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Abstract

A complex visual navigation task puts an agent in differ-

ent situations which call for a diverse range of visual per-

ception abilities. For example, to “go to the nearest chair”,

the agent might need to identify a chair in a living room

using semantics, follow along a hallway using vanishing

point cues, and avoid obstacles using depth. Therefore, uti-

lizing the appropriate visual perception abilities based on

a situational understanding of the visual environment can

empower these navigation models in unseen visual environ-

ments. We propose to train an agent to fuse a large set of

visual representations that correspond to diverse visual per-

ception abilities. To fully utilize each representation, we de-

velop an action-level representation fusion scheme, which

predicts an action candidate from each representation and

adaptively consolidate these action candidates into the final

action. Furthermore, we employ a data-driven inter-task

affinity regularization to reduce redundancies and improve

generalization. Our approach leads to a significantly im-

proved performance in novel environments over ImageNet-

pretrained baseline and other fusion methods.

1. Introduction

Assistive robots that can efficiently navigate an everyday

home require an extensive repertoire of visual perception

abilities. To “find the nearest cup”, the robot needs a situa-

tional combination of different perception abilities. It needs

to recognize a cup using object detection, and if no cup is

present, identify and navigate to a room that may contain

cups using a combination of scene semantic knowledge and

geometric cues such as vanishing point and depth. Perform-

ing such a complex task in any home that may have com-

pletely different spatial layouts and appearances demands

not only the generalizability of the individual visual percep-

tion modules but also the situational combination thereof.

Recently, deep reinforcement learning has made promis-

ing progress in goal-directed visual navigation with end-to-

end learning [21, 41]. The guiding principle of imposing

minimal structure to the learning algorithm and the practi-
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Figure 1: (Top) The visual navigation task requires an agent to

handle large diversity in real-world environments. (Bottom) In-

stead of using a black-box model, we propose to adaptively fuse

visual representations from a diverse set of vision tasks to better

generalize to new environments.

cally unlimited synthetic training data have warranted the

wide applicability of these methods. However, obviating

structures and prior knowledge about visual perception can

often lead to solutions that overfit to an environment. In

fact, such success often reckons on training and evaluating

in identical or similar environments [21, 41]. Being able

to perform complex navigation tasks and generalize to en-

vironments with drastically varying appearances as afore-

mentioned is still beyond reach.

Meanwhile, visual representations extracted from a wide

range of vision tasks [6, 19] have been greatly effective

in generalizing towards new tasks and new domains. It

has been a common practice to reuse visual representations

trained for standard vision tasks, such as image classifica-

tion [20], in new datasets and new problems [8, 33]. In

this work, we endow visual navigation models with struc-

tures and priors based on a diverse set of visual representa-

tions. This leads to stronger generalization without losing

the wide applicability of end-to-end learning. Our idea is
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motivated by the recent work of Taskonomy [38], which in-

troduced a computational framework for studying the sim-

ilarity and transferability among vision tasks. Their data-

driven result shows that effective transfer of representation

can happen between tasks of high affinity, which can be

used to identify redundancies among tasks and significantly

reduce total supervision. The repertoire of visual represen-

tations and their affinity measures from Taskonomy offer a

basis for our model to learn generalizable navigation poli-

cies that transfer to unseen environments.

Thus, in order to harness visual representations for visual

navigation, the primary challenge is to devise a scheme that

adaptively fuses the representations based on a situational

understanding of the task, while not overfitting to spurious

dependencies among visual representations. To this end, we

introduce an end-to-end approach that fuses visual represen-

tations at the action level and uses task affinity as regulariza-

tion (see Fig. 1).We learn an action predictor for each rep-

resentation, and then combine the action predictions from

all representations into the final action output. We also use

the data-driven task affinity discovered in Taskonomy as a

source of regularization to penalize selection of redundant

representations. This method ensures that the fused repre-

sentation strikes a balance between being informative of the

trained task and being generalizable towards new scenarios.

Prior works that addressed generalization of navigation

policy [14, 27] have typically focused on simulation-to-real

transfer for low-level motion control tasks. We instead eval-

uate our approach in visual navigation tasks with higher

complexity in the Gibson simulated environments [37],

which were shown to transfer to the real world without fur-

ther supervision [24, 17]. Our policy takes as input RGB

images and produces the action command for the robot. Our

results indicate that the use of representations has led to sub-

stantially better generalization for a high-level navigation

task in unseen environments, and fusion at the action level

leads to better generalization and robustness towards noise

and subsystem failure. Furthermore, the inter-task affinity

regularization promotes the fusion method to select more

complementary and less redundant representations.

To summarize, our contributions are twofold: 1) we pro-

pose to use visual representations from a diverse set of vi-

sion tasks as a prior to learn generalizable policies for vi-

sual navigation, and 2) we develop action-level representa-

tion fusion and regularization techniques to achieve strong

zero-shot generalization results in unseen environments.

2. Related Work

Representation Learning. Prior work has developed vari-

ous methods to learn visual representations with deep neural

networks using supervised learning [6], unsupervised learn-

ing [7, 29], and weakly supervised learning [16] objectives.

Motivated by the success of using deep features in trans-

fer learning, a series of work has developed visualization

and analysis techniques to understand the characteristics of

deep features [22, 39] and the factors that affect the efficacy

of transfer [15]. Taskonomy [38] has recently demonstrated

that representations learned on 25 distinct vision tasks can

transfer between similar tasks. However, it has focused on

static image-based tasks. In contrast, we study how to lever-

age these diverse visual representations to effectively learn

generalizable policies for visual navigation.

Visual Navigation. Vision-based navigation for mobile

robots has been widely studied in classic robotics litera-

ture [1, 35]. The recent boom of deep learning has driven a

new wave of development of visual navigation methods that

employ the representational power of deep networks. Deep

reinforcement learning [25, 26, 28, 41] has been success-

fully applied to mapless navigation, eliminating the need for

an explicit environment map. Other methods have adopted

planning modules in the learning pipeline [10], or tack-

led the navigation task along with other semantic tasks,

such as language grounding [13] or visual question answer-

ing [4, 9]. Most of the prior work has focused on learn-

ing these navigation models end-to-end from scratch rather

than reusing visual representations learned from other vi-

sion tasks. We demonstrate that our model can effectively

leverage these representations to achieve stronger general-

ization when navigating in an unseen environment.

Generalization in Policy Learning. A series of meth-

ods have been developed to improve the generalization

of policy learning towards novel visual observations [36],

noisy environment dynamics [23, 30], and new task in-

stances [31, 41]. Synthetic data has been harnessed as a

training source to empower the training of the data-hungry

deep network policies. Accordingly, several works have

introduced new techniques to close the reality gap, allow-

ing these policies to generalize from simulation to the real

world [14, 27, 40]. In this work, we also use simulated

data to train our models. However, our simulator of choice,

Gibson [37], employs 3D captures of real-world scenes and

domain-adapted simulation, which has been shown effec-

tive in deploying the simulation-trained policies directly in

the real world [17, 24]. We focus on improving the general-

ization of our models across visual scenes with novel ways

of fusing the diverse set of visual representations.

3. Situational Visual Navigation Model

Our goal is to learn visual navigation policies that gener-

alize better to unseen environments by enabling the agent to

adaptively fuse visual representations which are trained on

a diverse set of vision tasks [38]. However, naı̈vely fusing

representations results in overfitting (Table 1), and it is not

robust against noise and subsystem failure (Fig. 7).

To address overfitting and to increase model robustness,

2882



visual
observation action

black
box

visual
observation

...

visual
representations

action

visual
observation

...

visual
representations

...

action
candidates

action

(a) black-box model

visual
observation action

black
box

visual
observation

...

visual
representations

action

visual
observation

...

visual
representations

...

action
candidates

action

(b) feature-level fusion model

visual
observation action

black
box

visual
observation

...

visual
representations

action

visual
observation

...

visual
representations

...

action
candidates

action

(c) action-level fusion model

Figure 2: Three schemes of learning neural network policies from visual perception to action, including end-to-end learning with black-

box neural networks, and representation fusion methods at both feature and action levels.

we propose to combine the representations at the action

level (Sec. 3.3.1), which ensures that each representation is

individually trained to make meaningful prediction for the

overall task. We also introduce a novel regularization over

the fusion weights based on inter-task affinity (Sec. 3.3.2).

It reduces the co-selection of redundant representations and

diversifies the use of representations based on the character-

istics of each state. Results show that the synergy of action-

level fusion and inter-task affinity regularization (Fig. 3)

yields big performance gain over baselines.

3.1. Problem Formulation

We focus on the task of visual navigation in indoor en-

vironments. The agent perceives the environment through

its on-board RGB camera [37]. Following the setup in prior

work [10, 41], the actions are defined as high-level com-

mands ax,θ, where θ is the turning angle and x is the step-

ping distance. We assume that the environments are dis-

cretized into a regular octagonal grid, where the agent uses

the high-level actions to traverse on the grid.

We formulate the learning problem as follows. At the

beginning of an episode, the agent is randomly spawned at

location p0 = (x0, y0) in an environment E . At each step,

the agent receives a visual observation in the form of RGB

image ot = O(pt, E), where O is a function which returns

the current images at location pt in E . From each visual ob-

servation, a set of visual representations rt(ot) can be com-

puted from deep network models trained on a diverse set of

vision tasks, where rt(ot) = {r1t , r
2

t , ...}. We want to learn

a closed-loop navigation policy π(at|ot, rt), parameterized

by neural networks, to map the RGB image ot and their vi-

sual representations rt to the action at that commands the

robot to navigate in the environment. For each task, we

specify a Boolean function that determines if the current lo-

cation pt satisfies the goal condition. Our objective is to

learn an optimal policy π∗ which reaches a goal location

from its current location in minimum number of steps.

3.2. Representations from Diverse Vision Tasks

The visual navigation task requires a variety of visual

perception abilities, thus demanding visual representations

learned from a diverse set of vision tasks. We lever-

age the representations from Taskonomy [38], which trains

deep network models for 25 distinct computer vision tasks

at multiple levels of abstraction. For each task, a neu-

ral network model is trained with supervised learning to

map the input RGB image into a compact representation

r ∈ R
16×16×8, which capsules the information required to

solve the task. It has been shown that these representations,

being compact in size, are easily transferable to other vi-

sual understanding tasks. The compactness and richness of

these representations make them appealing for representing

the visual perception abilities required in interactive visual

tasks. Therefore, we use these 25 representations as a basis

to learn our vision-based navigation policies.

Taskonomy also introduced a data-driven affinity score

between each pair of the 25 vision tasks. The affinity scores

estimate the correlation and redundancy of the representa-

tions across these tasks. We demonstrate in Sec. 3.3.2 that

we can incorporate such affinity of representations into the

process of situational fusion. This encourages the model

to make a more balanced selection of representations and

reduce overfitting to redundancies.

3.3. Situational Representation Fusion

A naı̈ve approach to learn the navigation policies is to

consider deep network as a black-box model and train it

with end-to-end learning (Fig. 2a). While this approach

can directly optimize the learning objective from pixel to

control, it tends to capture spurious dependencies from lim-

ited training data, hindering its generalization ability. Prior

work [38] has proposed to leverage Taskonomy represen-

tations via a simple concatenation of rt(ot). However, it

offers marginal performance gain over the black-box model

(Table 1). We hypothesize that this is due to the lack of

situational use of representations.

Our key intuition is that different stages of the visual nav-

igation task would require different visual perception skills.

For instance, localizing the target object would require se-

mantic understanding, and avoiding obstacles would require

geometric reasoning. To satisfy such requirements, the

model has to develop a situational understanding of its cur-

rent perception for decision making. Thus, we introduce a

situational-fusion module that adaptively weighs and com-

bines the representations based on the current state.

A widely used paradigm of combining representa-
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Figure 3: The agent receives an RGB image and its corresponding visual representations. We use a situational-fusion network to adaptively

weigh and combine the representations at the action level based on the current observation. The fusion weight is regularized by inter-task

affinity to encourage a more balanced selection of the representations for better generalization.

tions [5, 32] is to use fused representations as joint input to

neural network layers (i.e., feature-level fusion illustrated

in Fig. 2b). However, as prior work [32] pointed out, such

fusion method tends to bias towards a few dominating repre-

sentations and is prone to poor generalization performance.

This leads to the two challenges of overfitting and lack of

robustness, as highlighted at the beginning of this section.

We introduce two effective techniques to deal with the chal-

lenges as follows.

3.3.1 Fusion at the Action Level

As described at the beginning of this section, feature-

level fusion faces the challenge of overfitting, and lack of

robustness towards noise and subsystem failure.

In robotics, to perform a complex task, compositionality

of behaviors [2, 34] promotes to learn a valid behavior for

every sub-module, which ensures that all sub-modules are

well trained. Then the simpler behaviors are composed at

decision-output level into more complex behaviors. Since

each sub-module develops a valid behavior, the overall sys-

tem also becomes more robust towards sub-module errors.

Inspired by this approach, we propose an alternative way

of fusing the representations at the action level (Fig. 2c). We

learn a valid action-prediction model out of each representa-

tion, which ensures that all representations are well trained

(Fig. 3). Formally, at any time step t, as the agent receives

RGB image input ot, it uses a situational-fusion network f

to output an n-dimensional vector ht = f(ot) for the n

representations. ht is then normalized with a softmax func-

tion to obtain the fusion weight gt = softmax(ht). We

use pretrained Taskonomy modules to compute the n repre-

sentations for the image {r1t , r
2

t , . . . , r
n
t }. For each repre-

sentation rit, an action-prediction module π′

i,θ(a|r
i
t) is inde-

pendently trained and produces an action candidate ãit, thus

not suffering from under-training. Each action candidate

can be independently taken as a final action for execution,

but better decision can be made by using situational-fusion

weights gt to reweigh and combine the action candidates

into the final action output at:

at =
∑

i=1...n

gi
t π

′

i,θ(r
i
t), gt = softmax(f(ot))

We observe that using this new fusion scheme signifi-

cantly improves generalization performance over naı̈ve fu-

sion scheme (Table 1), and the action candidate of each

branch achieves reasonable individual performance (Fig. 6).

At the same time, it also offers more robustness towards

noise and sub-system failure (Sec. 4.3). However, although

individual branches are well developed in the action-level

fusion scheme, we observe that the fusion weights still show

strong bias towards a few dominating action candidates dur-

ing inference. In the following section, we propose a novel

regularization loss using inter-task affinity.

3.3.2 Inter-task Affinity Regularization

The bias of fusion weights towards a few dominating

representations makes the overall model prone to overfit-

ting. To deal with the problem, prior work [32] adopted

a load-balancing loss (LBL) term to regularize on coeffi-

cients of variation LLBL = CV(gt), where CV stands for

the coefficients of variation operator. However, LBL loss

promotes uniform fusion weights across all representations,

and we observe that adding this regularizing term alone to

our fusion model offers limited to no performance improve-

ment for both feature-level and action-level fusion. A clear

shortcoming of this technique is that it fails to take into ac-

count the correlations among representations. High correla-
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tion between two representations means that choosing both

leads to more information redundancy, which can affect the

model’s generalization ability. Therefore, we further pro-

pose to design a loss that leverages correlations of represen-

tations as a prior to minimize information redundancy and

balance fusion weights. Taskonomy [38] uses a data-driven

approach to measure pairwise task-affinity by calculating

the performance gain from using one task’s representation

to transfer-learn the other task. We use Taskonomy’s data-

driven pairwise task affinity as a surrogate for the correla-

tions among different visual task representations.

Formally, for each time step t and fusion weight gt ∈
R

n, we want to encourage large weights in gi
t,g

j
t if task i

and j have low task affinity aff(i, j), and smaller weight if

task affinity is high. To achieve this, we inject a regularizer

for task affinity by adding a bilinear loss term [11] between

fusion-weight vector and task-affinity matrix (Fig. 3):

Lg(gt) = gT
t Fgt, Fi,j = aff(i, j) (1)

For every pair of tasks, we measure the product of the

task affinity aff(i, j) and its corresponding fusion weights

gi
t,g

j
t , and calculate Lg(gt) as sum of all such products.

For example, occlusion edge detection and surface-normal

estimation are two tasks with high affinity. If the model puts

large weights on both tasks in gt, then the product between

their task affinity and fusion weights will be large, which

leads to a larger Lg(gt) and the selection will be penalized.

Thus, regularizing on this loss encourages the situational-

fusion network to reduce information redundancy and bal-

ance fusion weights.

4. Experiments

We evaluate our proposed methods of situational fusion

in a set of visual navigation tasks. Throughout the exper-

iments, we measure the generalization aspect of different

navigation policies, and examine the effectiveness of action-

level fusion and the inter-task affinity regularization.

4.1. Experiment Setup

Experimental Testbed. We conduct experiments in Gib-

sonEnv [37] rendering of Matterport3D assets [3], which

were captured with real-world 3D scans and labeled with

semantic ground truth. We use a diverse set of 62 simulated

indoor environments that contain our objects of interest. We

focus on the high-level visual navigation planning and map

the navigation locations to an octagonal grid. At each time

step, the agent receives eight RGB images in the octagonal

directions obtained from its on-board 360-degree camera.

The action space consists of eight actions that step along

the eight directions on the octagonal grid and a stop action.

Following [10], we preprocess all traversable locations on

the octagonal grid and generate a directed graph Gx,θ that

connects these locations. This enables us to acquire the su-

pervision of optimal actions to train our policies through

shortest-path algorithms.

Task Setups. We follow the formulation of semantic nav-

igation tasks [10]. The agent is commanded to “go to the

closest X ,” where X ∈ {chair, table, bed, door}. We use

the ground truth object annotation from [3] to label nodes in

the graph Gx,θ with object categories, and define the optimal

action as stepping towards the closest instance of the object

class. To ensure the plausibility of finding a solution, we en-

sure the agent to start in a room where at least one instance

of the specified object class exists. In our tasks, the maxi-

mum shortest-path distance between the agent’s starting lo-

cation and a target object is 32 steps, and the minimum is

6. This setup requires the agent to learn object appearances

through algorithmic supervision and find the same object

class (different instances) in novel test environments.

Evaluation Protocol. We follow the train/test procedures

used in prior work [10]. For each task, we use on average

28 environments for training and 14 for testing. An episode

is judged to be successfully completed if the agent, given a

maximum of 39 steps, ends in a location within 3 steps from

the specified object. During testing, we randomly sample a

fixed set of 1024 starting locations in the test environments,

and report the success rate of each model.

Baselines. We first compare our method with three base-

lines which do not use situational fusion:

• Random: a random walk agent that takes a uniformly

random action at each time step;

• ResNet: a black-box deep neural network that maps

from raw pixel inputs to action labels (see Fig. 2a). We

use ResNet-50 model [12] as in Taskonomy [38] with

pretrained-weights from ImageNet[6]. Same data aug-

mentation as [12] is applied.

• Concat: directly concatenating all representations [38].

We then compare our method with naı̈ve situational-fusion

baselines and prior work [32]:

• Feature-level Fusion: naı̈ve situational fusion of

representations at feature-level (Sec. 3.3).

• LBL: adding load-balance loss [32], examined for both

feature-level and action-level fusion models.

We report two additional baselines for action-level fusion:

• Maj.: we perform majority voting among the action can-

didates and select the top one. This corresponds to a sim-

plified version of our action-fusion method where the fu-

sion weight is set to uniform.

• Top k: to understand the impact of increasing number

of representations, we perform majority voting on the ac-

tions from the branches that have the k-highest individual

feature success rates (Fig. 6).

Proposed Models. We examine our proposed extensions

to feature-level fusion. We explore the effectiveness of fu-

sion at action-level (Sec. 3.3.1), which combines a set of
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Feature-level Fusion Action-level Fusion

Tasks Random ResNet [12] Concat - LBL [32] T.Aff [38] Both Top 1 Top 5 Maj. - LBL [32] T.Aff [38] Both

Bed 2.0 39.6 33.6 30.1 32.4 34.8 44.0 55.0 53.1 45.3 48.8 50.0 48.8 45.7

Chair 4.4 18.5 21.7 13.1 15.7 16.3 21.1 19.9 24.6 30.8 28.9 31.2 36.3 34.3

Table 3.8 17.3 17.1 17.7 21.4 19.7 26.4 19.5 24.2 37.8 28.9 25.7 35.9 39.8

Door 2.1 8.3 29.8 31.3 32.5 33.1 33.2 42.5 54.6 50.7 54.6 52.3 55.8 56.2

Avg. 3.0 20.9 25.6 23.1 25.5 26.0 31.2 34.2 39.1 41.1 40.3 39.8 44.2 44.0

Table 1: Quantitative evaluation (success rate) of visual navigation policies in unseen environments.

action candidates predicted from individual representations

(action-level fusion). Then we investigate inter-

task affinity regularization (Sec. 3.3.2) that discourages re-

dundancies in fusion weights (T.Aff).

All models were trained using ADAM [18] to optimize

for the loss function and trained for 16K iterations with

batch size of 256 (64 for ResNet baseline). We decay the

learning rate by a factor of 10 every 5k iterations.

4.2. Quantitative Evaluation

Table 1 compares among baselines and variations of our

proposed model. The table consists of five main columns:

random agents, ResNet baselines, concatenating representa-

tions, feature-level fusion and action-level fusion. We mea-

sure each model’s performance on all four navigation tasks

and report the average across tasks. The numbers are eval-

uated in test environments unseen during training.

First, we observe a large performance gap between

black-box methods that train on raw pixels and our pro-

posed methods that situationally fuse visual representations

at action-level with inter-task affinity regularization. The

method achieves a 2× higher success rate than the state-of-

the-art pretrained ResNet model [12]. This indicates that

correctly leveraging visual representations has a significant

effect in improving generalization of the learned policy.

Second, we see that naı̈vely using visual representations

results in limited performance increase. Directly concate-

nating 25 different visual representations only results in

5% performance increase over the ResNet model, and a

vanilla feature-level fusion model performs similarly. As

mentioned in Sec. 3, two challenges (overfitting and lack

of robustness) need to be solved. We can see that adding

load-balancing loss (LBL) [32] alone only offers marginal

help.

Our proposed action-level fusion explicitly learns an

action-prediction model for each representation. Since the

load-balancing problem in training is explicitly handled,

results show that action-level fusion significantly outper-

forms LBL loss and that adding LBL loss onto action-

level fusion brings no further gain. As for comparing with

feature-level fusion, action-level fusion shows superior per-

formance. While both schemes have similar training perfor-

mances, action-level fusion performs much better for test-

ing (Fig. 4). We hypothesize that action-level fusion suffers

Figure 4: Training and testing performance comparison. Test-

ing scenes are previously unseen environments. Although mod-

els achieve similar levels of performance on training scenes, our

action-level fusion model generalize significantly better to unseen

test environments than baselines.

less overfitting thanks to its separate handling of each rep-

resentation. Fusion of the action candidates acts as a model

ensemble, which can effectively factor in each representa-

tion’s contribution in decision making. This hypothesis is

further backed by the competitive results of the Majority

Voting baseline, which combines the actions with uniform

weights.

Finally, we see that adding an inter-task affinity regu-

larization (T.Aff) improves the agent’s performance in

both fusion schemes. T.Aff outperforms LBL loss in both

feature-level and action-level fusion. For feature-level fu-

sion, since T.Aff is not designed for dealing with repre-

sentation under-training, combining it with LBL loss gives

a better performance. For action-level fusion, which is more

effective towards representation under-training than LBL,

incorporating T.Aff has achieved the best performance

and outperformed the Majority Voting baseline by 3%. The

effect is more significant for tasks of finding table and chair,

where the performance boost is over 7%. Results show that

the task affinity regularization is able to reduce spurious de-

pendencies and encourage more balanced selection.

4.3. Model Analysis

Analysis of Fusion Weights: We conducted qualitative

and quantitative studies on the distribution patterns of the

situational-fusion weights, results shown in Fig. 5.

In the first test, we group the representations into three

domains: 2D (e.g. autoencoder), 3D (e.g. depth estimation)

and semantics (e.g. semantic segmentation). For each lo-

cation in our environments, we record the fusion weights

of our action-level fusion model. We group the weights

based on the representation domains, perform normaliza-
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Figure 5: (Left) fusion weight heat-map of different representation domains on two example environments, and a quantitative bar chart of

distribution over all testing scenes. 3D representations receive higher weights in narrow space like corridor, while semantic representations

become more dominant in object clustered space. (Right) representation’s top and bottom activation image based on its fusion weights.

Representations with better individual performances were higher weighted in complex scenes and lower in simple scenes; the opposite is

true for worse representations.

tion, and visualize the top domain, shown in Fig. 5 left. The

color code is red for semantic tasks, green for 2D, and blue

for 3D. 3D representations are the most activated in narrow

spaces such as corridor, where the main challenge of the

agent is to go through and not collide. In open area with

complex object clusters, weight skews more to red, showing

more involvement of semantic representations. For quanti-

tative analysis, we use each position’s distance (in steps) to-

wards the closest obstacle to its sides as a surrogate for sur-

rounding’s openness. For each representation domain, we

compute the percentage of positions with highest weights

in such domain, and then normalize across distance val-

ues. The results are shown in Fig. 5’s bar chart, with Y-axis

showing distance and X showing ratio. As surrounding be-

comes narrower, fusion shifts more from semantics to 3D.

In the second test, we examine how weights are dis-

tributed between representation branches with different in-

dividual performances (see Fig. 6). We sample 100 images

from each test environment, and record the fusion weights

across samples. Then, for each representation, we select the

top 4 images with the highest corresponding fusion weights

as well as the lowest bottom 4 images, shown in the right

part of Fig. 5. Due to space limit, we spread out only 4

representations of different individual-performance levels.

The columns in Fig. 5 are sorted from left to right accord-

ing to individual representation performances measured in

Fig. 6. As we can see, high-performing representations are

highly activated when facing more complex scenes with lots

of objects and varying spatial layout (Fig. 5 top left). They

have relatively lower weights when the view becomes more

plain (Fig. 5 bottom left). Low-performing representations,

like 2D edge detection or camera pose estimation, demon-

strate the opposite. This suggests that our fusion mechanism

learns to put higher reliance on high-performing represen-

tations when facing hard decisions (more complex obser-

vations), and incorporate low-performing representations to

hedge risks when facing simpler decisions.

Analysis of Individual Representations: To investigate

the contribution of each visual representation in visual nav-

igation, we quantitatively measure the success rate of di-

rectly executing the action candidates from each branch for

our action-level fusion models in Fig. 6.
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Figure 6: Comparison among our action-level fusion model,

majority-voting baseline and each individual representation’s per-

formance. Individual branches are color-coded according to task

types, with green for 2D tasks, blue 3D, and red semantics.

As we can see, the top three best-performing represen-

tations are all 3D geometric tasks. Euclidean-Distance,

being the top-performing representation, should constantly

be consulted so that the agent does not collide into object.

Surface-Normal Estimation, proved to be one of the best

representation to transfer out [38], clearly demonstrates its

usefulness in navigation tasks. Semantic representations,

especially semantic segmentation, ranks relatively high. For

our navigation tasks, semantic information is important in

an agent’s success of locating the target objects.

Low-level vision tasks, such as vanishing-point estima-

tion and camera-pose estimation, perform poorly as an in-

dividual model. These representations have very high ab-

straction level, and it is hard for the agent to read out scene

layout information necessary for complex behaviors.

Analysis of Model Robustness: Robustness to unexpected

scenarios is very important for a navigation agent. At any

moment, a representation might show out-of-distribution

noise, and in extreme cases, there might be sub-system fail-

ures (such as bugs or attacks) that prevent the agent from

accessing its complete representation set. If the agent is un-

equipped to handle noise or absence of representation, there

might be severe consequences.

Action-level fusion provides a robust way to deal with

such challenges. Since each representation individually

produces an action output, the downstream effect of missing

representations is kept to a minimum. On the other hand,

any defect to representation will propagate to later layers of

the policy network for feature-level fusion. To measure ro-

bustness to representation loss, we conduct two tests for the

top model of feature-level fusion and of action-level fusion.

In both tests, we randomly select a set of representations to

be dropped at each step.

For the first test (Fig. 7 left), we assume that the loss of
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Figure 7: Robustness Analysis: The left figure shows how per-

formance varies when a number of representations are dropped.

The right figure shows how performance varies when a number of

representations are set to zero. Horizontal axis shows how many

representations remain unaffected.

representation is noticed by the agent, and it skips the given

representation branch by setting the lost representations’ fu-

sion weights to zero and normalizing the remaining values.

As we see, action-level fusion handles representation loss

much better than feature-level fusion.

For the second test (Fig. 7 right), we randomly replace

a set of representations with noise (setting all values of the

representations to zero), and the agent treats the affected

representation as usual. This is a more challenging setup

since the agent might put high weights on the affected rep-

resentations. We can see that action-level fusion is more

robust than feature-level fusion, and is able to have mean-

ingful performance when a random set of 5 representations

is affected at each time step.

5. Conclusion

We explored the effectiveness of situationally fusing vi-

sual representations from vision tasks to improve zero-shot

generalization of an interactive agent in visual navigation

tasks. We proposed two novel extensions to fusing repre-

sentations: action-level fusion and inter-task affinity regu-

larization. Our results suggested that a combination of the

two extensions led to better generalization and enhanced ro-

bustness of the navigation agent. In a broader scope, these

promising results shed light on how to build intelligent sys-

tems that can effectively leverage internal representations

from other tasks to learn new behaviors. One of the possi-

ble future directions is to apply similar principles of repre-

sentation fusion to other interactive domains, such as active

perception and visuomotor learning.
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