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Figure 1: We learn procedural knowledge from large text corpora and transfer it to the visual domain to anticipate the future. Our system

is composed of four RNNs: a sentence encoder and decoder, a video encoder and a recipe network.

Abstract

How can we teach a robot to predict what will happen

next for an activity it has never seen before? We address

this problem of zero-shot anticipation by presenting a hi-

erarchical model that generalizes instructional knowledge

from large-scale text-corpora and transfers the knowledge

to the visual domain. Given a portion of an instructional

video, our model predicts coherent and plausible actions

multiple steps into the future, all in rich natural language.

To demonstrate the anticipation capabilities of our model,

we introduce the Tasty Videos dataset, a collection of 2511

recipes for zero-shot learning, recognition and anticipation.

1. Introduction

Imagine a not-so-distant future, where your kitchen is

serviced by a robot chef1. How should we teach robots to

cook? By reading all the recipes on the web? By watching

all the cooking videos on YouTube? The ability to learn and

generalize from a set of instructions, be it in text, image, or

video form, is a highly challenging and open problem faced

by those working in machine learning and robotics.

In this work, we limit our scope of training the next

robo-chef to predicting subsequent steps as it watches a hu-

man cook a never-before-seen dish. We frame our problem

as one of future action prediction in a zero- and/or few-

shot learning scenario. This best reflects the situation un-

der which service robots will be introduced [18, 49]. The

robot is pre-trained extensively, but not necessarily with

knowledge matching exactly the deployment environment,

thereby forcing it to generalize from prior knowledge. At

1Robots cooking specific recipes [3, 9, 51] already exist!

the same time, it is important for the robot to anticipate what

will happen in the future, to ensure a safe and smooth col-

laborative experience with the human [28, 56].

Instructional data and in particular cooking recipes can

be readily found on the web [1, 2]. The richest forms are

multimodal, e.g. images plus text, or videos with narrations.

Such data fits well into our scenario in which the service

robot visually recognizes the current context and makes fu-

ture predictions. However, learning complex, multi-step

activities requires significant amounts of data, and despite

their online abundance, it is still difficult to find sufficient

examples in multi-modal form. Furthermore, learning the

visual appearance of specific steps would require tempo-

rally aligned data, which is less common and/or expensive

to obtain. Our strategy is therefore to separate the procedu-

ral learning from the visual appearance learning. Procedural

knowledge is learned from text, which is readily available in

large corpora on the scale of millions [46]. This knowledge

is then transferred to video, so that the learning of visual ap-

pearances can then be simplified to only a grounding model

done via aligned video and text (Fig. 1). More specifically,

we encode text and/or video into context vectors. The con-

text is fed to a recipe network, which models the sequential

structure of the recipe and makes following step predictions

in vector form which are then decoded back into sentences.

Our work is highly novel in two key regards. First and

foremost, we are working with zero-shot action anticipa-

tion under a semi-supervised setting, as we target predic-

tion for never-before-seen dishes. We achieve this by gen-

eralizing cooking knowledge from large-scale text corpora

and then transferring the knowledge to the visual domain.

This relieves us of the burden and impracticality of provid-
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ing annotations for a domain in which there are virtually

unlimited number of categories (dishes) and sub-categories

(instructional steps). We are the first to tackle such a prob-

lem in this form; prior works in complex activity recogni-

tion are severely limited in the number of categories and

steps [6, 29, 30, 43], while works in action anticipation rely

on strong supervision [5, 31, 61].

Second, we do not work with closed categories derived

from word tags; instead we train with and also predict full

sentences, e.g. ‘Cook the chicken wing until both sides are

golden brown.’ vs. ‘cook chicken’. This design choice

makes our problem significantly more challenging, but also

offers several advantages. First of all, it adds richness to

the instruction, since natural language conveys much more

information than simple text labels [32, 59]. It also allows

for anticipation of not only actions but also objects and at-

tributes. Finally, as a byproduct, it facilitates data collec-

tion, as the number of class-based annotations grows expo-

nentially with the number of actions, objects and attributes

and leads to very long-tailed distributions [16].

When transferring knowledge from text recipes to

videos, we need to ground the two domains with video with

temporally aligned captions. To the best of our knowledge,

YoucookII [59] is currently the only dataset with such la-

bels. However, it lacks diversity in the number of dishes

and therefore unique recipe steps. As such, we collect and

present our new Tasty Videos dataset, a diverse set of 2511

different cooking recipes2 accompanied by a video, ingredi-

ent list, and temporally aligned recipe steps. Video footage

is taken from a fixed birds-eye view and focuses almost ex-

clusively on the cooking instructions, making it well-suited

for understanding the procedural steps.

We summarize our main contributions as follows:

• We are the first to explore zero-shot action anticipa-

tion by generalizing knowledge from large-scale text-

corpora and transferring it to the visual domain.

• We propose a modular hierarchical model for learning

multi-step procedures with text and visual context.

• Our model generalizes cooking knowledge and is able

to predict coherent and plausible instructions for mul-

tiple steps into the future. The predictions, in rich nat-

ural language, score higher in standard NLP metrics

than video captioning methods which actually observe

the visual data on YouCookII and Tasty Videos.

• We demonstrate how the proposed approach can be

useful for making future step predictions in a zero-shot

scenario compared to a supervised setting.

• We present a new and highly diverse dataset of 2511

cooking recipes which will be made publicly available

and be of interest for those working in anticipation,

complex activity recognition and video captioning.

2 Collected from the website https://tasty.co/

2. Related Works

Understanding complex activities and their sub-

activities has been addressed typically as a supervised

video segmentation and recognition problem [29, 40, 43].

Newer works are weakly-supervised, using cues from nar-

rations [34, 48, 6] or receiving ordered sequences of the ac-

tions in videos [11, 24, 41], or fully unsupervised [47]. Our

work is similar to those using text cues; however, we do

not rely on aligned visual-text data for learning the activity

models [6, 48] but rather for grounding visual data.

Action prediction is a new and fast-growing area. Meth-

ods for early event recognition [45, 23, 57] are sometimes

(confusingly) also referred to as action prediction, but are

incomplete inference methods, since a portion of the ac-

tion has been observed. Prior work in forecasting activi-

ties before making any observations have been limited to

simple movement primitives [28], or personal interactions

[31, 55]. Single predictions are made and the anticipated

actions typically occur within a few seconds time frame.

Recently, [5] predicts multiple actions into the future; our

method also predicts multiple steps but unlike [5], we do

not require repetitions of activity sequences for training.

The cooking domain is popular in NLP research, since

recipes are rich in natural language yet are reasonably lim-

ited in scope. Modelling the procedural aspects of text

and generating coherent recipes span several decades of

work [15, 19, 25, 36, 37]. In multimedia, recipes are in-

volved in tasks such as food recognition [21], recommender

systems [35] and indexing and retrieval [12, 46]. In com-

puter vision, cooking has been well-explored for complex

and fine-grained activity recognition [30, 43, 17, 42, 16, 59],

temporal segmentation [30, 59] and captioning [44, 39, 60].

Several cooking and kitchen-related datasets have been pre-

sented [16, 34, 43, 30, 59] and feature a wide variety of la-

bels depending on the task. Two [34, 59] are similar to our

new dataset, in that they include recipe texts and accompa-

nying videos. However, YouCookII [59] has limited diver-

sity in activities with only 89 dishes; [34] is larger in scale,

but lacks temporal alignments between texts and videos.

3. Modelling Sequential Instructions

Sequence-to-sequence learning [50] has made it possible

to successfully generate continuous text and build dialogue

systems [13, 54]. Recurrent neural networks (RNNs) are

used to learn rich representations of sentences [22, 7, 27]

in an unsupervised manner, using the extensive amount of

text that exists in books and web corpuses. However, for

instructional text such as cooking recipes, such represen-

tations tend to do poorly, and suffer from coherence from

one time step to the next, since they do not fully capture

the underlying sequential nature of the instruction set. As

such, we propose a hierarchical model with four compo-

nents, where the sentences and the steps of the recipe are
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Figure 2: Left: our visual model, composed of video encoder, sentence decoder and recipe RNN. Given the ingredients as initial input and

context in visual form, the recipe RNN predicts future steps decoded back into natural language. Right: next step prediction of our visual

model. The blue sentences are our model’s predictions. Note that our model predicts the next steps before seeing these segments!

represented by two dedicated RNNs: the sentence encoder

and the recipe RNN respectively. A third RNN decodes

predicted recipe steps back into sentence form for human-

interpretable results (sentence decoder). These three RNNs

are learned jointly as an auto-encoder in an initial training

step. A fourth RNN encoding visual evidence (video en-

coder) is then learned in a subsequent step to replace the

sentence encoder to enable interpretation and future predic-

tion from video. An overview is shown in Fig. 1, while

details of the RNNs are given in Sections 3.1 to 3.3.

3.1. Sentence Encoder and Decoder

The sentence encoder produces a fixed-length vector

representation of each recipe step. We use a bi-directional

LSTM and following [14] we apply a max pooling over

each dimension of the hidden units. More formally, let

sentence sj from step j of a recipe (we assume each step

is one sentence) be represented by M words, i.e. sj =
{wt

j}t=1...M and xt
j be the word embedding of word wt

j .

For each sentence j, at each (word) step t, the bi-directional

LSTMse outputs yt
j , where

yt
j=

[

LSTMse

(

{x1
j , ...,x

t
j}
)

,LSTMse

(

{xM
j , ...,xt

j}
)]

(1)

which is a concatenation of the hidden states from the for-

wards and backwards pass of LSTMse. The overall sentence

representation rj is determined by a dimension-independent

max-pooling over the time steps, i.e.

(rj)d = max
t∈{1,...,M}

(yt
j)d, (2)

where (·)d, d∈{1, ..., D} indicates the d-th element of the

D-dimensional bi-directional LSTM outputs yt
j . The de-

coder is an LSTM-based neural language model which con-

verts the fixed-length representation of the steps back into

sentences. More specifically, given the prediction r̂j from

the recipe RNN of step j, it decodes the sentence ŝj

ŝj = LSTMd(r̂j) = {ŵ1
j , ..., ŵ

M̂
j }. (3)

3.2. Recipe RNN

We model the sequential ordering of recipe steps with an

LSTM which takes as input {rj}j=1,...,N , i.e. fixed-length

representations of the steps of a recipe with N steps, where

j indicates the step index. At each (recipe) step, the hidden

state of the recipe RNN hj can be considered a fixed-length

representation of all recipe steps {s1, ..., sj} seen up to step

j; we directly use this hidden state vector as a prediction of

the sentence representation for step j + 1, i.e.

r̂j+1 = hj = LSTMr({r0, ..., rj}). (4)

The hidden state of the last step hN can be considered a rep-

resentation of the entire recipe. Due to the standard recur-

sion of the hidden states in LSTMr, each hidden state vector

and therefore each future step prediction is conditioned on

the previous steps. This allows to predict recipe steps which

are plausible and coherent with respect to previous steps.

Recipes usually include an ingredient list which is a rich

source of information that can also serve as a strong mod-

elling cue [25, 46]. To incorporate the ingredients, we form

an ingredient vector I for each recipe in the form of a one-

hot encoding over a vocabulary of ingredients. I is then

transformed with a separate fully connected layer in the

recipe RNN to serve as the initial input, i.e. r0 = f(I).

3.3. Video Encoder

For inference, we would like the recipe RNN to interpret

sentences from text inputs and also visual evidence. Due

to the modular nature of our proposed model, we can con-

veniently replace the sentence encoder with an analogous

video encoder. Suppose the jth video segment cj is com-

posed of L frames, i.e. cj = {f tj}t=1,...,L. Each frame f t
j is

represented as a high-level CNN feature vector – we use the

last fully connected layer output of ResNet-50 [20] before

the softmax layer. Similar to the sentence encoding rj in

Eqs. 1 and 2, we determine the video encoding vector vj

by applying a dimension-independent max pooling over the

time steps of ztj , where :

ztj=
[

LSTMve

(

{f1j , ..., f
t
j}
)

,LSTMve

(

{fMj , ..., f tj}
)]

. (5)

The video encoding LSTMve is trained such that vj can di-

rectly replace rj , as detailed in the following.
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3.4. Model Learning and Inference

The full model is learned in two stages. First, the

sentence encoder (LSTMse), recipe RNN (LSTMr) and

sentence decoder (LSTMd) are jointly trained end-to-end.

Given a recipe of N steps, a loss can be defined as the neg-

ative log probability of each reconstructed word:

L(s1, ..., sN ) = −

N
∑

j=1

Mj
∑

t=1

logP (wt
j |w

t′<t
j , r̂j), (6)

where P (wt
j |w

t′<t
j , r̂j) is parameterised by a softmax func-

tion at the output layer of the sentence decoder to estimate

the distribution over the words w in our vocabulary V . The

overall objective is then summed over all recipes in the cor-

pus. The loss is computed only when the LSTM is learning

to decode a sentence. This first training stage is unsuper-

vised, as the sentence encoder and decoder and the recipe

RNN require only text inputs which can easily be scraped

from the web without human annotations. In a second step,

we train the video encoder (LSTMve) while keeping the

recipe RNN and sentence decoder fixed. We simply replace

the sentence encoder with the video encoder while apply-

ing the same loss function as defined in Eq. 6. This step is

supervised, as it requires video segments of each step tem-

porally aligned with the corresponding sentences.

During inference, we provide the ingredient vector r0 as

an initial input to the recipe RNN, which then outputs the

predicted vector r̂1 for the first step (see Fig. 2). We use the

sentence decoder and generate the first sentence ŝ1. Then,

we sample a sequence of frames from the video and apply

the video encoder to generate v1 which we again provide as

input to the recipe RNN. The output prediction of the recipe

RNN, r̂2, is for the second step of the video. We again use

the sentence decoder and generate the next sentence ŝ2.

Our model is not limited to one step ahead predictions:

for further predictions, we can simply apply the predicted

output r̂j as contextual input rj . During training, instead of

always feeding in the ground truth rj , we sometimes (with

0.5 probability after the 5th epoch) use our predictions r̂j
as the input for the next step predictions that helps us with

being robust to feeding in bad predictions [10].

3.5. Implementation and Training Details

We use a vocabulary V of 30171 words provided by

Recipe1M [46]; words are represented by 256-dimensional

vectors shared between the sentence encoder and decoder.

Our ingredients vocabulary has 3769 ingredients; the one-

hot ingredient encodings are mapped into a 1024 dimen-

sional vector r0. The RNNs are all single-layer LSTMs

implemented in PyTorch; LSTMse, LSTMve, LSTMd have

512 hidden units while LSTMd has 1024. We train our

model using the Adam optimizer [26] with a batch size of 50

recipes and a learning rate of 0.001; the text-based model is

trained for 50 epochs and the visual encoder for 25 epochs.

4. Tasty Videos Dataset

Our new Tasty Videos Dataset has 2511 unique recipes

collected from the Buzzfeed website https://tasty.co.

Each recipe has an ingredient list, step-wise instructions and

a video demonstrating the preparation. The recipes feature

breakfast, dinner, desserts, and drinks from 185 categories

such as cakes, pies, soups. We define a split ratio of 8:1:1

for training, validation and testing, each containing differ-

ent recipes. Our test setting is therefore zero-shot, as we

make predictions on unseen recipes. We further divide the

test set into recipes with similarities in the training set, e.g.

“Strawberry Breakfast Muffins” vs. “Carrot Cake Muffins”

and those without any similarities e.g. “Pigs In A Blanket”.

The Tasty Videos are captured with a fixed overhead

camera and focus entirely on preparation of the dish (see

Fig. 2). This viewpoint removes the added challenge of

distractors and irrelevant actions and while it may not ex-

actly reflect the visual environments one may find in the

home, this simplification allows us to focus the scope of

our work on modelling the sequential nature of instructional

data, which is already a highly challenging and open re-

search topic. The videos are short (on average 1551 frames

/ 54 seconds) yet contain a challenging number of steps (9

on average). For each recipe step, we annotate the temporal

boundaries in which the step occurs within the video, omit-

ting those without visual correspondences, such as alterna-

tive recommendations, non-visualized instructions such as

‘Preheat oven.’ and stylistic statements such as ‘Enjoy!’.

5. Experiments

5.1. Datasets and Evaluation Measures

We train and evaluate our method with Recipe1M [46],

YoucookII [59] and our Tasty Videos. Recipe1M features

approximately one million text recipes with a dish name, list

of ingredients, and sequence of instructions. YoucookII is

a collection of 2000 cooking videos from YouTube from 89

dishes annotated with the temporal boundaries of each step.

We use the ingredients and instructions from the Recipe1M

training split to learn our sentence encoder, decoder and

recipe RNN. To learn the video encoder, we use the aligned

instructions and video data from the training split of ei-

ther YouCookII or Tasty Videos. We evaluate our model’s

prediction capabilities with text inputs from Recipe1M and

video and text inputs from YoucookII and Tasty Videos.

Our predictions are in sentence form; evaluating the

quality of generated sentences is known to be difficult in

natural language processing [52, 33]. We apply a vari-

ety of evaluation measures in order to offer a broad as-

sessment. First, we target the matching of ingredients and

verbs, since they indicate the next active objects and actions

and are analogous to the assessments made in action antic-

ipation [16]. Second, we evaluate with sentence matching

scores BLEU [38] and METEOR [8] which are also used for
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ground truth (GT) prediction BLEU1 BLEU4 METEOR HUMAN1 HUMAN2

ING bacon, brown sugar, cooking spray, breadsticks
step1 Preheat oven to 325 degrees F ( 165 degrees C ). Preheat oven to 400 degrees F. 36.0 0.0 26.0 1.5 1.5
step2 Line 2 baking sheets with aluminum foil or parch-

ment paper and spray with cooking spray.
Line a baking sheet with aluminum foil. 23.0 0.0 23.0 1.0 1.0

step3 Wrap 1 bacon strip around each breadstick, leaving
about 1 inch uncovered on each end.

Place bacon strips in a single layer on the prepared
baking sheet.

13.0 0.0 9.0 0.5 1.5

step4 Place wrapped breadsticks on the prepared baking
sheet.

Place rolls on a baking sheet. 48.0 0.0 30.0 1.5 1.5

step5 Sprinkle brown sugar evenly over breadsticks. Bake in the preheated oven until breadsticks are
golden brown, about 15 minutes.

15.0 0.0 13.0 0.0 1.5

step6 Bake in the preheated oven until bacon is crisp and
browned, 50 to 60 minutes.

Bake in preheated oven until bacon is crisp and bread-
sticks are golden brown, about 15 minutes.

63.0 43.0 36.0 1.0 1.0

step7 Cool breadsticks on a piece of parchment paper or
waxed paper sprayed with cooking spray.

Remove from oven and let cool for 5 minutes. 6.0 0.0 4.0 0.5 1.5

Figure 3: Predictions of our text-based method for “Candied Bacon Sticks” along with the automated scores and human ratings. For

“HUMAN1” we ask the raters to directly assess how well the predicted steps match the corresponding ground truth (GT) sentences, for

“HUMAN2” we ask to judge if the predicted step is still a plausible future prediction, see Sec. 5.7. Our prediction for step 6 matches the

GT well while step 5 does not. However, according to “HUMAN2” score, our step 5 prediction is still a plausible future action.

video captioning methods [39, 44, 60]. Note that automated

scores are best at indicating precise word matches to ground

truth (GT) and often do not match sentences a human would

consider equivalent. We therefore conduct a user study and

ask people to assess how well the predicted step matches the

GT in meaning; if it does not match, we ask if the prediction

would be plausible for future steps. This gives flexibility in

case predictions do not follow the exact aligned order of

the ground truth, e.g. due to missing steps not predicted, or

steps which are slightly out of order (see Fig. 3)

5.2. Learning of Procedural Knowledge

We first verify the learning of procedural knowledge with

a text-only model, evaluating on Recipe1M’s test set of 51K

recipes. For a recipe of N steps, we predict steps j+1 to N ,

conditioning on steps 1 to j as input context. N varies from

recipe to recipe so we separately tally recipes with N=9
(4300 recipes; 9 is also the average number of steps in the

test set) which we report here. Results over the entire test set

follow similar trends and are shown in the Supplementary.

For comparison, we look at the generations from a skip-

thought (ST) model [27]. Skip-thought models are trained

to decode temporally adjacent sentences from a current en-

coding, i.e. given step j to the encoder, the decoder predicts

step j+1, and have been shown to be successful in gener-

ating continuous text [13, 54, 25]. We train the ST model

on the training set of the Recipe1M dataset. Because the ST

model generations are not trained to accept an ingredient

list as a 0th or initialization step, we make ST predictions

only from the second step on-wards.

Key Ingredients: We first compare the recall of ingre-

dients in our predictions to an ST model and a variation of

our model trained without ingredients. Rather than directly

cross-referencing the ingredient list, we limit the evalua-

tion to ingredients mentioned explicitly in the recipe steps.

This is necessary to avoid ambiguities that may arise from

specific instructions such as ‘add chicken, onion, and bell

pepper’ versus the more vague ‘add remaining ingredients’.

Furthermore, the ingredient lists in Recipe1M are often au-

tomatically generated and may be incomplete. Fig. 5 shows

that our model’s predictions successfully incorporate rele-

vant ingredients with recall rates as high as 43.3% with the

predicted (relative) next step. The overall recall decreases

with the (absolute) latter steps, likely due to increased dif-

ficulty once the overall number of ingredient occurrences

decreases, which tends to happen in later steps.

Compared to the ST model, our predictions’ ingredient

recall is higher regardless of whether or not ingredients are

provided as an initial input. Without ingredient input, the

overall recall is lower but after the initial step, our model’s

recall increases sharply, i.e. once it receives some context.

We attribute this to the strength of our model to generalize

across related recipes, so that it is able to predict relevant

co-occurring ingredients. Our predictions include common

ingredients such as salt, butter, eggs and water and also

recipe-specific ones such as couscous, zucchini, or choco-

late chips. While the ST model predicts some common in-

gredients, it fails to predict recipe-specific ingredients.

Key verbs indicate the main action for a step and are also

cues for future steps both immediate (e.g. after ‘adding’ in-

gredients into a bowl, a common next step may be to ‘mix’)

and long-term (e.g. after ‘preheating’ the oven, one expects

to ‘bake’). We tag the verbs in the training recipes with

the Natural Language Toolkit [4] and select the 250 most

frequent for evaluation. Similar to ingredients, we check

for recall of these verbs only if they appear in the ground

truth steps. In the ground truth, there are between 1.55 and

1.85 verbs per step, i.e. steps often include multiple verbs

such as “add and mix”. Fig. 4 shows that our model re-

calls up to 30.9% of the verbs with the predicted next step.

Our performance is worst in the first (absolute) steps, due

to ambiguities when given only the ingredients without any

further knowledge of the recipe. After the first steps, our

performance quickly increases and stays consistent across

the remaining steps. In comparison, the ST model’s best

recall is only 20.1% for the next step prediction.

Sentences: Our model is able to predict coherent and

plausible instructional sentences as shown in Fig. 3; more

predictions can be found in the Supplementary Materials.
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Figure 4: The recall of verbs and sentence scores computed between the predicted and the ground truth sentences for our model (Ours)

and the skip-thoughts (ST) model. The x-axes in the plots indicate the step number being predicted in the recipe; each curve begins on the

first (relative) prediction, i.e. the (j + 1)th step after having received steps 1 to j as input.

1 2 3 4 5 6 7 8 9
0

20

40

60

IN
G

 %

1 2 3 4 5 6 7 8 9
0

20

40

60
IN

G
 %

Ours

Ours noING

Ours

ST

Figure 5: The recall of ingredients predicted by our model (Ours),

by our model trained without the ingredients (Ours noING) and the

by skip-thoughts model (ST). The x-axes indicate the step number

being predicted in the recipe.

We evaluate the entire predicted sentences with BLEU1,

BLEU4 and METEOR scores (see Fig 4). For our model,

the BLEU1 scores are consistently high, at around 25.0 for

the next (relative) step predictions, with a slight decrease

towards the end of the recipes. Predictions further than the

next step have lower scores, though they stay above 15.0.

The BLEU4 scores are highest in the very first step and

range between 1.0 and 5.0 over the remaining steps. The

high scores at the early steps are because many recipes start

with common instructions such as ‘Preheat oven to X de-

grees’ or ‘In a large skillet, heat the oil’. Similarly, we also

do well towards the end of recipes, where instructions for

serving and garnishing are common, e.g., ‘Season with salt

and pepper.’. Trends for the METEOR score are similar.

Our method outperforms the ST model across the board.

In fact, predictions up to four steps into the future surpass

the ST predictions only one step ahead. This can be at-

tributed to the dedicated long-term modelling of the recipe

RNN that allows us to incorporate the context from all sen-

tence inputs up to the present. In contrast, ST are Markovian

in nature and can only take the current step into account.

In cooking recipes, one does not only find strict instruc-

tional steps, but also suggestions based on experience. An

interesting outcome of our model is that it also makes such

recommendations. For example, for the ground truth ‘If it’s

too loose place it in the freezer for a little while to freeze.’,

our model predicts ‘If you freeze, it will be easier to eat’.

5.3. Video Predictions

We evaluate our model for making predictions on video

inputs on YouCookII’s validation set and Tasty Videos’ test

set. We test two video segmentation settings for inference:

one according to ground truth (Ours Visual (GT)) and one

based on fixed windows (Ours Visual). In both settings, we

sample every fifth frame in these segments and feed their vi-

sual features into the recipe RNN as context vectors. Com-

pared to using ground truth segments, the fixed window

segments do not have a significant decrease in performance

(5%-18%,see Tables 1 and 4 for Tasty and YouCookII re-

spectively). Overall, our method is relatively robust to the

window size (see Supplementary) and we report here results

for a window of 70 frames for YouCookII and 170 for Tasty.

Through the video encoder, our model can interpret vi-

sual evidence and make plausible predictions of next steps

(see examples in Fig. 2(b) and 6, more results in Supple-

mentary). Given that the model is first trained on text and

then transferred to video, the drop in performance from text

to video is as expected, though video results still follow sim-

ilar trends (see Fig. 7, compare to “Ours Text” in Tables 1

and 4 for Tasty Videos and YouCookII respectively).

We further investigate the influence of the ingredients on

the performance of our method. The performance decrease

is mainly noticeable in the ingredient scores and the BLUE4

scores. When ingredients are not provided, our method fails

to make plausible predictions in the early stages. After the

initial steps, our method receives enough context and the

scores increase, see Supplementary.

In some instructional scenarios, there may be semi-

aligned text that accompanies video, e.g. narrations. We

test such a setting by training the sentence and video en-

coder, as well as sentence decoder and recipe RNN jointly

for making future step predictions. We concatenate the sen-

tence and video context vectors and then pass them through

a linear layer before feeding them as input to the Recipe

RNN, and observe that the results are better than our video

alone results but not better than our text alone results (see

“Ours joint video-text” in Table 1). Even with joint training,

it is still difficult to make improvements, which we attribute

to the diversity in our videos and variations in the text de-

scriptions for similar visual inputs. On the other hand, when

there is accompanying text, our model can be adapted easily

and improves the prediction performance.

GT: Prepare the garlic butter by mixing the butter, 
garlic, and parsley.
PRED:Serve hot.

GT: Coat the knots with the butter mixture and bake 
for another 5 minutes.
PRED: Brush the garlic butter mixture over the bread.

GT: Bake in a 350°F (180°C) oven for 10 minutes.
PRED: Bake for 20 minutes, or until the bread is 
golden brown.

Figure 6: Next step prediction of our visual model: blue sentences

are our model’s predictions. After baking, our model predicts that

the dish should be served, but after visually seeing the butter pars-

ley mixture, it predicts that the knots should be brushed.
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Figure 7: Our results on the Tasty dataset for next step predictions only for our visual and textual model for the recall of predicted

ingredients and verbs, and sentence scores. Compared to text, our visual model has a lower performance, but follow similar trends.

Method ING VERBS BLEU1 BLEU4 METEOR

S2VT [53] (GT) 7.59 19.18 18.03 1.10 9.12
S2VT [53], next (GT) 1.54 10.66 9.14 0.26 5.59

End-to-end [60] - - - 0.54 5.48
Ours Visual (GT) 20.40 19.18 19.05 1.48 11.78

Ours Visual 16.66 17.08 17.59 1.23 11.00
Ours Text (100%) 26.09 27.19 26.78 3.30 17.97
Ours Text (50%) 23.01 24.90 25.05 2.42 16.98
Ours Text (25%) 19.43 23.83 23.54 2.03 16.05
Ours Text (0%) 5.80 9.42 10.58 0.24 6.80

Ours Text noING 9.04 22.00 20.11 0.92 13.07
Ours joint video-text 22.27 23.35 21.75 2.33 14.09

Table 1: Evaluations on the Tasty dataset for our visual and text

model along with comparison against video captioning [53, 60].

Performance drops when the amount of pre-training decreases.

Our method performs better than video captioning.

5.4. Supervised vs. ZeroShot Learning

We compare the differences of supervised and zero-shot

learning on YouCookII. We divide the dataset into four

splits based on the 89 dishes and use three splits for train-

ing and half of the videos in the fourth split for testing. In

the zero-shot setting, the videos from the other half of the

fourth split are unused, while in the supervised setting, they

are included as part of the training. We report results aver-

aged over the four cross-folds in Table 2.

As expected, the predictions are better when the model

is trained under a supervised setting in comparison to zero-

shot. This is true for all inputs, with the same drop as

observed previously when moving from text to video and

when moving from ground truth video segments to fixed

window segments. However, the difference between the su-

pervised vs. zero-shot (see Table 2 “Sup. Visual” vs. “Zero

Visual”) is surprisingly much smaller than the difference be-

tween a supervised setting with and without pre-training on

Recipe1M (“Sup. Visual” vs. “Sup. Visual no pre-train”).

This suggests that having a large corpus for pre-training is

more useful than repeated observations for a specific dish.

While the test set of Tasty Videos is fully zero-shot, 183

videos are of recipes which occur with some variations in

the training, while 72 are without any variations. As ex-

pected, when comparing the predictions on these subsets

separately (see Table 3), we observe higher performance

on videos with variations, especially for the very difficult

BLEU4 score. This suggest that our method generalizes

better when it receives visually similar recipes.

5.5. Knowledge Transfer

At the core of our method is the transfer of knowledge

from text resources to solve a challenging visual problem.

We evaluate the effectiveness of the knowledge transfer by

varying the amount of training data from Recipe1M to be

Method ING VERBS BLEU1 BLEU4 METEOR

Sup. Visual (GT) 20.93 24.76 22.11 1.21 10.66
Sup. Visual 18.90 23.15 21.09 1.03 10.22

Sup. Visual no pre-train 2.69 19.43 15.05 0.15 5.89
Sup. Text 24.56 27.24 24.94 1.99 12.50

Zero Visual (GT) 17.77 23.11 20.61 0.84 9.51
Zero Visual 6.04 23.19 20.30 0.76 9.27

Zero Visual no pre-train 1.58 17.83 14.54 0.01 5.03
Zero Text 19.90 24.86 23.06 1.47 10.98

Table 2: Comparison of zero-shot vs. supervised setting (Sup.), on

YouCookII [59] by cross validation. Supervised results are better

overall. Without pre-training the performance drop is significant.

Method ING VERBS BLEU1 BLEU4 METEOR

w/o variations 14.20 17.08 16.67 0.76 10.00
w/ variations 25.40 20.41 20.54 2.16 13.00

all videos 22.24 19.47 19.45 1.77 12.15

Table 3: Evaluations on the Tasty test set on videos with and with-

out variations in the training set.We do better on variations.

used for pre-training. Looking at the averaged scores over

all the predicted steps on Tasty Videos, we observe a de-

crease in all evaluation measures as we limit the amount

of data from Recipe1M (see Table 1, “Ours Text” 100%,

50%, etc.), with the most significant decrease occuring for

the BLEU4 score. If there is no pre-training, i.e. when the

model learned only on text from Tasty Videos (“Ours Text

(0%)”), the decrease in scores is noticeable for all evalua-

tion criteria. These results again verify that pre-training has

a significant effect on our method’s performance.

5.6. Comparisons to Video Captioning

We compare our method against different video cap-

tioning methods in Tables 1 and 4 for Tasty Videos and

YouCookII respectively. Unlike predicting future steps,

captioning methods generate sentences after observing their

visual data which makes it a much easier task than future

prediction. We train and test S2VT [53], an RNN based

encoder-decoder approach, on the ground truth segments

of the Tasty dataset. Our visual model outperforms this

baseline, especially for ingredient recall, by 13%, and with

an improvement of 0.3 in BLEU4 score in Table 1. To

highlight the difficulty of predicting future steps compared

to captioning, we train S2VT [53] for predicting the next

step from the observation of the current step (see Table 1

“S2VT [53] next (GT)”). Our visual model outperforms this

variation with a big margin for all scores. We also tested the

End-to-end Masked Transformer [60] on our dataset and get

a BLEU4/METEOR of 0.54 / 5.48 (vs. our 1.23 / 11.00).

The poor performance is likely due to the increased dish

diversity and difficulty of our dataset vs YouCook2.

We compare our model on the validation set of the
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YouCookII dataset against two state-of-the-art video cap-

tioning methods [58, 60] in Table 4. End-to-end Masked

Transformer [60] performs dense video captioning by both

localizing steps and generating descriptions for these steps,

while TempoAttn [58] is an RNN-based encoder-decoder

approach. Again, even though our task is more difficult than

captioning, our method outperforms both of the captioning

methods in BLEU4 and METEOR scores. Compared to the

state-of-the-art [60], our visual model achieves a METEOR

score that is twice as high and a BLEU4 score four times

higher. We attribute the better performance of our method

compared to the captioning methods to the pre-training on

the Recipe1M dataset which allows our model to general-

ize. Note that for YouCookII, as we use all the videos in

the training set, our training is no longer a zero-shot but a

supervised scenario.

Method ING VERBS BLEU1 BLEU4 METEOR
TempoAttn(GT) [58] - - - 0.87 8.15
End-to-end(GT) [60] - - - 1.42 11.20

Ours Visual (GT) 21.36 27.55 23.71 1.66 11.54
TempoAttn [58] - - - 0.08 4.62
End-to-end [60] - - - 0.30 6.58

Ours Visual 17.64 25.11 22.55 1.38 10.71
Ours Text 24.60 29.39 26.49 2.66 13.31

Table 4: Comparison against captioning methods on the

YouCookII [59] validation set. We perform better than the state-

of-the-art captioning methods.

5.7. Human Ratings

We ask human raters to directly assess how well the pre-

dicted steps match the ground truth with scores 0 (‘not at

all’), 1 (‘somewhat’) or 2 (‘very well’). If the prediction re-

ceives a score of 0, we additionally ask the human to judge

if the predicted step is still a plausible future prediction,

again with the same scores of 0 (‘not at all’), 1 (‘some-

what’), or 2 (‘very likely’). We conduct this study with 3

people on a subset of 30 recipes from the test set, each with

7 steps, and present their ratings in Fig. 8 while comparing

them to automated sentence scores.

In Fig. 8, the upper graph shows the results of the human

raters and the lower graph shows the automated sentence

scores. Raters report a score close to 1 for the initial step

predictions indicating that our method, even by only seeing

the ingredients, can start predicting plausible steps. Scores

increase towards the end of the recipe and are lowest at step

3. The average score of the predicted steps being a possi-

ble future prediction are consistently high across all steps.

Even if the predicted step does not exactly match the ground

truth, human raters still consider it possible for the future,

including the previously low rating for step 3. Overall, the

ratings indicate that the predicted steps are plausible.

The lower graph in Fig. 8 shows automated scores for

the same user study recipes. The left plot shows the stan-

dard scores for the predicted sentences matching the ground

truth; overall, trends are very similar to the user study, in-

cluding the low-scoring step 3. To match the second setting
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Figure 8: Comparison of human ratings (upper graph) versus au-

tomated sentence scores (lower graph) over a subset of 30 recipes.

of the user study, we compute the sentence scores between

the predicted sentence ŝj and all future ground truth steps

{sj , sj+1, sj+2, sj+3} and select the step with the maxi-

mum score as our future match. These scores are plotted

in the lower right of Fig. 8; similar to the human study, sen-

tence scores increase overall.

5.8. Ablation Study

Since our method is modular, we conduct an ablation

study to check the interchangeability of the sentence en-

coder on the Recipe1M dataset [46]. Instead of using our

own sentence encoder, we represent the sentences using ST

vectors trained on the Recipe1M dataset, as provided by

the authors [46]. These vectors have been shown to per-

form well for their recipe retrieval. Our results, presented

in the supplementary text show that our sentence encoder

performs on par with ST encodings. However, our encoder,

model and decoder can all be trained jointly and do not re-

quire a separate pre-training of a sentence autoencoder.

6. Conclusion
In this paper we present a method for zero-shot action

anticipation in videos. Our model learns to generalize in-

structional knowledge from the text domain. Applying this

knowledge to videos allows us to tackle the challenging task

of predicting steps of complex tasks from visual data, which

is otherwise ruled out because of scarcity of or difficulty to

annotate training data. We present a new, diverse dataset of

cooking videos, which is of high interest for the commu-

nity. We successfully validate our method’s performance

on both text and video data. We show that our model is

able to produce coherent and plausible future steps. We

conclude that our knowledge transfer strategy works much

better than captioning methods and generalizes well on dif-

ferent datasets. In the future we hope to include more infor-

mation into our model, such as the title of the recipe.
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