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Abstract

A massive number of well-trained deep networks have

been released by developers online. These networks may

focus on different tasks and in many cases are optimized

for different datasets. In this paper, we study how to ex-

ploit such heterogeneous pre-trained networks, known as

teachers, so as to train a customized student network that

tackles a set of selective tasks defined by the user. We as-

sume no human annotations are available, and each teach-

er may be either single- or multi-task. To this end, we

introduce a dual-step strategy that first extracts the task-

specific knowledge from the heterogeneous teachers shar-

ing the same sub-task, and then amalgamates the extracted

knowledge to build the student network. To facilitate the

training, we employ a selective learning scheme where, for

each unlabelled sample, the student learns adaptively from

only the teacher with the least prediction ambiguity. We

evaluate the proposed approach on several datasets and ex-

perimental results demonstrate that the student, learned by

such adaptive knowledge amalgamation, achieves perfor-

mances even better than those of the teachers.

1. Introduction

Deep networks have been applied to almost all comput-

er vision tasks and have achieved state-of-the-art perfor-

mances, such as image classification [17, 29, 6, 11], seman-

tic segmentation [21, 2, 1] and object detection [25, 19, 37].

This tremendous success is in part attributed to the large

amount of human annotations utilized to train the parame-

ters of the deep networks. In many cases, however, such

training annotations are unavailable to the public due to

for example privacy reasons. To reduce the re-training ef-

fort and enable the plug-and-play reproduction, many re-

searchers have therefore shared online their pre-trained net-

works, which focus on different tasks or datasets.
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Figure 1. The dual-stage knowledge amalgamation strategy for

customizing student networks. Given four source nets working

on heterogeneous tasks, each of which may be either single- or

multi-task, we cluster them into two groups, one for Task A and

the other for Task D. We then conduct the first-round knowledge

amalgamation for each group to derive the two components nets,

based on which the second-round amalgamation is further carried

out to produce the final student model specified by the user.

In this paper, we investigate how to utilize such pre-

trained networks that focus on different tasks, which we

term as heterogeneous teachers, to learn a customized and

multitalented network, termed as the student. We assume

that we are given a pool of well-trained teachers, yet have no

access to any human annotation; each teacher can be either

single- or multi-task, and may or may not overlap in tasks.

Our goal is to train a compact and versatile student network

that tackles a set of selective tasks defined by the user, via

learning from the heterogeneous teachers. In other words,

the student is expected to amalgamate the multidisciplinary
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knowledge scattered among the heterogeneous teachers in-

to its compact-sized model, so that it is able to perform the

user-specified tasks.

The merit of this customized-knowledge amalgamation

problem, therefore, lies in that it allows for reusing pre-

trained deep networks to build a tailored student model on

user’s demand, again without having to access human anno-

tations. To this end, we introduce a dual-stage strategy that

conducts knowledge amalgamation twice. In this first stage,

from the pool we pick heterogeneous teachers covering one

or multiple desired tasks, which we term as source nets;

we then cluster the source nets sharing the same task into

groups, from each of which we learn a single-task network,

termed as component net. In the second stage, we construct

our final student network, termed as target net, by amalga-

mating the heterogeneous knowledge from the learned com-

ponent nets.

We show an example in Fig. 1 to illustrate our problem

setup and the overall workflow. Here we are given a pool of

four source nets, of which one is single-task and the others

are multi-task. We aim to train a compact target net, with-

out human-labelled annotations, which in this case handles

simultaneously Tasks A and D demanded by the user. In the

first stage, we cluster the four source nets into two groups,

one on Task A and the other on Task D, and learn a compo-

nent net for each task; in the second stage, we amalgamate

the two component nets to build the user-specified multi-

task target net.

This dual-stage approach for knowledge amalgamation,

as will be demonstrated in our experiments, turns out to

be more effective than the one-shot approach that learn-

s a multi-task target net directly from the heterogeneous

source nets. Furthermore, it delivers the component nets

as byproducts, which serve as the modular units that can be

further integrated to produce any combined-task target nets,

significantly enhancing the flexibility and modularity of the

knowledge amalgamation.

As we assume no human-labelled ground truths are pro-

vided, it is crucial to decide which teacher among the

multiple to use, so as to train the student effectively in

both stages. In this regard, we exploit a selective learning

scheme, where we feed unlabelled samples to the multiple

teacher candidates and allow the student to, for each sample,

learn adaptively only from the teacher with the least predic-

tion ambiguity. Specifically, we adopt the chosen teacher’s

feature maps and score vectors as supervisions to train the

student, where the feature learning is achieved via a dedicat-

ed transfer bridge that aligns the features from the teacher

and the student. Please note that, for each sample, we con-

duct the teacher selection and update which teacher to learn

from.

In short, our contribution is a novel knowledge amal-

gamation strategy that customizes a multitalented student

network from a pool of single- or multi-task teachers han-

dling different tasks, without accessing human annotations.

This is achieved via a dual-step approach, where the mod-

ular and single-task component networks are derived in the

first step followed by their being amalgamated in the sec-

ond. Specifically, for each unlabelled sample, we utilize

a selective learning strategy to decide which teacher to imi-

tate adaptively, and introduce a dedicated transfer bridge for

feature learning. Experimental results on several datasets

demonstrate that the learned student models, despite their

compact sizes, consistently outperform the teachers in their

specializations.

2. Related Work

Knowledge distillation [8] adopts a teacher-guiding-

student strategy where a small student network learns to

imitate the output of a large teacher network. In this way,

the large teacher network can transfer knowledge to the s-

tudent network with smaller model size, which is widely

applied to model compression. Following [8], some work-

s are proposed to exploit the intermediate representation

to optimize the learning of student network, such as Fit-

Net [26], DK2PNet [32], AT [36] and NST [13]. In sum-

mary, these works pay more attention on knowledge trans-

fer among the same classification task. Transfer learning is

proposed to transfer knowledge from source domain to tar-

get domain to save data on target domain [24]. It contains

two main research directions: cross-domain transfer learn-

ing [22, 12, 10, 4] and cross-task one [9, 3, 5, 35]. In the

case of cross-domain transfer learning, the dataset adopted

by source domain and the counterpart of target domain are

different in domain but the same in category. Also, cross-

task transfer learning adopts the datasets that have the same

domain but different categories. Transfer learning mainly

focuses on compensating for the deficit of data on target

domain with enough data on source domain. By contrast,

our approach amalgamates multiple pre-trained models to

obtain a multitalented model using unlabelled data.

To exploit knowledge of massive trained deep-learning-

based models, researchers have made some promising at-

tempts. MTZ [7] merges multiple correlated trained model-

s by sharing neurons among these models for cross-model

compression. Knowledge flow [14] transfers knowledge

from multiple teacher models to student one with strategy

that student learns to predict with the help of teachers, but

gradually reduce the dependency on teachers, finally pre-

dict independently. Despite very promising solutions, the

above approaches still depend on labelled dataset, which is

not suitable for our application scenario where no human

labels are available.

The approach of [28] proposes to transfer knowledge

from multiple trained models into a single one in a layer-

wise manner with unlabelled dataset. It adopts an auto-

3505



Transfer 
Bridge

Transfer 
Bridge

Se
le

ct
io

n 
M

od
ul

e

Teacher 
Network Tଵ

Student 
Network 

   Transfer Bridge for    

Teacher 
Network Tଶ

OR

Se
le

ct
io

n 
M

od
ul

eGuide

Source Net  Component Net Component Net  Target NetBlock

Prediction

   Transfer Bridge for    

ON

OFF

Guide

ON

OFF

Prediction

Figure 2. Amalgamating knowledge from multiple teachers. The student learns both the predictions and the features from a teacher model,

chosen among multiple via a selective learning module. The features of this selected teacher network are then transferred to the student

network via the transfer bridge in a block-wise manner. The two amalgamation steps, i.e., source-to-component and component-to-target,

undergo the same process.

encoder architecture to amalgamate features from multi-

ple single-task teachers. Several knowledge amalgamation

methods are also proposed to handle the above task [33, 23,

34]. The proposed approach here, on the other hand, han-

dles teachers working on both single or multiple tasks, and

follows a dual-stage strategy tailored for customizing the

student network that also gives rise to component nets as

byproducts.

3. The Proposed Approach

In this section, we give more details on the proposed ap-

proach for customizing multi-task students. We first give an

overview of the overall process, then introduce the transfer

bridge for learning the features of the student, afterward-

s we describe the selective learning scheme for choosing

teachers adaptively, and finally show the loss function.

3.1. Overview

Our problem setup is as follows. We assume that we are

given a pool of pre-trained source nets, each of which may

be single- or multi-task, where the former can be treated as

a degenerated case of the latter. These source nets may be

trained for distinct tasks and optimized for different dataset-

s. Let Ki denote the set of tasks handled by source net i,

and let K =
⋃

i Ki denote the set of tasks covered by all the

teachers. Our goal is to customize a student model that tack-

les a set of user-specified tasks, denoted by Ks ⊆ K. Also,

we use Ms to denote the number of tasks to be trained for

the student, i.e., |Ks| = Ms. As the initial attempt along

this line, for now we focus on image classification and as-

sume the source nets all take the form of the widely-adopted

resnet [6]. The proposed approach, however, is not restrict-

ed to resnet and is applicable to other architectures as well.

To this end, we adopt a dual-stage strategy to conduct

the selective knowledge amalgamation. In the first stage,

we pick all the source nets that cover one or multiple tasks

specified by the users, i.e., i : Ki∩Ks 6= ∅, and then cluster

them into Ms groups, each of which focus on one task only.

For each such group we carry out the first-round knowledge

amalgamation and derive a component net tailored for each

task, all of which together are further amalgamated again in

the second round to form the final multi-task target network.

The two rounds of knowledge amalgamation are

achieved in a similar manner, as depicted in Fig. 2. In the

first round, we refer to the source and the component respec-

tively as teachers and students, and in the second, we re-

fer to the component and the target respectively as teachers

and student. Specifically, we conduct a block-wise learning

scheme, as also done in [30, 6, 11], where a transfer bridge

is established between each teacher and the student so as to

allow the student to imitate the features of the teacher. In

both amalgamation rounds, for each unlabelled sample, stu-

dent adaptively learns from only one selected teacher, which

is taken to be the one that yields the least prediction ambigu-

ity. For In what follows, we introduce the proposed transfer

bridge and the selective learning strategy in details.

3.2. Transfer Bridge

A transfer bridge, as shown in Fig. 3, is set up between

the student and each teacher, in aim to align the features

of the student and the teachers so that the former can learn

from the latter. As the teachers may be multi-task and there-
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Figure 3. Transfer bridge between a teacher network and a student.

The block-wise features from teacher and student are respectively

transformed into F t

a and Fs

a by the FA module, which are then

utilized for computing the transfer loss.

fore comprise knowledge not at the interest of the student,

we would have to “filter” and transform the related features

from the teacher in a way that is learnable by the studen-

t. This is achieved via a dedicated feature alignment (FA)

module and a regularized loss function, discussed as fol-

lows.

Feature Alignment (FA). An FA module, which learns

to filter and align the target-task-related features, is intro-

duced between each block of the teacher and the student. In

our implementation, FA takes the form of an 1 × 1 convo-

lutional operation [28, 30, 18]. As depicted in Fig. 4, the

feature maps of both the student and the teacher are weight-

ed and summed to obtain a new feature map across channels

by the 1× 1 convolutional operation. We write,

Fa,c =

Cin∑

c′=1

wc,c′Fc′ , (1)

where Fa,c denotes the c-th channel of aligned feature maps

Fa, Fc′ denotes the c′-th channel of input feature maps from

the teacher or the student, and wc,c′ denotes the weight of

1×1 convolutional operation, which transforms Fc′ to Fa,c.

Transfer Loss and Weight Regularization. To super-

vise the feature learning, we define a transfer loss based on

the aligned features of the teacher and the student. Let F l,t
a

denote the feature maps from block l of the teacher network

and let F l,s
a denote those of the student. We first introduce

the vanilla transfer loss, as follows,

Ll,t
a =

1

Cl
outH

lW l
‖F l,s

a −F l,t
a ‖2, (2)

where Cl
out, H

l and W l denotes the channel, height and

width size of F l,t
a or F l,s

a , respectively.

This vanilla transfer loss alone, however, may lead to

trivial solutions: by taking the two features maps to be ze-

ro, the loss collapses to zero. To avoid such degenerated
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Figure 4. Feature alignment. The features from teacher network

and student network are transformed and aligned using 1× 1 con-

volutional operation.

case, we impose a regularization on the transfer loss. As the

aligned features are controlled by the learnable parameters

wij , we introduce a constraint of wij , as follows,

Cl

in∑

i=1

w
(l,t)2
ij = 1, (3)

which on the one hand limits the magnitude of wij to a rea-

sonable range, and on the other hand eliminate the trivial

solutions. For the sake of optimization, we then relax the

above hard constraint into a soft one:

Ll,t
reg =

1

Cl
out

Cl

out∑

j=1

(

Cl

in∑

i=1

w
(l,t)2
ij − 1)2, (4)

which are further added to the final loss described in

Sec. 3.4.

3.3. Selective Learning

As we assume no ground-truth annotations are given for

training the student and meanwhile multiple teachers han-

dling the same task might be available, we would have to

ensure that, for each unlabelled sample, we allow the stu-

dent to learn from only the “best” possible teacher among

many. Since there are, again, no ground truths for evaluat-

ing the teacher with the best sample-wise performance, we

resort to learning from the teacher with the most “confident”

prediction. In other words, the student imitates the predic-
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tions and features of the teacher with the least prediction

ambiguity.

Here, we use entropy impurity to measure the prediction

ambiguity: the smaller the value is, the higher the confi-

dence of prediction is. The teacher with minimal entropy

impurity is therefore selected to guide the learning of stu-

dent network:

I(pt(x)) = −
∑

i

pti(x) log(p
t
i(x)), (5)

tse = argmin
t

I(pt(x)), (6)

where tse indexes the selected teacher.

3.4. Loss Function

To imitate the predictions of teachers, we introduce a soft

target loss between the predictions of teacher networks and

that of the student. Since the student is required to learn

multiple teachers and the outputs of teachers are typically

different from each other, a learnable scale parameter λt is

introduced to compensate such scale difference. We write,

Lt
soft =

1

Ccls

‖Fs
score − λtF

t
score‖

2, (7)

where Fs
score and F t

score denote the logits before softmax

layer from student and teacher, respectively, and Ccls de-

notes the length of logits.

The total loss of knowledge amalgamation between

source nets and component net and the one between com-

ponent nets and target net are defined as follows,

Ltotal =

L−1∑

l=1

{L(l,tse)
a + L(l,tse)

reg }+ Ltse
soft, (8)

where L denotes the number of blocks in source, component

or target net.

4. Experiments

In this section, we show the experimental results of the

proposed adaptive knowledge amalgamation. We start by

introducing the datasets we used and the implementation

details, and then provide the quantitative analysis including

results on attribute and category classification. More results

and additional details can be found in the supplementary

material.

4.1. Experiment Settings

4.1.1 Datasets

CelebFaces Attributes Dataset (CelebA) [20] is a large-

scale face attributes dataset, which consists of more than

200K celebrity images, each with 40 attribute annotations.

Dataset
Partition

2 parts 4 parts

Stanford Dogs D1, D2 D′
1, D′

2, D′
3, D′

4

CUB-200-2011 B1, B2 B′
1, B′

2, B′
3, B′

4

FGVC-Aircaft A1, A2 A′
1, A′

2, A′
3, A′

4

Cars C1, C2 C′
1, C′

2, C′
3, C′

4

Table 1. The partition of four fine-grained datasets for the training

of source nets. Each set contains the same number of categories.

It contains 162, 770 images for training, 19, 868 images for

validation and 19, 962 ones for testing. Due to it’s large size

and massive attribute annotations, it can be used to build

a well-trained source network pool to verify the proposed

approach. We randomly split the training set into six part-

s with the same size, in which five parts are used to train

five different multi-task teachers and the remaining one is

used as unlabelled training data for the student. The ex-

periments of network customization are conducted on two

attribute groups: mouth-related attributes and hair-related

attributes. More experiments on other attribute groups can

be found in the supplementary material.

Besides experiments on attribute recognition, four fine-

grained datasets are used to evaluate the effectiveness on

network customization of category recognition. Stanford

Dogs [15] contains 12, 000 images about 120 different kind-

s of dogs. FGVC-Aircraft [27] consists of 10, 000 im-

ages of 100 aircraft variants. CUB-200-2011 [31] is a

bird dataset, which includes 11, 788 images from 200 bird

species. Cars [16] comprises 16, 185 images of 196 class-

es of cars. The four datasets can be categorized into t-

wo groups: animal-related and vehicle-related dataset. As

shown in Tab. 1, all datasets are randomly split into several

sets, each of which contains the same number of categories.

For example, both D1 and D2 contain 60 breeds of dogs, D′
1

to D′
4 contain 30 breeds of dogs, respectively. The details

of each set can be found in the supplementary material.

4.1.2 Implementation

The proposed method is implemented by PyTorch on a

Quadro M6000 GPU. The source nets adopt the same net-

work architecture: resnet-18 [6], which are trained by fine-

tuning the ImageNet pretrained model. Both componen-

t net and target net adopt resnet-18-like network architec-

tures. The adopted net has the same net structure as the

original resnet-18, except the channel number of feature

maps. For example, the target net amalgamates knowledge

from multiple component nets, so the target net should be

more ”knowledgeable” than a single component net, which

should have more channels than component net. More im-

plementation details can be found in the supplementary ma-

terial.
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Source Net Attributes Source Net Attributes

Smouth

1 big lips, narrow eyes, pale skin Smouth

6 mouth slightly open

Smouth

2 big lips, chubby, young Smouth

7
mouth slightly open, chubby blurry, blond

hair

Smouth

3
smiling, arched eyebrows, attractive, black

hair
Smouth

8
wearing lipstick, arched eyebrows, attrac-

tive

Smouth

4 smiling, bags under eyes, blurry, blond hair Smouth

9 wearing lipstick, bags under eyes, blurry

Smouth

5
smiling, bushy eyebrows, oval face, brown

hair
Smouth

10
wearing lipstick, bushy eyebrows, oval

face

Table 2. Source nets that work on multiple attribute recognition tasks on the CelebA dataset.

Model
Mouth-Related Attributes

Big Lips Smiling Mouth Slightly Open Wearing Lipstick

Source Net Smouth

1 (68.7), Smouth

2 (68.5)
Smouth

3 (88.6), Smouth

4 (88.6),

Smouth

5 (87.5)
Smouth

6 (89.6), Smouth

7 (89.5)
Smouth

8 (90.4), Smouth

9 (90.4),

Smouth

10 (90.3)

Component Net 69.2↑0.5,0.7 90.5↑1.9,1.9,3.0 91.4↑1.8,1.9 91.7↑1.3,1.3,1.4

Target Net 69.2↑0.5,0.7 90.8↑2.2,2.2,3.3 91.4↑1.8,1.9 91.8↑1.4,1.4,1.5

Model
Hair-Related Attributes

Black Hair Blond Hair Brown Hair Bangs

Source Net S hair

1 (85.2), S hair

2 (86.9) S hair

3 (94.0), S hair

4 (94.2)
S hair

5 (86.4), S hair

6 (86.3),

S hair

7 (86.7)
S hair

8 (94.5), S hair

9 (94.4)

Component Net 87.8↑2.6,0.9 95.0↑1.0,0.8 88.0↑1.6,1.7,1.3 95.2↑0.7,0.8

Target Net 87.9↑2.7,1.0 95.0↑1.0,0.8 88.1↑1.7,1.8,1.4 95.2↑0.7,0.8

↑ denotes performance improvement compared with the corresponding source net.

Table 3. The performance (%) of knowledge amalgamation from source nets to component net and from component nets to target net on

the CelebA dataset. Number in parentheses denotes the accuracy of the corresponding source net. Unlike the component net handles only

one task, the target net handles four tasks simultaneously.

4.2. Experimental Results

In what follows, we show network customization results

for attribute- and category-classification, learning from var-

ious numbers of teachers, ablation studies by turning off

some of the modules, as well as the results of one-shot a-

malgamation.

4.2.1 Network Customization for Attribute

In the first amalgamation step, multiple related source net-

s are amalgamated into a single component net to obtain

a component task. Tab. 2 collects 10 source nets, each of

which contains a mouth-related attribute recognition task.

For example, Smouth

1 is a source net for multiple tasks: “big

lips”, “narrow eyes” and “pale skin”, including a mouth-

related attribute task: “big lips”. Combined with Smouth

2 that

also works on “big lips” task, they are amalgamated into

a component net for “big lips” task, as shown in Tab. 3.

In the second amalgamation step, multiple component net-

s specified by user are amalgamated into the target net. In

Tab. 3, the component nets about mouth-related attributes:

“big lips”, “smiling”, “mouth slightly open”, and “wearing

lipstick” are used to customize the corresponding target net.

From Tab. 3, we observe consistent experimental results

on two attribute groups* as follows. On the one hand, the

performance of component net is superior to those of the

corresponding source nets. Also, the obtained component

nets are more compact than the ensemble of all source nets,

as shown in Tab. 4. In particular, for “smiling” attribute, the

component net outperforms the source net Smouth

5 by 3.0%. It

supports that our approach is indeed able to transfer knowl-

edge from multiple source nets into the component net, and

the transferred knowledge can significantly supplement the

knowledge deficiency of a single source net. On the oth-

er hand, the target net achieves comparable or better per-

formance on the corresponding tasks, yet is more resource-

efficient. The net parameters and computation load (FLOPs:

Float Operations) of target net, as shown in Tab. 4, are much

lower than the summation of all component nets,

To validate the flexibility of network customization, we

also customize target net with different numbers of compo-

nent nets, for which the results are shown in Tab. 5. These

*The lookup table for the hair-related source nets as Tab. 2 is provided

in the supplementary material.
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Model Parameters FLOPs

Source Nets 111.8M 36.3G

Component Nets 44.8M 14.5G

Target Net 22.1M 7.0G

Table 4. The comparison of resource required in 10 source nets, 4

component nets and target net in Tab. 3, including the number of

parameters and FLOPs.

Model

Mouth-Related Attributes

smiling

lipstick

smiling

mouth open

lipstick

big lips

smiling

mouth open

lipstick

Target Net
91.1

91.9

91.2

91.7

91.7

69.2

90.8

91.4

91.8

Model

Hair-Related Attributes

black hair

brown hair

black hair

brown hair

bangs

black hair

blond hair

brown hair

bangs

Target Net
87.8

88.2

87.7

88.1

95.2

87.9

95.0

88.1

95.2

Table 5. The performance (%) of the customization of target net

with different numbers of component nets on the CelebA dataset.

results demonstrate that our proposed approach can be com-

petent to the customization for different numbers of compo-

nent nets.

4.2.2 Network Customization for Category

We also conduct network customization experiments on cat-

egory recognition. As shown in Tab. 6, source nets on four

datasets are provided. For example, source net for part of

Stanford Dogs D1: S dog

1 is trained on the category sets D1

and B′
1. The source nets for Stanford Dogs include S dog

1 and

S dog

2 for D1, S dog

3 and S dog

4 for D2. To customize a target net

for category set D1∪D2, the dual-step amalgamation is im-

plemented as follows. In the first step, source nets S dog

1 and

S dog

2 are amalgamated into a component net for D1. In the

same way, source nets S dog

3 and S dog

4 are amalgamated into a

component net for D2. In the second step, component net-

s for D1 and D2 are amalgamated into the final target net.

Experiments on the remaining datasets are implemented in

the same way.

The experimental results shown in Tab. 7 demonstrate

that the component nets consistently outperform the corre-

Dataset
Source Nets

S1 S2 S3 S4

Dogs D1 B′
1 D1 B′

2 D2 B′
3 D2 B′

4

CUB B1 D′
1 B1 D′

2 B2 D′
3 B2 D′

4

Aircraft A1 C′
1 A1 C′

2 A2 C′
3 A2 C′

4

Cars C1 A′
1 C1 A′

2 C2 A′
3 C2 A′

4

Table 6. The source nets for network customization of category

recognition on four fine-grained datasets, whose name is abbrevi-

ated as “Dogs”, “CUB”, “Aircraft” and “Cars”, respectively.

1 2 3 4 5 6 7
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0.700

0.725

0.750

0.775

0.800
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0.850

A
cc

ur
ac

y

Arched Eyebrows
High Cheekbones

Figure 5. The performance of knowledge amalgamation for differ-

ent number of source nets on the CelebA dataset.

sponding source nets, and the target net achieves compa-

rable or better accuracy than the corresponding component

net. It supports that our proposed method also works on

category recognition task.

4.2.3 Learning from Varying Numbers of Teachers

To investigate the effect of knowledge amalgamation for

more teachers, we also conduct experiments in which vary-

ing numbers of source nets are amalgamated into a single

component net. The experiments are implemented on t-

wo face attribute recognition tasks, “arched eyebrows” and

“high cheekbones”, as shown in Fig. 5. With more teacher-

s, the performance tends to be better for both face attribute

recognition tasks. By integrating more teachers, the studen-

t network may potentially “absorb” more complementary

knowledge from multiple teachers and significantly reduce

erroneous guidances from teachers.

4.2.4 Ablation Study

Ablation study is conducted on several attributes to inves-

tigate the effectiveness of the modules adopted in our pro-

posed approach. Specifically, we verify the effectiveness of

each module by comparing the whole model to the mod-

el without the corresponding module. Additional compared

method is knowledge distillation, which does not contain

transfer bridge module and teacher selective learning strat-

egy.
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Model
Category Sets

Stanford Dogs D1 Stanford Dogs D2 FGVC-Aircraft A1 FGVC-Aircraft A2

Source Net S dog

1 (87.4), S dog

2 (87.3) S dog

3 (87.9), S dog

4 (87.7) S air

1 (70.1), S air

2 (71.3) S air

3 (65.4), S air

4 (65.2)

Component Net 88.2↑0.8,0.9 88.5↑0.6,0.8 71.5↑1.4,0.2 66.4↑1.0,1.2

Target Net 88.4↑1.0,1.1 88.6↑0.7,0.9 71.8↑1.7,0.5 66.8↑1.4,1.6

Model
Category Sets

CUB-200-2011 B1 CUB-200-2011 B2 Cars C1 Cars C2
Source Net S bird

1 (74.5), S bird

2 (74.8) S bird

3 (73.9), S bird

4 (74.0) S car

1 (69.5), S car

2 (71.1) S car

3 (71.2), S car

4 (71.3)

Component Net 75.4↑0.9,0.6 74.8↑0.9,0.8 72.1↑2.6,1.0 72.8↑1.6,1.5

Target Net 75.8↑1.3,1.0 75.4↑1.5,1.4 72.5↑3.0,1.4 73.1↑1.9,1.8

↑ denotes performance improvement compared with the corresponding source network.

Table 7. The performance (%) of knowledge amalgamation from source nets to component net and from component net to target net on

four fine-grained datasets.

Module
Attributes

black

hair

mouth slightly

open

brown

hair

KD [8] 87.1 90.2 87.4

wo/TB 87.4 91.3 87.7

wo/TS 87.4 91.0 87.8

whole model 87.8 91.4 88.0

Table 8. The performance (%) for ablation study on the CelebA

dataset. KD denotes knowledge distillation (baseline). TB denotes

transfer bridge. TS denotes teacher-selective learning.

The results shown in Tab. 8 demonstrate that both

transfer bridge and selective learning strategy significant-

ly improve the performance of the model. The transfer

bridges deliver the partial task-demanded intermediate fea-

tures of teacher networks to the student network, which pro-

vide more supervision to the student network compared to

knowledge distillation. And the selective learning strate-

gy takes the most confident teacher as the learning target,

which can significantly reduce the misleading information

provided by teachers.

4.2.5 One-shot Amalgamation

To further explore network customization methods, we

compare an intuitive variant of our proposed dual-stage

method: one-shot amalgamation. In this scenario, multiple

sources nets are directly amalgamated into target net with-

out the component net as the intermediate byproduct. The

experiments are conducted on two face attribute recognition

tasks, as shown in Tab. 9. The results demonstrate that two-

stage amalgamation method outperforms the one-shot one

on both of face attributes. Because one-shot amalgamation

is required to simultaneously learn knowledge from more

source networks, instead of learning from few component

nets adopted in two-stage method, it potentially complicates

the optimization of student net and leads to poorer perfor-

mance.

Method
Attributes

Black Hair Blond Hair

one-shot amalgamation 85.6 86.1

two-stage amalgamation 87.6 95.1

Table 9. The performance (%) comparison between one-shot amal-

gamation and two-stage amalgamation on the CelebA dataset.

5. Conclusion and Future Work

In this paper, we propose an adaptive knowledge amal-

gamation method to learn a user-customized student net-

work, without accessing human annotations, from a pool

of single- or multi-task teachers working on distinct tasks.

This is achieved specifically via a dedicated dual-stage ap-

proach. In the first stage, source nets covering the same

task are clustered into groups, from each of which a com-

ponent net is learned; in the second, the components are

further amalgamated into the user-specified target net. Both

stages undergo a similar knowledge amalgamation process,

where for each unlabelled sample, the student learns the fea-

tures and predictions of only one teacher, taken to be the one

with the least prediction ambiguity. The feature learning is

achieved via a dedicated transfer bridge, in which the fea-

tures of the student are aligned with those of the selected

teacher for learning. We conduct experiments on several

datasets and show that, the learned student that comes in a

compact size, yields consistent superior results to those of

the teachers in their own specializations. For future work,

we plan to customize networks using teachers of different

network architectures.
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