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Abstract

We propose a novel loss function that dynamically re-

scales the cross entropy based on prediction difficulty re-

garding a sample. Deep neural network architectures in

image classification tasks struggle to disambiguate visually

similar objects. Likewise, in human pose estimation sym-

metric body parts often confuse the network with assigning

indiscriminative scores to them. This is due to the output

prediction, in which only the highest confidence label is se-

lected without taking into consideration a measure of un-

certainty. In this work, we define the prediction difficulty

as a relative property coming from the confidence score gap

between positive and negative labels. More precisely, the

proposed loss function penalizes the network to avoid the

score of a false prediction being significant. To demonstrate

the efficacy of our loss function, we evaluate it on two differ-

ent domains: image classification and human pose estima-

tion. We find improvements in both applications by achiev-

ing higher accuracy compared to the baseline methods.

1. Introduction

In many computer vision tasks, deep neural networks

produce bi-modal prediction scores when the labeled sam-

ple point is confused with the other class. Figure 1 il-

lustrates some examples of network predictions with the

presence of visually confusing cases. In all cases, though

the network produces a non-trivial score about the correct

label, the output prediction is wrong by taking the high-

est confidence label. For examples, human body parts

are mostly composed of symmetric pairs. Even advanced

deep architectures [19, 34] are vulnerable to mistaking sub-

tle differences of the left-and-right body parts [39]. Also,

in image recognition, the output label confusion of look-

alike instances is an unsolved problem [21]. Nevertheless,

these tasks employ straightforward loss functions to opti-

mize model parameters, e.g., mean squared error or cross

entropy.

In practice, look-alike instances incur an ambiguity in

prediction scores, but it is hard to capture subtle differences

in the network outputs by measuring the divergence of true

Figure 1. The overview of anchor loss. A network is confused

about left-and-right body parts due to the symmetrical appearance

of the human body, and struggles to disambiguate visually similar

objects. Although the network output scores on the correct labels

are relatively high, the final prediction is always chosen by the

index of the highest score, resulting in a wrong prediction. Our

loss function is designed to resolve this issue by penalizing more

than cross entropy when the non-target (background) probability

is higher than the anchor probability.

and predicted distributions. Most classification tasks after-

ward make a final decision by choosing a label with the

highest confidence score. We see that the relative score from

the output distribution becomes an informative cue to re-

solve the confusion regarding the final prediction. We thus

propose a novel loss function, which self-regulates its scale

based on the relative difficulty of the prediction.

We introduce anchor loss that adaptively reshapes the

loss values using the network outputs. Specifically, the pro-

posed loss function evaluates the prediction difficulties us-

ing the relative confidence gap between the target and back-

ground output scores, produced by the network, to capture

the uncertainty. In other words, we increase the loss for hard

samples (Figure 2a), while we down-weight the loss when

a sample leads the network to assign a relatively high con-

fidence score about the target class (Figure 2c). Finally, the

anchor loss alleviates the need for a post-processing step by

taking the prediction difficulty into account while training.

This idea, adjusting the loss scales based on prediction

difficulty, has been applied to the task of object detection,

which inherently suffers from severe class imbalance issue

(countless background vs. scarce object proposals). Fo-

cal loss [31] is designed to overcome such class imbalance

by avoiding major gradient updates on trivial predictions.
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(a) q∗ = 0.1 (b) q∗ = 0.5 (c) q∗ = 0.9

Figure 2. We depict how the anchor probability q∗ affects our loss function compared to standard cross entropy (CE) and focal loss

(FL) [31]. While FL always depresses the loss values for the samples producing trivial outcomes, anchor loss dynamically re-scales its

loss values based on the relative difficulties of the target and the anchor probability. For these plots, the anchor probability is chosen as the

prediction score (q∗ = qC1
) on the true positive label (C1). Thus, if the networks produce higher score on the background label compared

to the anchor, our loss encourages the network to correct the relative order of the predictions by penalizing more than the cross entropy.

However, while the focal loss uniformly down-weights easy

samples to ignore, the proposed loss function leverages the

confidence gap between the target and non-target output

values to modulate the loss scale of the samples in the train-

ing phase. We define the prediction difficulty using a ref-

erence value which we call anchor probability q∗ obtained

from the network predictions. The way to pick an anchor

probability becomes a design choice. One way to use it is

by taking the target prediction score as an anchor proba-

bility to modulate the background (non-target) loss values.

As depicted in Figure 2, the proposed loss function varies

based on the anchor probabilities q∗.

We propose anchor loss for improving the prediction of

networks on the most semantically confusing cases at train-

ing time. Specifically, the proposed anchor loss dynami-

cally controls its magnitude based on prediction difficulty,

defined from the network outputs. We observe that our loss

function encourages the separation gap between the true la-

beled score and the most competitive hypothesis. Our main

contributions are: (i) the formulation of a novel loss func-

tion (anchor loss) for the task of image classification (Sec-

tion 3.2); (ii) the adaptation of this loss function to human

pose estimation (Section 3.3); and (iii) a graphical interpre-

tation about the behavior of the anchor loss function com-

pared to other losses (Figure 2 and 4). With extensive ex-

periments, we show consistent improvements using anchor

loss in terms of accuracy for image classification and human

pose estimation tasks.

2. Related Work

Class Imbalance Issue. Image classification task suffers

class imbalance issue from the long-tail distribution of real-

world image datasets. Typical strategies to mitigate this is-

sue are class re-sampling [8, 18, 6] or cost-sensitive learn-

ing [50, 23, 14]. Class re-sampling methods [8, 6] redis-

tribute the training data by oversampling the minority class

or undersampling the majority class data. Cost-sensitive

learning [23, 14] adjusts the loss value by assigning more

weights on the misclassified minority classes. Above men-

tioned prior methods mainly focus on compensating scarce

data by innate statistics of the dataset. On the other hand,

our loss function renders prediction difficulties from net-

work outputs without requiring prior knowledge about the

data distributions.

Relative Property in Prediction. Several researchers at-

tempt to separate confidence scores of the foreground and

background classes for the robustness [17, 47]. Pairwise

ranking [17] has been successfully adopted in the multi-

label image classification task, but efficient sampling be-

comes an issue when the vocabulary size increases. From

the idea of employing a margin constraint between classes,

L-softmax loss [33] combines the last fully-connected layer,

softmax, and the cross entropy loss to encourage intra-

class compactness and inter-class separability in the fea-

ture space. While we do not regularize the ordinality of

the outputs, our loss function implicitly embodies the con-

cept of ranking. In other words, the proposed loss function

rules out a reversed prediction about target and background

classes with re-scaling loss values.

Outliers Removal vs. Hard Negative Mining. Studies

about robust estimation [24, 48], try to reduce the con-

tribution on model parameter optimization from anomaly

samples. Specifically, noise-robust losses [20, 49, 38] have

been introduced to support the model training even in the
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presence of the noise in annotations. Berrada et al. [5]

address the label confusion problem in the image classifi-

cation task, such as incorrect annotation or multiple cat-

egories present in a single image, and propose a smooth

loss function for top-k classification. Deep regression ap-

proaches [2, 3] reduce the impact of outliers by minimizing

M-estimator with various robust penalties as a loss func-

tion. Barron [2] proposed a generalization of common ro-

bust loss functions with a single continuous-valued robust-

ness parameter, where the loss function is interpreted as a

probability distribution to adapt the robustness.

On the contrary, there have been many studies with

an opposite view in various domains, by handling the

loss contribution from hard examples as a significant

learning signal. Hard negative mining, originally called

Bootstrapping [41], follows an iterative bootstrapping pro-

cedure by selecting background examples for which the de-

tector triggers a false alarm. Online hard example mining

(OHEM) [40] successfully adopts this idea to train deep

ConvNet detectors in the object detection task. Pose es-

timation community also explored re-distributing gradient

update based on the sample difficulty. Online Hard Key-

point Mining (OHKM) [10] re-weights the loss by sampling

few keypoint heatmaps which have high loss contribution,

and the gradient is propagated only through the selected

heatmaps. Our work has a similar viewpoint to the latter

works to put more emphasis on the hard examples.

Focal Loss. One-stage object detection task has an inher-

ent class imbalance issue due to a huge gap between the

number of proposals and the number of boxes containing

real objects. To resolve this extreme class imbalance issue,

some works perform sampling hard examples while train-

ing [40, 15, 32], or design a loss function [31] to reshape

loss by down-weighting the easy examples. Focal loss [31]

also addresses the importance of learning signal from hard

examples in the one-stage object detection task. Without

sampling processes, focal loss efficiently rescales the loss

function and prevents the gradient update from being over-

whelmed by the easy-negatives. Our work is motivated by

the mathematical formulation of focal loss [31], where pre-

defined modulating term increases the importance of cor-

recting hard examples.

Human Pose Estimation. Human pose estimation is a

problem of localizing human body part locations in an input

image. Most of the current works [34, 10, 45, 46, 28, 42]

use a deep convolutional neural network and generate the

output as a 2D heatmap, which is encoded as a gaussian

map centered at each body part location. Hourglass net-

work [34] exploits the iterative refinements on the predic-

tions from the repeated encoder-decoder architecture design

to capture complex spatial relationships. Even with deep ar-

chitectures, disambiguating look-alike body parts remain as

a main problem [39] in pose estimation community. Recent

methods [46, 11, 28], built on top of the hourglass network,

use multi-scale and body part structure information to im-

prove the performance by adding more architectural com-

ponents.

While there has been much interest in finding a good ar-

chitecture tailored to the pose estimation problem, the vast

majority of papers simply use mean squared error (MSE),

which computes the L2 distance between the output and

the prediction heatmap, as a loss function for this task.

OHKM [10], which updates the gradient from the selected

set of keypoint heatmaps, improves the performance when

properly used in the refinement step. On the other hand, we

propose a loss scaling scheme that efficiently redistributes

the loss values without sampling hard examples.

3. Method

In this section, we introduce anchor loss and explain the

design choices for image classification and pose estimation

tasks. First, we define the prediction difficulty and provide

related examples. We then present the generalized form of

the anchor loss function. We tailor our loss function on vi-

sual understanding tasks: image classification and human

pose estimation. Finally, we give theoretical insight in com-

parison to other loss functions.

3.1. Anchor Loss

The inference step for most classification tasks chooses

the label index corresponding to the highest probability.

Figure 1 shows sample outputs from the model trained with

cross entropy. Although optimizing the networks with the

cross entropy encourages the predicted distribution to re-

semble the true distribution, it does not convey the relative

property between the predictions on each class.

Anchor loss function dynamically reweighs the loss

value with respect to prediction difficulty. The prediction

difficulty is determined by measuring the divergence be-

tween the probabilities of the true and false predictions.

Here the anchor probability q∗ becomes a reference value

for determining the prediction difficulty. The definition of

anchor probability q∗ is arbitrary and becomes a design

choice. However, in practice, we observed that setting an-

chor probability to the target class prediction score gives the

best performance, so we use it for the rest of the paper. With

consideration of the prediction difficulties, we formulate the

loss function as follows:

ℓ(p, q; γ) = − (1 +

prediction difficulty
︷ ︸︸ ︷

q − q∗ )γ
︸ ︷︷ ︸

modulator

(1− p) log(1− q)
︸ ︷︷ ︸

cross entropy

,

(1)
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where p and q denote empirical label and predicted prob-

abilities, respectively. The anchor probability q∗ is deter-

mined by the primitive logits, where the anchor is the pre-

diction score on the true positive label. Here, γ ≥ 0 is a

hyperparameter that controls the dynamic range of the loss

function. Our loss is separable into two parts: modulator

and cross entropy. The modulator is a monotonic increas-

ing function that takes relative prediction difficulties into

account, where the domain is bounded by |q − q∗| < 1.

Suppose q∗ be the target class prediction score. In an easy

prediction scenario, the network assigns a correct label for

the given sample point; hence q∗ will be larger than any q.

We illustrate the prediction difficulties as follows:

• Easy case (q < q∗): the loss function is suppressed,

and thus rules out less informative samples when up-

dating the model;

• Moderate case (q = q∗): the loss function is equiva-

lent to cross entropy, since the modulator becomes 1;

and

• Hard case (q > q∗): the loss function penalizes more

than cross entropy for most of the range, since the true

positive probability q∗ is low.

As a result, we apply different loss functions for each sam-

ple.

3.2. Classification

For image classification, we adopt sigmoid-binary cross

entropy as a basic setup to diversify the way of scaling loss

values. Unlike softmax, sigmoid activation handles each

class output probability as an independent variable, where

each label represents whether the image contains an object

of corresponding class or not. This formulation also enables

our loss function to capture subtle differences from the out-

put space by modulating the loss values on each label.

For image classification, we obtained the best perfor-

mance when we set the anchor probability to the output

score of the target class. The mathematical formulation be-

comes as follows:

ℓcls(p, q; γ) (2)

= −

K∑

k=1

pk log qk + (1− pk)(1 + qk − q∗)
γ log(1− qk),

where pk and qk represent the empirical label and the pre-

dicted probability for class k. We add a margin variable δ to

anchor probability q∗ to penalize the output variables which

have lower but close to the true positive prediction score.

Thus the final anchor probability becomes q∗ = qt − δ,

where t represents the target index (pt = 1), and we set δ to

0.05.

(a) input (b) heatmap (c) mask

Figure 3. How an anchor probability is chosen for the pose esti-

mation task. For the target body part of right shoulder (b), the

maximum confidence score inside the solid red circle becomes an

anchor probability to modulate the loss values in mask areas (c).

3.3. Pose Estimation

Current pose estimation methods generate a keypoint

heatmap for each body part at the end of the prediction

stage, and predict the pixel location that has the highest

probability. The main difference of pose estimation and

object classification tasks is that the target has spatial de-

pendency between adjacent pixel locations. As a result, as-

signing a single pixel as the true positive may incur a huge

penalty on adjacent pixels. To alleviate this issue, we adopt

a gaussian heatmap centered on the target keypoint as the

same encoding scheme as the previous works [34, 45, 10],

and apply our loss function on only true negative pixels

(pi = 0). In other words, we use a mask variable M(p)
to designate the pixel locations where our loss function ap-

plies, and use standard binary cross entropy on unmasked

locations.

M(p) =

{
1 if p = 0,

0 otherwise.
(3)

As in object classification, we found that using true-

positive probability value to penalize background pixel lo-

cations gives better performance. Considering the spatial

dependency, anchor probabilities are chosen spatially from

the circle of high confidence, where the ground truth prob-

ability is greater than 0.5. That is,

q∗ = max
i∀pi>0.5

qi, (4)

We illustrate this procedure in Figure 3. For simplicity, we

denote the standard binary cross entropy as ℓBCE . Finally,

our loss function for pose estimation problem is defined as:

ℓpose(p, q; γ) =[M(p) ∗ (1 + q − q∗)
γ (5)

+ (1−M(p))] ∗ ℓBCE(p, q),

3.4. Relationship to Other Loss Functions

Our goal is to design a loss function which takes the rel-

ative property of the inference step into account. In this
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section, we discuss how binary cross entropy (6) and focal

loss [31] (7) relate to anchor loss. Let p ∈ {0, 1} denote the

ground truth, and q ∈ [0, 1] represent predicted distribution.

The loss functions are

ℓCE(p, q) = −
[
p log(q) + (1− p) log(1− q)

]
, (6)

ℓFL(p, q; γ) = −
[
p(1− q)γ log(q) + (1− p)qγ log(1− q)

]
,

(7)

For the sake of conciseness, we define the probability of

ground truth as qt = pq + (1− p)(1− q). Then we replace

the loss functions as follows:

ℓCE(qt) = − log(qt), (8)

ℓFL(qt; γ) = −(1− qt)
γ log(qt), (9)

where q represents the output vector from the network. The

modulating factor (1 − qt)
γ with focusing parameter γ re-

shapes the loss function to down-weight easy samples. Fo-

cal loss was introduced to resolve the extreme class imbal-

ance issue in object detection, where the majority of the loss

is comprised of easily classified background examples. Ob-

ject detection requires the absolute threshold value to de-

cide the candidate box is foreground or background. On

the other hand, classification requires the confidence score

of the ground truth label to be higher than all other label

scores.

If we set q∗ = 1− p, which means q∗ = 1 for the back-

ground classes and q∗ = 0 for the target class:

q∗ =

{
1 p = 0 background classes,

0 p = 1 target class,
(10)

then the modulator becomes:

(1− qt + q∗) =

{
(1− (1− q) + 1) = (1− q) p = 0,

(1− q + 0) = q p = 1,

(11)

and feeding this modulator value to anchor loss becomes a

mathematical formulation of focal loss:

ℓAL(p, q; γ) = −
[
p(1− q)γ log(q) + (1− p)qγ log(1− q)

]
,

where q∗ = 1− p. (12)

If we set γ = 0, the the modulator term becomes 1, and

anchor loss becomes binary cross entropy.

3.5. Gradient Analysis

We compute the gradient of our loss function and com-

pare with the binary cross entropy and the focal loss. For

simplicity, we focus on the loss of background label, which

we discuss in Section 3.1. Note that we detach the anchor

(a) ℓFL(qt; γ) (b) |∂ℓFL/∂qt|

(c) ℓAL(qt; γ), q∗ = 0.5 (d) |∂ℓAL/∂qt|

Figure 4. Gradient figure: sample gradient output of background

probability distribution. Compared to the cross entropy, the mag-

nitude of gradient increases when the prediction is higher than the

anchor probability.

probability q∗ while backpropagation and only use it as a

scaling term in the modulator.

ℓAL(q) = −(1 + q − q∗)
γ log(1− q) (13)

∂ℓAL

∂q
(q) = −(1 + q − q∗)

γ−1

[

γ log(1− q)−
1 + q − q∗

1− q

]

(14)

Figure 4 shows the gradient of our loss function, focal

loss, and cross entropy. Compared to the cross entropy, the

gradient values of focal loss are suppressed for all ranges.

On the other hand, our loss function assigns larger gradient

values when the prediction is higher than the anchor proba-

bility, and vice versa.

4. Experiments

We conduct experiments on image classification and hu-

man pose estimation. In this section, we briefly overview

the methods that we use in each domain, and discuss the

experimental results.

4.1. Image Classification

Datasets. For the object classification, we evaluate our

method on CIFAR-10/100 [29] and ImageNet (ILSVRC

2012) [13]. CIFAR 10 and 100 each consist of 60,000 im-

ages with 32×32 size of 50,000 training and 10,000 testing
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Table 1. Classification accuracy on CIFAR (ResNet-110)

CIFAR-10 CIFAR-100

Loss Fn. Parameter Top-1 Top-1 Top-5

CE 93.91 ± 0.12 72.98 ± 0.35 92.55 ± 0.30

BCE 93.69 ± 0.08 73.88 ± 0.22 92.03 ± 0.42

OHEM ρ = 0.9, 0.9 93.90 ± 0.10 73.03 ± 0.29 92.61 ± 0.21

FL γ = 2.0, 0.5 94.05 ± 0.23 74.01 ± 0.04 92.47 ± 0.40

Ours

AL γ = 0.5, 0.5 94.10 ± 0.15 74.25 ± 0.34 92.62 ± 0.50

AL w/ warmup γ = 0.5, 2.0 94.17 ± 0.13 74.38 ± 0.45 92.45 ± 0.05

Table 2. Classification accuracies on ImageNet (ResNet-50)

Loss Fn. Parameter Top-1 Top-5

CE 76.39 93.20

OHEM ρ = 0.8 76.27 93.21

FL γ = 0.5 76.72 93.06

AL (ours) γ = 0.5 76.82 93.03

images. In our experiment, we randomly select 5,000 im-

ages for the validation set. CIFAR-10 dataset has 10 labels

with 6,000 images per class, and CIFAR-100 dataset has

100 classes each containing 600 images.

Implementation details. For CIFAR, we train ResNet-

110 [19] with our loss function and compare with other loss

functions and OHEM. We randomly flip and crop the im-

ages padded with 4 pixels on each side for data augmenta-

tion. All the models are trained with PyTorch [36]. Note

that our loss is summed over class variables and averaged

over batch. The learning rate is set to 0.1 initially, and

dropped by a factor of 0.1 at 160 and 180 epochs respec-

tively. In addition, we train ResNet-50 models on ImageNet

using different loss functions. We use 8 GPUs and batch

size of 224. To accelerate training, we employ a mixed-

precision. We apply minimal data augmentation, i.e., ran-

dom cropping of 224 × 224 and horizontal flipping. The

learning rate starts from 0.1 and decays 0.1 every 30 epoch.

We also perform learning rate warmup strategy for first 5

epochs as proposed in [19].

Results. For CIFAR, we train and test the network three

times and report the mean and standard deviation in Table 1.

We report top-1 and top-5 accuracy and compare the score

with other loss functions and OHEM. OHEM computes the

loss values for all samples in a batch, chooses the samples

of high loss contribution with a ratio of ρ, and updates the

gradient only using those samples. As we can see in the

Table 1, our loss function has shown improvements over all

loss functions we evaluated. For CIFAR 100, performance

improved by simply replacing the cross entropy to the bi-

nary cross entropy, and anchor loss gives further gain by

exploiting the automated re-scaling scheme. With our ex-

perimental setting, we found that sampling hard examples

(OHEM) does not help. We tried out few different sampling

Table 3. Ablation studies on CIFAR-100 (ResNet-110)

Top-1 Top-5

Static anchor probabilities

γ = 0.5 q∗ = 0.8 73.74 92.45

γ = 0.5 q∗ = 0.5 73.77 92.30

γ = 0.5 q∗ = 0.1 73.11 92.08

Dynamic anchor probabilities

γ = 0.5 - 74.25 92.62

γ = 1.0 - 73.59 92.04

γ = 2.0 - 71.86 91.46

ratio settings, but found performance degradation over all

ratios.

Ablation Studies. As an ablation study, we report the top-

1 and top-5 accuracy on CIFAR-100 by varying the γ in

Table 3. For classification task, low γ yielded a good per-

formance. We also perform experiments with fixed anchor

probabilities to see how the automated sample difficulty

from the network helps training. The results in Table 3 show

that using the network output to define sample difficulty and

rescale the loss based on this value helps the network keep

a good learning signal.

CE warmup strategy. To accelerate and stabilize the

training process, we use CE for first few epochs and then

replace loss function to AL. We tested CE warmup on

CIFAR-100 for the first 5 epochs (Figure 5). With the

warmup strategy, the ratio of hard samples was decreased;

in other words, loss function less fluctuated. As a result, we

achieved the highest top-1 accuracy of 74.38% (averaged

out multiple runs) regardless of a high γ = 2 value.

4.2. Human Pose Estimation

We evaluate our method on two different human pose

estimation datasets: single-person pose on MPII [1] and

LSP [26] dataset. The single-person pose estimation prob-

lem assumes that the position and the scale information of

a target person are given.

Implementation details. For the task of human pose es-

timation, we use the Hourglass network [34] as a baseline

and only replace the loss function with the proposed loss

during training. Note that we put sigmoid activation layer

on top of the standard architecture to perform classification.

Pose models are trained using Torch [12] framework. The

input size is set to 256×256, batch size is 6, and the model

is trained with a single NVIDIA Tesla V100 GPU. Learning

rate is set to 0.001 for the first 100 epochs and dropped by

half and 0.2 iteratively at every 20 epoch. Testing is held by

averaging the heatmaps over six-scale image pyramid with

flipping.
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Figure 5. Validation curves of ResNet-110 on CIFAR-100 dataset.

We compare our loss function to CE.

Figure 6. Validation curves of 2-stacked Hourglass on MPII

dataset. We compare our loss function to BCE.

Datasets. The MPII human pose dataset consists of 20k

training images over 40k people performing various ac-

tivities. We follow the previous training/validation split

from [43], where 3k images from training set are used for

validation. The LSP dataset [26] is composed of 11k train-

ing images with LSP extended dataset [27], and containing

mostly sports activities.

Results. We evaluate the single-person pose estimation

results on standard Percentage of Correct Keypoints (PCK)

metric, which defines correct prediction if the distance be-

tween the output and the ground truth position lies in α with

respect to the scale of the person. α is set to 0.5 and 0.2 in

MPII and LSP dataset, respectively. PCK score for each

dataset is reported in Table 4 and 5.

For comparison, we split the performance table by

hourglass-based architecture. The bottom rows are com-

parison between the methods built on top of Hourglass net-

work. We achieve comparable results to the models built

on top of hourglass network with more computational com-

plexity on both datasets. We also report the validation score

of the baseline method trained with mean squared error by

conducting a single scale test for direct comparison between

the losses in Table 6. We found consistent improvements

over the symmetric parts; Due to appearance similarity on

the symmetric body parts, our loss function automatically

penalizes more on those parts during training, without hav-

ing any additional constraint for the symmetric parts.

Ablation Studies. We conduct ablation studies by vary-

ing γ on 2-stacked hourglass network and report the score

in Table 7. With proper selection of γ = 2.0, we can achieve

better performance over all the losses.

Figure 7. We visualize where anchor loss assigns higher loss val-

ues than the binary cross entropy and how it changes over training

epochs. At the beginning, visually similar parts often get higher

scores than the target body part, thus our loss function assigns

higher weights on those pixel locations. Once the model is able

to detect the target body part with high confidence, loss is down-

weighted for most of the areas, so that the network can focus on

finding more accurate location for the target body part.

Figure 8. Qualitative results on human pose. The first row com-

pares with the result from MSE loss (left) and our loss (right), and

the second row contains some sample outputs. Model trained with

the proposed loss function is robust at predicting symmetric body

parts.

Qualitative Analysis. We visualize which area gets more

penalty than the standard binary cross entropy in Fig 7. For

the fist few epochs, we can see that visually similar parts of

both target and non-target person get higher penalty. Once

the model finds the correct body part locations, the loss

function is down-weighted and the area of higher penalty
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Table 4. PCK score on MPII dataset. The bottom rows show the

performances of the methods built on top of hourglass network.

The model trained with anchor loss shows comparative scores to

the results from more complex models.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total

Tompson et al. [43] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0

Hu & Ramanan [22] 95.0 91.6 83.0 76.6 81.9 74.5 69.5 82.4

Pishchulin et al. [37] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4

Lifshitz et al. [30] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0

Gkioxary et al. [16] 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1

Rafi et al. [44] 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3

Insafutdinov et al. [25] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5

Belagiannis & Zisserman [4] 97.7 95.0 88.2 83.0 87.9 82.6 78.4 88.1

Wei et al. [45] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5

Bulat & Tzimiropoulos [7] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7

Ning et al. [35] 98.1 96.3 92.2 87.8 90.6 87.6 82.7 91.2

Tang et al. [42] 98.4 96.9 92.6 88.7 91.8 89.4 86.2 92.3

Hourglass model variants

Chu et al. [11] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5

Chen et al. [9] 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9

Yang et al. [46] 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0

Ke et al. [28] 98.5 96.8 92.7 88.4 90.6 89.3 86.3 92.1

Hourglass + MSE [34] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9

Hourglass + AL (Ours) 98.6 96.6 92.3 87.8 90.8 88.8 86.0 91.9

Table 5. PCK score on LSP dataset. The bottom rows show the

performances of the methods built on top of hourglass network.

We achieve better performance on LSP dataset without adding the

complexity, by training the network with anchor loss. For compar-

ison, we also report the state-of-the-art score on the top row.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total

Lifshitz et al. [30] 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7

Pishchulin et al. [37] 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1

Insafutdinov et al. [25] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1

Wei et al. [45] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5

Bulat&Tzimiropoulos [7] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7

Ning et al. [35] 98.2 94.4 91.8 89.3 94.7 95.0 93.5 93.9

Tang et al. [42] 98.3 95.9 93.5 90.7 95.0 96.6 95.7 95.1

Hourglass model variants

Chu et al. [11] 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6

Yang et al. [46] 98.3 94.5 92.2 88.9 94.4 95.0 93.7 93.9

Hourglass + AL (Ours) 98.6 94.8 92.5 89.3 93.9 94.8 94.0 94.0

Table 6. Validation Results on MPII dataset. We report the valida-

tion score of the result using different losses with the same single-

scale testing setup.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

Hourglass + MSE 96.73 95.94 90.39 85.40 89.04 85.17 81.86 89.32

Hourglass + AL (Ours) 96.45 96.04 90.46 86.00 89.20 86.84 83.68 89.93

Table 7. Hyperparameter search and comparison to other losses on

MPII dataset with 2-stacked hourglass network.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

BCE 96.42 95.35 89.82 84.72 88.47 85.17 81.13 88.84

MSE 96.42 95.30 89.57 84.63 88.78 85.07 81.77 88.89

FL 96.52 95.47 89.71 84.87 88.38 84.75 81.25 88.81

AL, γ = 5 96.35 95.04 89.26 84.56 88.99 85.51 81.37 88.84

AL, γ = 1 96.35 95.40 89.60 85.11 88.59 84.85 81.77 88.94

AL, γ = 2 96.49 95.45 90.08 85.42 88.64 85.31 81.60 89.11

is focused only on few pixel locations, which helps fine ad-

justments on finding more accurate locations. We also show

some sample outputs in Fig 8. For comparison, the top row

shows some outputs from the model trained with MSE (left)

and anchor loss (right). We can see that the network trained

with proposed loss is robust at predicting symmetric parts.

Double-counting. For the

task of human pose estimation,

we observe a double-counting

problem, where the predicted

heatmap shows multiple peaks.

To analyze how AL behaves in

those cases, we depict the ratio

of the correct prediction when double-counting problems

are encountered on MPII dataset. Overall, AL assigns

correct body parts compared to BCE.

5. Conclusion

In this paper, we presented anchor loss function which

adaptively rescales the standard cross entropy function

based on prediction difficulty. The network automatically

evaluates the prediction difficulty by measuring the diver-

gence among the network outputs regarding true positive

and false positive predictions. The proposed loss function

has shown strong empirical results on two different do-

mains: image classification and human pose estimation. A

simple drop-in replacement for standard cross entropy loss

gives performance improvement. With a proper selection of

designing the re-weighing scheme and anchor probability,

the anchor loss can be applied to diverse machine learning

and computer vision applications.
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