, the effective depth of the network,

i.e. the number of non-identity layers f tt−1, is at most T .

The output tensor HT of the CNN is used to make pre-

dictions for a specific task. For example, in image classifi-

cation, a linear classifier over HT can be used in order to

estimate the class probabilities for the entire image. For se-

mantic segmentation the same linear classifier is used for

each spatial position in HT .

Given these definitions, a convolutional neural mixture

model (CNMM) defines a distribution over output HT as:

p(HT |H0) =
∑

F∈F

p(F)p(HT |H0,F), (2)

where F = {F1,F2, ...,FK} is a finite set of CNNs,

p(HT |H0,Fk) is a delta function centered on the output

Fk(H0) of each network, and p(F) defines the mixing

weights over the CNNs in F.

3.1. Modelling a distribution over CNNs

We now define mixtures that contain a number of CNNs

that is exponential in the maximum depth T , in a way that

allows us to manipulate these mixtures in a tractable man-

ner.

Each component in the mixture is a chain-structured

CNN uniquely characterised by a sequence s0:T of length

T + 1, where the sequences are constrained to be a non-

decreasing set of integers from 0 to T , i.e. with s0 = 0,

sT = T and st+1 ≥ st. This sequence determines the set

of functions that are used in Eq. (1). In particular, given a

sequence s0:T , the output of the corresponding network is

computed as:

F(H0) = fsTsT−1
(. . . (fs2s1 (f

s1
s0
(H0)). (3)

For i < j the function f ji is a convolutional block as de-

scribed above with its own parameters, while the functions

f ii are identity functions that leave the input unchanged.

By, imposing st−1 ∈ {t − 1, st}, there is a one-to-

one mapping between sequences s0:T and the correspond-

ing CNNs.1 If multiple networks use the same function

f ji , these networks share their parameters on this function,

which ensures that the total number of parameters of the

mixture does not grow exponentially, although there are ex-

ponentially many mixture components. For instance, for

T = 4, the mixture will be composed of eight different net-

works illustrated in Figure 2 (Left). From the illustration

it is easy to see that, in general, the mixture contains 2T−1

components with shared parameters.

In order to define the probabilities p(F) for each network

in the mixture, we define a distribution over sequences s0:T
as a reversed Markov chain:

p(s0:T ) = p(sT )

T∏

t=1

p(st−1|st). (4)

To ensure that sequences have positive probability if and

only if they are valid, i.e. satisfy the constraints defined

1In particular, this constraint ensures that, e.g., the network

f4

1
(f1

0
(H0)) is uniquely encoded by the sequence ‘01444’, ruling out the

alternative sequences ‘01144’ and ‘01114’. See Figure 2 (Left).
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Figure 3. Graphical model representation of the CNMM. The se-

quence s1:T codes for the CNN architecture. Each Ht is an in-

termediate feature map generated by the sampled CNN. It is com-

puted from the previous feature map Ht−1 using fst
st−1

.

above, we set p(sT =T ) = p(s0=0|s1) = 1 and define:

p(st−1|st) =







πstt−1 if st−1 = (t− 1),

1− πstt−1 if st−1 = st,

0 otherwise.

(5)

As illustrated in Figure 2 (Right), these constraints gen-

erate a binary tree generating valid non-decreasing se-

quences. The conditional probabilities p(st−1|st) are mod-

elled by a Bernoulli distribution with probability πstst−1
, in-

dicating whether the previous number in the sequence is st
or t− 1.

3.2. Sampling outputs from CNMMs

The graphical model defined in Figure 3 shows that

we can sample from the output distribution p(HT |H0) in

Eq. (2) by first generating a sequence from p(s0:T ) and then

evaluating the associated network with Eq. (3). In the fol-

lowing, we formulate an alternative strategy to sample from

the model. This formulation offers two advantages. (i) It is

amenable to continuous relaxation, which facilitates learn-

ing. (ii) It suggests an iterative algorithm to compute feature

map expectations, which can be used instead of sampling

for efficient inference.

The conditional p(Ht|st = l,H0) gives the distribution

over Ht across the networks with st = l. For example,

p(H2|s2 = 4,H0) consists of two weighted delta peaks,

located at f40 (H0) and f10 (f
4
1 (H0)), respectively. See Fig-

ure 2 (Left). These conditional distributions can be ex-

pressed as the forwards recurrence:

p(Ht|st,H0) =
∑

Ht−1,st−1

[

p(Ht|Ht−1, st, st−1)p(st−1|st)

× p(Ht−1|st−1,H0)
︸ ︷︷ ︸

Recurrent term

]

, (6)

where p(Ht|Ht−1, st, st−1) is a delta function centered

on fstst−1
(Ht−1). Therefore, unbiased samples h̃

st
t from

p(Ht|st,H0) can be obtained through sample propaga-

tion. Recall from Eq. (5) that, given st, there are only

two possible values of st−1 that remain, namely st and

t − 1. As a consequence, the sum over st−1 in Eq. (6)

only consists of two terms. Given this observation, sam-

ples h̃
st
t ∼ p(Ht|st,H0) can be obtained from samples

(t=1)

(t=2)

(t=3)

(t=4)

Input

Computed in
prev. iteration

H1 H2 H3 H4H0

Figure 4. Top: Illustration of the algorithm used to sample interme-

diate feature maps from the mixture distribution. At each iteration

t, we generate h̃
st

t
∼ p(Ht|st,H0) by using: (i) samples h̃

t−1

t−1

obtained in the previous iteration, (ii) the corresponding functions

f
st

t−1
and (iii) samples π̃

st

t−1
from p(st−1|st). Bottom: Network

with dense connectivity implementing the sampling algorithm.

h̃
st−1

t−1 ∼ p(Ht−1|st−1,H0) as:

h̃
st
t = π̃stt−1f

st
t−1(h̃

t−1
t−1) + (1− π̃stt−1)h̃

st
t−1, (7)

where for a given value of st we sample st−1 from

p(st−1|st) to compute a binary indicator π̃stt−1 = [[st−1 =

t − 1]], which signals whether the resulting h̃
st
t is equal to

h̃
st
t−1 or fstt−1(h̃

t−1
t−1).

Using Eq. (7) we iterative sample from distributions

p(Ht|st,H0) for t = 1, . . . , T , and for each t we compute

samples for st = t, . . . , T . An illustration of the algorithm

is shown in Figure 4. The computational complexity of a

complete pass in this iterative process is O(T (T + 1)/2),
since for each t = 1, . . . , T , we compute T − t + 1 sam-

ples, each of which is computed in O(1) from the samples

already computed for t − 1. This is roughly equivalent to

the cost of evaluating a single network with dense layer con-

nectivity of depth T [20], which has a total of T (T − 1)/2
connections implemented by the functions f ji .

Sampling outputs from networks of bounded depth.

Using the described algorithm, h̃TT ∼ p(HT |sT = T,H0)
correspond to output tensors HL sampled from the mix-

ture defined in Eq. (2). Moreover, for any t, samples from

p(Ht|st = T,H0) are output feature maps generated by

networks with depth bounded by t. For instance, in Fig-

ure 2, samples h̃
T
2 are generated with one of the networks

coded by the sequences 01444 and 04444.

3.3. Training and inference

We use ψ to collectively denote the parameters of the

convolutional blocks f ji and the parameters πstst−1
defining

the mixing weights via Eq. (5). Moreover, the parame-

ters of the classifier that predict the image label(s) from the
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output tensor HT are denoted as θ. Given a training set

D = {(X1, y1), . . . , (XN , yN )} composed of images Xn

and labels yn, we optimize the parameters by minimizing

Lsingle(ψ, θ) =

N∑

n=1

Ep(HT |H0=Xn;ψ)

[

L (yn,HT , θ)
]

, (8)

where L (yn,HT , θ) is the cross-entropy loss comparing

the label yn with the class probabilities computed from HT .

In practice, we replace the expectation over HT in each

training iteration with samples from p(HT |H0 = Xn;ψ).

Learning from subsets of networks. As discussed in Sec-

tion 3.2, samples from the distribution p(Ht|st = T,H0)
correspond to outputs of CNNs in the mixture with depth at

most t. In order to improve performance of models with re-

duced inference time, we explicitly emphasize the loss for

such efficient relatively shallow networks. Therefore, we

sum the above loss function over the outputs sampled from

networks of increasing depth:

L(θ, ψ)=

N∑

n=1

T∑

t=1

Ep(Ht|st=T,Xn;ψ)

[

L
(
yn,Ht, θt

)]

, (9)

where we use a separate classifier for each t. In practice, we

balance each loss with a weight increasing linearly with t.

Relaxed binary variables with concrete distributions.

The recurrence in Eq. (7) requires sampling from

p(st−1|st), defined in Eq. (5). The sampling renders the pa-

rameters πstt−1 non-differentiable, which prevents gradient-

based optimization for them. To address this limitation, we

use a continuous relaxation by modelling p(st−1|st) as a

binary “concrete” distribution [42]. In this manner, we can

use the re-parametrization trick [27, 48] to back-propagate

gradients w.r.t. samples π̃stt−1 in Eq. (7) and, thus to compute

gradients for the parameters πstt−1.

Efficient inference by expectation propagation. Once

the CNMM is trained, the predictive distribution on y is

given by p(y|X; θ) = Ep(HT |X)[p(y|HT ; θ)]. The expec-

tation is intractable to compute exactly, contrary to our goal

of efficient inference. A naive Monte-Carlo sample ap-

proximation is still requires multiple evaluations of the full

CNMM. Instead, we propose an alternative approximation

by propagating expectations instead of samples in Eq. (7),

i.e. using the approximation H̄T ≈ p(HT |X), where H̄T

is obtained by running the sampling algorithm replacing the

samples π̃stt−1 with their expectations πstt−1.

3.4. Accelerating CNNMs

CNMMs offer two complementary mechanisms in order

to accelerate inference. We describe both in the following.

Evaluating intermediate classifiers. The different clas-

sifiers θt learned by minimizing Eq. (9) operate over the

H1

Global Avg. Pool + Fully Conn.

(For image classifictaion)

Conv Block + Bilinear Upsampling

(For semantic segmentation)

Conv Block + Spatial Pooling Conv Block
Feature map

scales

H2 H3 H4 H5 H6 HT

Block 1 Block 2 Block B

H0 y
Classifier

Input

Image

Output

feature map

Figure 5. Dense network with sparse connectivity implementing

the inference algorithm of our CNMMs. See text for details.

outputs of a mixture of networks with maximum depth t.
Therefore, at each iteration t of the inference algorithm in

Eq. (7) we can already output predictions based on classifier

θt. This strategy is related with the one employed in multi-

scale dense networks (MSDNets) [17], where “early-exit”

classifiers are used to provide predictions at various points

in time during the inference process.

Network pruning. A complementary strategy to accel-

erate CNMMs is to remove networks from the mixture.

The computational cost of the inference process is domi-

nated by the evaluation of the CNN blocks fstt−1(h̃
t−1
t−1) in

Eq. (7). However, these function does not need to be com-

puted when the variable π̃stt−1 = 0. Therefore, a natural

approach to prune CNMMs is to set certain πstt−1 to zero,

removing all the CNNs from the mixture that use fstt−1. We

use the learned distribution p(s0:T ) in order to remove net-

works with a low probability. Note that for a given value

of st, the pairwise marginal p(st, st−1 = t − 1) is ex-

actly the sum of probabilities of all the networks involv-

ing the function fstt−1. Using this observation, we use an

iterative pruning algorithm where, at each step, we com-

pute all pairwise marginals p(st, st−1 = t − 1) for all pos-

sible values of st and t. We then set π
s⋆
t

t⋆−1 = 0 where

(s⋆t ,t⋆) = argmin(st,t) p(st, st−1 = t − 1). Finally, the

marginals are updated, and we iterate.

In this manner, we achieve different pruning levels by

progressively removing convolutional blocks that will not

be evaluated during inference. This process does not require

any re-training of the model, allowing to dynamically set

different pruning ratios. Note that this process is comple-

mentary to the use of intermediate classifiers, as discussed

above. The reason for this is that our pruning strategy may

be used to remove functions f ji for any “early” prediction

step t < T . Finally, it is interesting observe that the pro-

posed pruning mechanism can be regarded as a form of

neural architecture search [37, 63], where the optimal net-

work connectivity for a given pruning ratio is automatically

discovered by taking into account the learned probabilities

p(st−1= t− 1|st).
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Figure 6. Prediction accuracy vs. FLOPs for accelerated CNMMs. Black curves depict the performance of a CNMM learned using a single

final classifier. Colored curves correspond to intermediate classifiers at different steps of the inference algorithm. Points on one curve are

obtained by progressively pruning convolutional layers.

4. Experiments

We perform experiments over two different tasks: image

classification and semantic segmentation. Following pre-

vious work, we measure the computational cost in terms

of the number of floating point multiply and addition op-

erations (FLOPs) required for inference. The number of

FLOPs provides a metric that correlates very well with the

actual inference wall-time, while being independent of im-

plementation and hardware used for evaluation.

4.1. Datasets and experimental setup

CIFAR-10/100 datasets. These datasets [29] are com-

posed of 50k train and 10k test images with a resolution of

32×32 pixels. The goal is to classify each image across 10

or 100 classes, respectively. Images are normalized using

the means and standard deviations of the RGB channels.

We apply standard data augmentation operations: (i) a 4-

pixel zeros padding followed by 32×32 cropping. (ii) Ran-

dom horizontal flipping with probability 0.5. Performance

is evaluated in terms of the mean accuracy across classes.

CityScapes dataset. This dataset [6] contains 1024×2048

pixel images of urban scenes with pixel-level labels across

19 classes. The dataset is split into training, validation and

test sets with 2,975, 500 and 1,525 samples each. The

ground-truth annotations for the test set are not public, and

we use the validation set instead for evaluation. To assess

performance we use the standard mean intersection-over-

union (mIoU) metric. We follow the setup of [45], and

down-sample the images by a factor two before process-

ing them. As a data augmentation strategy during training,

we apply random horizontal flipping and resizing by using a

scaling factor between 0.75 and 1.1. Finally, we use random

crops of 384×768 pixels from the down-sampled images.

Base architecture. As discussed in Section 3.2, the learn-

ing and inference algorithms for CNMMs can be imple-

mented using a network with dense layer connectivity [20].

Based on this observation, we use an architecture similar to

MSDNets [17]. Specifically. we define a set of B blocks,

each composed of a set of S feature maps Ht. See Fig. (5).

The initial feature map in each block hasC channels and,

at each subsequent feature map in the block, the spatial res-

olution is reduced by a factor two in each dimension, and

the number of channels is doubled. Feature maps are con-

nected by functions f ji if the output feature map Hj has the

same or half the resolution of the input feature map Hi. Fi-

nally, we consider the output tensor HT to have different

connectivity and spatial resolution depending on the task.

Implementation for image classification. We implement

the convolutional layers as the set of operations (BN-ReLU-

DConv-BN-ReLU-Conv-BN), where BN refers to batch

normalization, DConv is a (3 × 3 × C × C
4 ) depth-wise

separable convolution [16], and Conv is a (1× 1× C
4 ×C)

convolution. In order to reduce computation, for a given

tensor Hi, the different functions f ji share the parame-

ters of the initial operations (BN-ReLU-DConv) for all j.
Moreover, when the resolution of the feature map is re-

duced, we use average pooling after these three initial op-

erations. In all our experiments, the number of initial chan-

nels in H1 is set to C = 64. This is achieved by using a

(3 × 3 × 3 × C
4 ) convolution over the input image H0 and

then apply a (1 × 1 × C
4 × C) convolutional block. Fi-

nally, all the tensors Hl with the lowest spatial resolution

are connected to the output HL. Concretely, HT is a vec-

tor R512 obtained by applying the operations (BN-ReLU-

GP-FC-BN) to the input tensors, where GP refers to global

average pooling, and FC corresponds to a fully-connected

layer. The classifier θ maps HT linearly to a vector of di-

mension equal to the number of classes. When using Eq. (9)

to train the CNMM, we connect a classifier θt with the end

of each block.

Implementation for semantic segmentation. We use the

same setup as for image classification, but replace the ReLU

activations with parametric ReLUs as in [44]. Moreover,

we use max instead of average pooling to reduce the spa-
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Figure 7. Comparison of the our CNMM with state-of-the-art efficient inference approaches on the CIFAR and CityScapes datasets.

Disconnected markers refer to models that are trained independently. Curves correspond to a single model that can operate at different

number of FLOPs. CNMM curves are obtained by using the optimal combination of pruning and intermediate classifiers.

tial resolution. The input tensor H1 has C = 48 channels

and a resolution four times lower than the original images.

This is achieved by applying a (3× 3× 3× C
4 ) convolution

with stride 2 to the input and then using a (BN-ReLU-Conv)

block followed by max pooling. The output tensor HL re-

ceives connections from all the previous feature maps and

has the same channels and spatial resolution as H1. Given

that the input feature maps are at different scales, we apply a

(BN-PReLU-Conv-BN) block over the input tensor and use

bi-linear up-sampling with different scaling factors in order

to recover the original spatial resolution. The final classifier

θ computing the class probabilities using HT are defined

as blocks (UP-BN-PReLU-Conv-UP-BN-PReLU-DConv),

where UP refers to bilinear upsampling, which allows to

recover the original image resolution. The first and second

convolutions in the block have 12 andK output channels re-

spectively, where K is the number of classes. As in image

classification, we use an intermediate classifier θt at each

step t where a full block of computation is finished.

Optimization details. In our experiments, we use SGD

with momentum by setting the initial learning rate to 0.1

and weight decay to 10−4. In CIFAR, we use a cosine an-

nealing schedule to accelerate convergence. On the other

hand, in Cityscapes we employ a cyclic schedule with warm

restarts as in [45]. The temperature of the concrete distribu-

tions modelling p(st−1|st) is set to 2. We train our model

by using 300 and 200 epochs, and batch size of 64 and 6, for

respectively CIFAR-10/100 and Cityscapes. For the cyclic

scheduler, the learning rate is divided by two at epochs

{30, 60, 90, 120, 150, 170, 190}. Additionally, the models

trained in Cityscapes are fine-tuned during 10 epochs by

using random crops of size 512×1024 instead of 384×768.

4.2. Pruning and intermediate classifiers

We evaluate the proposed pruning and intermediate clas-

sifiers strategies to reduce the inference time of trained CN-

MMs. For CIFAR-10/100 we learn a CNMM with B = 6
blocks, using S = 3 scales each. For Cityscapes we use

B = 5 blocks and S = 5 scales. For each dataset, we train

one model that uses a single classifier θ, optimized using

Eq. (8). In addition, we train a second model with interme-

diate classifiers θt, minimizing the loss function in Eq. (9).

In the following, we will refer to the first and second variant

as CNMM-single and CNMM respectively.

In Figure 6 we report prediction accuracy vs. FLOPs for

inference. Each model is represented as a curve, traced by

pruning the model to various degrees. Across the three

datasets, the CNMM model with intermediate classifiers

achieves higher accuracy in fast inference settings than the

CNMM-single model. Recall that all the operation point

across the different CNMM curves are obtained from a sin-

gle trained model. Therefore, this single model can realize

the upper-envelope of the performance curves. As expected,

the maximum performance of the intermediate classifiers

increases with the step number. The accuracy of CNMM

at the final step is comparable to the level obtained by the

CNMM-single model: slightly worse on CIFAR-10, and

slightly better at CIFAR-100 and CityScapes. This is be-

cause the minimized intermediate losses provide additional

supervisory signal which is particularly useful to encourage

accurate prediction for shallow, but fast, CNNs. In conclu-

sion, the CNMM model with intemediate classifiers is to be

preferred, since it provides a better trade-off between accu-

racy and computation at a wider range of FLOP counts.

By analysing the operating points along each curve, we

can observe the effectiveness of the proposed pruning al-

gorithm. For the CIFAR datasets we can reduce the FLOP

count by a factor two without significant loss in accuracy.

For CityScapes, about 25% pruning can be achieved with-

out a significant loss. In general, if several exit points can

achieve the same FLOP count by applying varying amounts

of pruning, best performance is obtained pruning less for an

earlier classifier, rather than pruning more for a later exit.

4.3. Comparison with the state of the art

Image classification. We compare our model with dif-

1878



Image Ground-Truth FLOPs: 0.7B FLOPs: 0.9B FLOPs: 2.6BFLOPs: 1.3B

Figure 8. Pixel-level predictions for a single CNMM operating under different computational constraints. As discussed, our model allows

to dynamically dynamically set the trade-off between accuracy and inference time with no additional cost.

ferent state-of-the-art CNN acceleration strategies [17, 19,

22, 38, 56]. We consider methods applying pruning at dif-

ferent levels, such as independent filters (Network slim-

ming [38]), groups of weights (CondenseNet) [19], con-

nections in multi-branch architectures (SuperNet) [56], or

a combination of them (SSS) [22]. We also compare our

method with any-time models based on early-exit classi-

fiers (MSDNet) [17]. Among other previous state-of-the-

art methods, the compared approaches have shown the best

performance among efficient inference methods with ≤200

million FLOPs. We compare to CNMMs using 6 and 12

blocks, using three scales is both cases.

The results in Figure 7 (left, center) show that CNMMs

achieve similar or better accuracy-compute trade-off across

a broad range of FLOP counts than all the compared meth-

ods in the CIFAR datasets. Only CondenseNets shows

somewhat better performance for medium FLOP counts.

Moreover, note that the different operating points shown for

the compared methods (except for MSDNets) are obtained

by using different models trained independently, e.g. by dif-

ferent settings of a hyper-parameter controlling the pruning

ratio. In contrast, CNMM embeds a large number operating

points in a single model. This feature is interesting when

the available computational budget can change dynamically,

based on concurrent processes, or when the model is de-

ployed across a wide range of devices. In these scenarios, a

single CNMM can be accelerated on-the-fly depending on

the available resources. Note that a single MSDNet is also

able to provide early-predictions by using intermediate clas-

sifiers. However, our CNMM provides better performance

for a given FLOP count and allows for a finer granularity to

control the computational cost.

Semantic segmentation. State-of-the-art methods for

real-time semantic segmentation have mainly focused on

the manual-design of efficient network architectures. By

employing highly optimized convolutional modules, ES-

PNet [44] and ESPNetv2 [45] have achieved impressive

accuracy-computation trade-offs. Other methods, such

as [5, 59], offer higher accuracy but at several orders of

magnitude higher inference cost, limiting their application

in resource constrained scenarios.

In Figure 7 (right) we compare our CNMM results to

these two approaches. Note that the original results re-

ported in [45] are obtained by using a model pre-trained

in ImageNet. For a fair comparison with our CNMMs, we

have trained EspNetv2 from scratch by using the code pro-

vided by the authors 2. As can be observed, CNMM pro-

vides a better trade-off compared to ESPNet. In particular,

a full CNMM without pruning obtains an improvement of

0.5 points of mIoU, while reducing the FLOP count by 45%.

Moreover, an accelerated CNMM achieves a similar perfor-

mance compared to the most efficient ESPNet that needs

more than two times more FLOPs. On the other hand, ESP-

Netv2 gives slightly better trade-offs compared to our CN-

MMs. However, this model relies on an efficient inception-

like module [53] that also includes group point-wise and

dilated convolutions. These are orthogonal design choices

that can be integrated in our model as well, and we expect

that to further improve our results. Additionally, the differ-

ent operating points in ESPNet and ESPNetv2 are achieved

using different models trained independently. Therefore,

unlike our approach, these methods do not allow for a fine-

grained control over the accuracy-computation trade-off,

and multiple models need to be trained. Figure 8 shows

qualitative results using different operating points from a

single CNMM.

5. Conclusions

We proposed to address model pruning by using Convo-

lutional Neural Mixture Models (CNMMs), a novel prob-

abilistic framework that embeds a mixture of an exponen-

tial number of CNNs. In order to make training and in-

ference tractable, we rely on massive parameter sharing

across the models, and use concrete distributions to dif-

ferentiate across the discrete sampling of mixture compo-

nents. To achieve efficient inference in CNMM we use an

early-exit mechanism that allows prediction after evaluat-

ing only a subset of the networks. In addition, we use a

pruning algorithm to remove CNNs that have low mixing

probabilities. Our experiments on image classification and

semantic segmentation tasks show that CNMMs achieve

excellent trade-offs between prediction accuracy and com-

putational cost. Unlike most of previous works, a single

CNMM model allows for a large number and wide range of

accuracy-compute trade-offs, without any re-training.
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