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Abstract

Generative Adversarial Networks (GANs) typically learn

a distribution of images in a large image dataset, and are

then able to generate new images from this distribution.

However, each natural image has its own internal statis-

tics, captured by its unique distribution of patches. In this

paper we propose an “Internal GAN” (InGAN) – an image-

specific GAN – which trains on a single input image and

learns its internal distribution of patches. It is then able

to synthesize a plethora of new natural images of signifi-

cantly different sizes, shapes and aspect-ratios all with the

same internal patch-distribution (same “DNA”) as the in-

put image. In particular, despite large changes in global

size/shape of the image, all elements inside the image main-

tain their local size/shape. InGAN is fully unsupervised, re-

quiring no additional data other than the input image itself.

Once trained on the input image, it can remap the input to

any size or shape in a single feedforward pass, while pre-

serving the same internal patch distribution. InGAN pro-

vides a unified framework for a variety of tasks, bridging

the gap between textures and natural images. 1

1. Introduction

Each natural image has its unique internal statistics:

small patches (e.g., 5x5, 7x7) recur abundantly inside a sin-

gle natural image [13, 36]. This patch recurrence was shown

to form a strong image-specific prior for solving many ill-

posed vision tasks in an unsupervised way [3, 6, 9, 8, 13,

29, 23, 2, 5]. In this paper we capture and visualize this

unique image-specific patch-distribution, and map it to new

target images of different sizes and shapes – all with the

same internal patch distribution as the input image (which

we loosely call “same DNA”).

1Acknowledgement: Funded by the European Research Council

(ERC) under the Horizon 2020 research and innovation programme (grant

No 788535). Also supported by a research grant from the Carolito Stiftung.

Dr Bagon is a Robin Chemers Neustein Artificial Intelligence Fellow.

For example, imagine you are given an input image, and

you wish to transform it to a new image, of drastically dif-

ferent shape, size and aspect ratio. But you don’t want

to distort any of its internal elements; you want to keep

them all in their original size, shape, aspect ratio, and in the

same relative position within the image. Such examples are

shown in Fig. 1. Note that despite changing the global size

and shape of the farmhouse image, the windows in the target

images maintain their local size and shape. Rows of win-

dows are automatically added/removed, and likewise for the

number of windows in each row. Similarly, when the fruit-

stand image in Fig. 1 is enlarged, more fruits are added in

each fruit-box while keeping the size of each fruit the same;

and vice versa when the image grows smaller, the num-

ber of fruits grows smaller, while maintaining their size and

their relative position within the image. Furthermore, note

that the target image may not necessarily be rectangular.

How can this be done? One way to satisfy these criteria

is to require that the distribution of patches in the target im-

ages match the distribution of patches in the input image, at

multiple image scales. We propose Distribution-Matching

as a new objective for “visual retargeting”. Note that we

use the term retargeting here differently than its common

use in image-retargeting methods [1, 4, 33]. Distribution-

matching allows synthesizing new target images of different

sizes and shapes - all with the same internal patch distribu-

tion as the input image.

A closely related work is the Bidirectional-Similarity

of Simakov et al. [29]. The Bidirectional objective con-

strains the target image to contain only patches from the

input image (“Visual Coherence”), and vice versa, the in-

put should contain only patches from the target (“Visual

Completeness”). Hence, no new artifacts are introduced

in the target image and no critical information is lost ei-

ther. Our new “Distribution Matching” formulation extends

the Bidirectional-Similarity and goes beyond it in multiple

ways: (i) It requires not only that all input patches be in

the output (and vice versa), but also that the frequency of

these patches remain the same. (ii) By matching distribu-
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Figure 1: InGAN’s Capabilities: (Top:) Once trained on an input image (marked by a red frame), InGAN can synthesize a plethora

of new images of significantly different sizes/shapes/aspect-ratios all with the same “DNA” of the input image. All elements inside

the image maintain their local size/shape and relative position. Please view attached videos to see the continuum between different

shapes/sizes/aspect-ratios. (Bottom:) InGAN provides a unified treatment for a variety of different datatypes – single/multi-texture

images, painitings, and complex natural images, all under a single umbrella.
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Figure 2: InGAN Architecture: InGAN consists of a Generator G that retargets

input x to output y whose size/shape is determined by a geometric transformation T

(top left). A multiscale discriminator D learns to discriminate the patch statistics of the

fake output y from the true patch statistics of the input image (right). Additionally, we

take advantage of G’s automorphism to reconstruct the input back from y using G and

the inverse transformation T−1 (bottom left).

Figure 3: Adaptive Multi-Scale Patch Dis-

criminator

tions rather than individual patches, we can leverage recent

advances in distribution modeling using Generative Adver-

sarial Networks (GANs) [14]. (iii) A single forward pass

through our trained network can generate target images of

any size/shape/aspect ratio, without having to solve a new

optimization problem for each desired target.

GANs can be understood as a tool for distribution match-

ing [14]. A GAN typically learns a distribution of im-

ages in a large image dataset. It maps data sampled from

one distribution to transformed data that is indistinguish-

able from a target distribution, G : x → y with x∼px, and

G(x)∼py . We propose an “Internal GAN” (InGAN) – an

image-specific GAN – which trains on a single input image

and learns its unique internal distribution of patches. In-

GAN is fully unsupervised, requiring no training examples

other than the input image. Unlike most GANs, which map

between two different distributions, InGAN is an automor-

phism, G : x → x, with px being the distribution of patches

in the input image. Retargeting is achieved by modifying

the size and shape of the output tensor, which changes the

arrangement of patches, but not the distribution of patches.

Although this formulation is sufficient in theory to en-

courage both Coherence and Completeness, in practice we

observe that completeness is often not achieved – many

patches from the input image are omitted in the output

(“mode collapse”). To ameliorate this, we introduce a sec-

ond mechanism for encouraging completeness: it should be

possible to reconstruct (“decode”) the input image from the

output, i.e. ‖F (G(x))− x‖ should be small, where F is

a second network trained to perform the reverse mapping.

This objective encourages the mapping between input and

retargeted output to be cycle-consistent [35], a desideratum

that has recently come into widespread use and often im-

proves the results of distribution matching problems. Since

our proposed InGAN is an automorphism, we use G itself

to perform the decoding, that is ‖G (G (x))− x‖ resulting

in a novel Encoder-Encoder architecture.

Our results reinforce the recent finding that neural nets,

when trained on a single image, can learn a useful represen-

tation of the internal statistics of that image. These repre-

sentations can then be used to super-resolve the image [28],

to inpaint patches removed from the image [31], or to syn-

thesize textures from a sample texture image [18, 34, 30].

In particular, GANs trained on a single texture image were

introduced by [18, 34]. A concurrent paper (at ICCV), Sin-

GAN [26], also trains a GAN on a single natural image in

order to achieve image manipulations. While they solve this

problem using an unconditional GAN, which maps noise to

images, our model is a conditional GAN, which maps im-

ages to images. Through InGAN, we further show that such

image-specific internal statistics, encoded in a feedforward

neural net, provides a single unified framework for a va-

riety of new tasks/capabilities (Image-Retargeting, Image

Summarization & Expansion, Texture-Synthesis, synthesiz-

ing Non-Rectangular outputs, etc.) Through its multi-scale

discriminator, InGAN further provides a unified treatment

for a variety of different datatypes (single/multi-texture im-

ages, painitings, and complex natural images), all under a

single umbrella. While not guaranteed to provide state-of-

the-art results compared to specialized methods optimized

for a specific task/datatype, it compares favorably to them,

and further gives rise to new applications.

Our contributions are several-fold:

• We define distribution-matching of patches as a criterion

for visual retargeting and image manipulation.

• InGAN provides a unified-framework for various tasks

and different datatypes, all with a single architecture.

• Once trained, InGAN can produce outputs of signifi-

cantly different sizes, shapes, and aspect ratios, including

non-rectangular output images.

• To the best of our knowledge, InGAN is the first to train

a GAN on a single natural image (first appeared in arxiv

2018 [27]).

• The inherent symmetry of the challenge (an Automor-
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Figure 4: Generator architecture: G receives an input im-

age x and a geometric transformation T which determines the

size/shape of the output.

phism) gives rise to a new Encoder-Encoder architecture.

2. Method

2.1. Overview

Our InGAN is an image-conditional GAN (e.g., [17])

that maps an input image (as opposed to noise) to

a remapped target output image. It uses a genera-

tor, G, a discriminator, D, and re-uses G for decod-

ing/reconstructing the input given the output, as depicted

in Fig. 2. Our formulation aims to achieve two properties:

(i) matching distributions: The distribution of patches,

across scales, in the synthesized image, should match that

distribution in the original input image. This property is a

generalization of both the Coherence and Completeness ob-

jectives of [29]. (ii) localization: The elements’ locations

in the generated image should generally match their relative

locations in the original input image.

In detail, our method works as follows. Given an input

image x, and a geometric transformation T (which deter-

mines the desired shape/size of the target output), G synthe-

sizes a new image, y = G(x;T ). For example, T could be a

scaling transformation, a skew, an affine transformation, or

any other invertible geometric transformation. In our cur-

rent implementation we allow T to be any desired homog-

raphy (a 2D projective transformation). During training, T
is randomly sampled at each iteration. Once trained, G can

handle any desired transformation T (any homography).

The generator G trains to output an image y of

size/shape/aspect-ratio specified by T that, at the patch

level, is indistinguishable from the input image x, ac-

cording to an adversarial discriminator D. We adopt

the LSGAN [20] variant of this optimization problem:

G∗=argminG maxD LGAN(G,D), where

LGAN(G,D) = Ex∼patches(I)[(D(x)− 1)2 +D(G(x)))2]

The discriminator D and LGAN encourage matching the

patch distribution of y = G (x;T ) to that of x. D is fully

convolutional: it outputs a map (rather than a scalar) where

each pixel depends only on its receptive field [7], thus it has

all the patches of the original input x to train on. Using a

multiscale D enforces patch distribution matching at each

scale separately.

In practice using only LGAN may result in mode col-

lapse, i.e. the synthesized image consists of only a subset

of patches of the original image (it is coherent) but many

patches are missing (it is not complete). To ameliorate this

mode collapse we take advantage of the automorphism of

G and re-use G to reconstruct x back from the synthe-

sized image y. The ℓ1 reconstruction loss Lreconst =
∥

∥G
(

G (x;T ) ;T−1
)

− x
∥

∥

1
encourages G to avoid mode

collapse and maintain completeness. The overall loss func-

tion of InGAN is LInGAN = LGAN + λ · Lreconst

Localization is implicitly encouraged through the choice

of network architecture. The architecture is locally-

connected rather than fully-connected (in particular, it is

convolutional). This means that an output pixel at loca-

tion {i, j} can only depend on input pixels in a finite recep-

tive field around that location in the input image. Nonlo-

cal mappings, beyond a certain radius, are impossible with

such an architecture. We also conjecture that simple local

mappings are easier to learn than nonlocal mappings, and

convolutional networks may naturally converge to these so-

lutions [10].

2.2. Shapeflexible Generator

Fig. 4 shows the architecture of the generator G. The

desired geometric transformation for the output shape T is

treated as an additional input that is fed to G for every for-

ward pass. A parameter-free transformation layer (green

layer in Fig. 4) geometrically transforms the feature map to

the desired output shape. Making the transformation layer

parameter-free allows training G once to transform x to any

size, shape or aspect ratio at test time.

The generator is fully-convolutional with an hourglass

architecture and skip connections (U-net [24] architecture).

The bottleneck consists of residual-blocks [15]. Downscal-

ing is done by max pooling. Upscaling is done by nearest-

neighbor resizing followed by a convolutional layer [22].

2.3. Multiscale Patch Discriminator

We use a fully-convolutional patch discriminator D
(Fig. 3), as introduced in [17]. The labels for the discrim-

inator are maps (matrices of real/fake labels) of same size

as the desired output y. Thus D grades each patch for how

well it matches the patch distribution, rather than grading

the entire synthesized image.

InGAN uses a multi-scale D (similar to [32]). This fea-

ture is significant: A single scale discriminator can only

capture patch statistics of a specific size. Using a multiscale

D matches the patch distribution over a range of patch sizes,

capturing both fine-grained details as well as coarse struc-
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input Seam-Carving [25] BiDir [29] Spatial-GAN [18] Non-stationary [34] InGAN (Ours)

Figure 5: Unified treatment for a range of datatypes InGAN handles textures, paintings and natural images with a single archi-

tecture, whereas texture synthesis methods [18, 34] poorly handle natural images, and retargeting methods [25, 29] struggle with textures.

tures in the image. At each scale, the discriminator is rather

simple: it consists of just four conv-layers with the first one

strided. Weights are not shared between different scale dis-

criminators. The downsampling factor from one scale to the

next is set to ς =
√
2.

The multiscale D outputs n discrimination maps that are

summed via global weighted mean pooling to yield D’s out-

put. The weights are updated during the optimization pro-

cess in a coarse-to-fine manner. Initially, the weights are

such that most of the contribution to LGAN is from the coars-

est scale. As the training progresses, the contribution grad-

ually shifts to the finer scales.

2.4. Generator Invertibillity

Training G with LGAN often leads to mode collapse where

the synthesized y’s are coherent – the multiscale patches of

y are drawn from the input image’s distribution – but not

complete – i.e. important visual information is missing from

the generated y’s. To achieve better completeness, InGAN

reconstructs the input image x from the output image y, en-

suring no visual information was lost in y. Taking advan-

tage of G’s automorphism allows us to re-use G to recon-

struct x back from y without training an additional decoder,

yielding an “Encoder-Encoder” architecture.

3. Implementation Details

We use the ADAM optimizer [19] and a linearly de-

caying learning rate. We train over crops, ranging from

192 × 192 to 256 × 256, with a batch-size of 1. The de-

fault weighting of the Lreconst loss is λ = 0.1. At each

iteration, parameters of a Homography transformation T
are randomly sampled, resulting in different output size,

shape and aspect ratio. We employ a form of curriculum-

learning so that the possible distortion allowed for T is ini-

tially very small. As the training progresses the allowed

range of deformations gradually grows through the curricu-

lum period (10k iterations) until it finally covers the entire

desired range.

We employ several mechanisms for encouraging stabil-

ity; spectral normalization [21] is used both in the discrim-

inator and the generator for all layers except the last one.

Batch normalization [16] is used in most conv-blocks. We

also encountered a degenerate case where D was able to dis-

criminate real patches from generated ones due to the fact

that all values of the real patches were quantized to values

n/255. To avoid this we add uniform noise in the range of

[0, 1/255] to the real examples before feeding them to the

discriminator.

InGAN requries around 20k-75k iterations of gradient

descent in order to obtain appealing results. Training takes

1.5-4 Hrs on a single V-100 GPU, regardless of the size of

the input image. Once trained, InGAN can synthesize im-

ages of any desired size/shape/aspect-ratio in a single feed-

forward pass. For example, InGAN can remap to VGA size

(640×480) in about 40 ms (equivalent to 25 fps).

4. A Unified Framework for Multiple Tasks

InGAN provides a variety of capabilities and can be ap-

plied to multiple tasks. Moreover, it provides a unified treat-

ment of very different data-types, ranging from pure tex-

tures to natural images, all under a single umbrella.

A single pure texture is usually captured by just a few

dominant image scales. Natural images, on the other hand,

tend to span a wide range of image scales, from fine-grained
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input Non-stationary [34] Spatial-GAN [18] InGAN

Figure 6: Texture synthesis: Synthesizing textures of sizes ×1.5 and ×2. Note that [34] is restricted to ×2. Please zoom in.

details to coarse structures. Non-stationary textures and

multi-textured images tend to reside somewhere in-between

those two extremes. Each of these family of images is

usually treated separately, by different specialized methods.

Here we show that capturing and remapping the multiscale

patch distribution of an image provides a unified treatment

for all these seemingly different data-types. InGAN thus ap-

plies to a a continuum from pure textures to natural images,

in a single framework.

For example, observe the corn image in Fig. 7: small im-

age patches at fine image scales capture the tiny details of

the corn seeds, while patches at coarse images scales cap-

ture the structure of an entire corn-cob. When retargeting

the corn image to a wider/thinner output, entire corn-cobs

are added/removed (thus matching the multiscale patch dis-

tribution). In contrast, when changing the height of the out-

put image, small corn seeds are added/removed from each

corn-cob. This multiscale patch distribution is a funda-

mental characteristic of both natural images and textures.

Nonetheless it is important to stress that InGAN has no

semantic information about “objects” or “scenes”, it only

models the multiscale patch distribution of the input image.

Figs. 1,5,6,7,8 exemplify the range of capabilities and

data-types handled by InGAN. Additional examples are

found in the project’s web page. A unique capability

of InGAN is its continuous transitions between different

shapes/sizes/aspect-ratios, best exemplified by the videos in

the project’s web page.

We next discuss a variety of tasks & capabilities pro-

vided by InGAN, all with a single network architecture. In-
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Figure 7: Natural image retargeting: Comparing InGAN to Bidirectional similarity [29] and Seam Carving [25]. Please zoom in.

GAN may not provide state-of-the-art results compared to

specialized methods optimized for a specific task (often also

for a specific output size). Nevertheless, InGAN compares

favorably to these specialized methods, while providing a

single unified framework for them all. Moreover, InGAN

opens the door to new applications/capabilities.

Texture Synthesis: Texture synthesis is the task of gener-

ating novel instances of a texture that conform to some pro-

cess governing the original input texture. In this work the

governing process is the internal patch distribution. Gatys et

al. [12, 11] used pretrained network features to synthesize

textures. “Spatial-GAN” [18] and “Non-Stationary Texture

Synthesis” [34] use a patch-based GAN in a fully convo-

lutional manner, producing high quality textures. We re-

fer to these kinds of textures (whether stationary or non-

stationary) as Single-texture synthesis. Texture synthesis

methods typically perform poorly on Multi-texture syn-

thesis – namely, synthesizing images containing multiple

textures at various scales. InGAN can handle both single-

and multi-texture synthesis, thanks to its multiscale dis-

criminator. Figs. 5 and 6 show comparisons of InGAN to

specialized texture-synthesis methods, both on single- and

multi-texture images ([34] is restricted to ×2 outputs).

Natural Image Retargeting: Summary and Expansion

Image retargeting aims at displaying a natural image

on a different display size, smaller or larger, often with

a different aspect ratio. Smaller representations (visual

summary, thumbnail) should faithfully represent the input

visual appearance as best as possible. Another goal is to

generate Expanded images of the same nature (often with

different aspect ratios).

There are several different notions of “image retarget-

ing”. Some methods (e.g., [4, 33]) aim at preserving salient

objects while seamlessly discarding background regions to

obtain a smaller image. They mostly do smart cropping,

keeping the main object centered in its original size. Some

of these methods struggle when there are several dominant

objects present in the image. They do not tend to perform

well on images with lots of clutter and texture, nor are they

catered to image expansion/synthesis. Seam-carving [1]

gradually removes/adds pixel-wide “seams” that yield min-

imal change to image gradients. This method can handle

both Summarization and Expansion.

Other methods (e.g., [29, 23]) aim at preserving local

sizes/aspect-ratios of all image elements (whether salient or

not) as best possible, while changing the global size/aspect-

ratio of the image. They cater both Summarization and Ex-

pansion. InGAN belongs to this family of methods.

Figs. 1,5,7 show comparisons of InGAN to Seam-

Carving and Bidirectional-Similarity, on natural images as

well as non-natural ones. Since Seam-carving [1] uses lo-

cal information only (it removes/adds pixel-wide “seams”),

it tends to distort larger image structures under drastic
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Figure 8: Retargeting to Non-Rectangular Outputs: InGAN is able to retarget to non-rectangular shapes using the geometric

transforation T (e.g., homography). Note that a pure homography tilts all the elements inside the image, wheras InGAN preserves local

shape/appearance & tilt of these elements. In particular, InGAN generates an illusion of retargeting to a new 3D view with correct parallax

(without any 3D recovery).

changes in aspect ratio (see narrow distorted peacock in

Fig. 7). Bidirectional-Similarity [29] handles this by us-

ing image patches at various scales, but requires solving a

new optimization problem for each output size/aspect-ratio.

In contrast, InGAN synthesizes a plethora of new target im-

ages of different shapes with a single trained network.

Input No Single- InGAN
Lreconst scale D

Figure 9: Ablation study: Omitting Lreconst or using a single-

scale D, degrades the results compared to full InGAN architecture.

Image Retargetig to Non-rectangular Shapes: Unlike

previous methods, InGAN retargets images into non-

rectangular outputs. This is made possible by introducing

random invertible geometric transformations in InGAN’s

generator. Our current implementations uses 2D projective

transformations, but the framework permits any invertible

transformation. Figs. 1 and 8 display a few such examples.

Note that a pure homography tilts all the elements inside the

image. In contrast, InGAN preserves local shape & tilt of

these elements despite the severe change in global shape of

the image. In particular, while the synthesized visual qual-

ity is not very high under extreme shape distortions, InGAN

generates an interesting illusion of retargeting into a new 3D

view with correct parallax (but without any 3D estimation).

Figure 10: Failure example: Input in red. InGAN has no

semantic understanding of “objects” or “scenes”, it only models

the multiscale patch distribution of the input image, hence cannot

distinguish between object-parts and entire objects.

5. Ablation Study and Limitations
We conducted an ablation study to verify the importance

of: (i) the “encoder-encoder” architecture with its ℓ1 recon-

struction loss, and (ii) the importance of multiple scales in

the discriminator D. Fig. 9 shows one such example: Train-

ing InGAN without Lreconst (left-most result) shows un-

structured output: two birds are completely missing and the

dominant bird is split into two. Using a single scale D (mid-

dle result) makes G generate a result that is locally coherent,

but lacks large scale structures. The birds were completely

destroyed. In contrast, the full InGAN (right-most) with

Lreconst and multiscale D maintains both fine details and

coarse structures. In particular, all 3 birds are in the output.

Limitations: InGAN is unsupervised – it has no additional

information other than the input image. In particular, In-

GAN has no semantic understanding, no notion of “objects”

or “scenes”. Its sole objective is capturing and remapping

the multiscale patch distribution of the input image. Thus,

InGAN sometimes produces funny/unnatural results. Fig 10

shows such an example: InGAN produces an output that

is both coherent and complete (all local elements are pre-

served), yet is incorrect in its semantic meaning.
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