
Dynamic-Net: Tuning the Objective Without Re-training for Synthesis Tasks

Alon Shoshan

Technion, Israel

shoshan@campus.technion.ac.il

Roey Mechrez

Technion, Israel

roey@campus.technion.ac.il

Lihi Zelnik-Manor

Technion & Alibaba Group

lihi@technion.ac.il

Figure 1: Dynamic-Net: We propose an approach that enables traversing the “objective-space”, spanned by two different

objectives, at test-time, without re-training, as illustrated by the blue dot moving along the blue curve in the plot. This is

different from the common practice of training a separate network for each objective, represented by ×’s on the plot. Using a

single Dynamic-Net we can tune the level of stylization of an image, monitor completion quality per image, or control facial

attributes, all interactively at test-time, without re-training. [Animated figure, please view at our webpage].

Abstract

One of the key ingredients for successful optimization of

modern CNNs is identifying a suitable objective. To date,

the objective is fixed a-priori at training time, and any vari-

ation to it requires re-training a new network. In this pa-

per we present a first attempt at alleviating the need for

re-training. Rather than fixing the network at training time,

we train a “Dynamic-Net” that can be modified at infer-

ence time. Our approach considers an “objective-space”

as the space of all linear combinations of two objectives,

and the Dynamic-Net is emulating the traversing of this

objective-space at test-time, without any further training.

We show that this upgrades pre-trained networks by pro-

viding an out-of-learning extension, while maintaining the

performance quality. The solution we propose is fast and

allows a user to interactively modify the network, in real-

time, in order to obtain the result he/she desires. We show

the benefits of such an approach via several different appli-

cations.

1. Introduction

“I can’t change the direction of the wind, but I can adjust

my sails to always reach my destination”

—Jimmy Dean

A common practice in image generation is to train a

deep network with an appropriate objective. The objec-

tive is often complex and integrates multiple loss terms,

e.g., in style transfer [6, 11], super-resolution [2, 18], in-

painting [16], image-to-image transformations [10], domain

transfer [19, 12] and attribute manipulation [24]. To date,

the choice of the specific objective, and the trade-off be-

tween its multiple terms, are set a-priori during training.

This results in trained networks that are fixed for a specific

working point. This is limiting for three reasons. First, of-

tentimes one would like the flexibility to produce different

results, e.g., stronger or weaker style transfer. Second, in

many cases the best working point is different for different

inputs. Last, it is hard to predict the optimal working point,

especially when the full objective is complex and when ad-

3215



versarial training [7] is incorporated. Therefore, practition-

ers perform greedy search over the space of objectives dur-

ing training, which demands significant compute time.

In this paper we propose an alternative approach, called

Dynamic-Net, that resolves this for some scenarios. Rather

than training a single fixed network, we split the training

into two phases. In the first, we train the blocks of a “main

network” using a certain objective. At the second phase we

train additional residual [8] “tuning-blocks”, using a dif-

ferent objective. Then, at inference time, we can decide

whether we want to incorporate the tuning-blocks or not and

even control their contribution. This way, we actually have

at hand a dynamic network that can be assembled at infer-

ence time from the main network and tuning-blocks. Our

underlying assumption is that the tuning-blocks can cap-

ture the variation between the two objectives, thus allowing

traversal of the objective space. The Dynamic-Net can thus

be easily geared towards the first or second objective, by

tuning scalar parameters, at test-time.

The key idea behind our approach is inspired by the

Jimmy Dean citation at the beginning of the introduction.

We acknowledge that we cannot directly modify the objec-

tive at test-time. However, what we can do is modify the

latent space representation. Therefore, our approach relies

on manipulation of deep features in order to emulate a ma-

nipulation in objective space.

The main advantages of the Dynamic-Net are three-fold.

First, using a single training session the Dynamic-Net can

emulate networks trained with a variety of different ob-

jectives, for example, networks which produce stronger or

weaker stylization effects, as illustrated in Figure 1. Sec-

ond, it facilitates image-specific and user-specific adapta-

tion, without re-training. Via a simple interface, a user

can interactively choose at real-time the level of styliza-

tion or a preferred inpainting result. Last, the ability to

traverse the objective space at test-time shrinks the search-

space during training. More specifically, we show that even

when the choice of objective for training is sub-optimal, the

Dynamic-Net can reach a better working point.

We show these benefits through a broad range of ap-

plications in image generation, manipulation and recon-

struction. We explore a variety of objectives and architec-

tures, and present both qualitative and quantitative evalua-

tion. Our code is available at https://github.com/

AlonShoshan10/dynamic_net.

2. Related Work

Multi-loss objectives Many state-of-the-art solutions for

image manipulation, generation and reconstruction utilize a

multi-loss objective. For example, Isola et al. [10] combine

L1 and adversarial loss [7] for image-to-image transforma-

tion. Johnson et al. [11] trade-off between a style loss (i.e.

Gram loss) and content loss (i.e. the perceptual loss) for fast

style-transfer and super-resolution, SRGAN [13] balances

between a content loss and adversarial loss for perceptual

super-resolution, and [26] combines L1, a style loss and an

adversarial loss for texture synthesis. In all of these cases,

the weighting between the loss terms is fixed during train-

ing, producing a trained network that operates at a specific

working point.

The impact of the trade-off between multiple objectives

has been discussed before in several contexts. [2] show that

in image restoration algorithms there is an inherent trade-off

between distortion and perceptual quality. They analyze the

trade-off and show the benefits of different working points.

In [6] it is shown empirically that a different balance be-

tween the style loss and content loss leads to different styl-

ization effects.

The importance and difficulty of choosing the optimal

balance between different loss terms is tackled by methods

for multi-task learning [4, 20, 14, 23, 22]. In these works

a variety of solutions have been proposed for learning the

weights for different tasks. Mutual to all of these methods

is that their outcome is a network trained with a certain fixed

balance between the objectives.

Deep feature manipulation The approach we propose is

based on training “tuning-blocks” that learn how to manip-

ulate deep features in order to achieve a certain balance be-

tween the multiple objectives. It is thus related to methods

that employ manipulation of deep features in latent space.

These methods are based on the basic hypothesis of [1] that

“CNNs linearize the manifold of natural images into a Eu-

clidean subspace of deep features”, suggesting that linear

interpolation of deep features makes sense. Inspired by this

hypothesis, [25] learn the linear “direction” that modifies fa-

cial attributes, such as adding glasses or a mustache. In [3]

a more sophisticated manipulation approach is proposed.

They introduced blocks to be added to an auto-encoder net-

work in order to learn the required manipulation to modify a

facial attribute. While producing great results on manipula-

tion of face images, their approach implicitly assumes that

the training images are similar and roughly aligned.

3. Proposed Approach: Dynamic-Net

To date, one has to re-train the network for each ob-

jective. In this section we propose Dynamic-Net that al-

lows changing the objective at inference time, without re-

training. Dynamic-Nets can emulate a plethora of “inter-

mediate working points” between two given objectives O0

and O1, by simply tuning a single parameter. One can think

of this as implicit interpolation between the objectives. Our

solution is relevant in cases where such an interpolation be-

tween the objectives O0 and O1 is meaningful.

To provide some intuition we begin with an example. A

common scenario where an “intermediate working point” is

3216



(a) Single-block framework (b) Multi-block framework

Figure 2: Proposed framework: Our training has two steps: (i) First the “main” network θ (green blocks) is trained to

minimize O0. (ii) Then θ is fixed, one or more tuning-blocks ψ are added (orange block), and trained to minimize O1. The

output ŷ1 approximates the output y1 one would get from training the main network θ with objective O1. At test-time, we

can emulate results equivalent to a network trained with objective Om by tuning the parameter αm (in blue) that determines

the latent representation zm. Our method can be applied as (a) a single-block framework or as (b) multi-block framework.

intuitive, is when the objectives consist of a super-position

of two loss terms: O0=LA+λ0LB and O1=LA+λ1LB,

where LA, LB are loss terms, and λ0, λ1 are scalars. As-

suming, without loss of generality, that λ0 ≤ λ1, an inter-

mediate working point corresponds to an objective Om =
LA+λmLB, such that λ0 ≤ λm ≤ λ1. Our goal is to ap-

proximate at inference time the results of a network trained

with any objective Om, while using only O0 and O1 during

training.

The key idea behind the approach we propose, is to use

interpolation in latent space in order to approximate the in-

termediate objectives. For simplicity of presentation we

start with a simple setup that uses linear interpolation, at

a single layer of the network. Later on we extend to non-

linear interpolation.

3.1. Single­block Dynamic­Net

Our single-block framework is illustrated in Figure 2(a).

It first trains a CNN, to which we refer as the “main network

blocks”, with objective O0. We then add an additional block

to the network, to which we refer as the “tuning-block” ψ

that learns the “direction of change” in latent space z, that

corresponds to shifting the objective from O0 to another

working point O1. Our hypothesis is that walking along the

“direction of change” in latent space can emulate a plethora

of “intermediate” working points Om between O0 and O1.

In further detail, our pipeline is as follows:

⊲ Training:

• Train the main network blocks by setting the objective

to O0.

• Fix the values of the main network, add a tuning-block

ψ between layers l and l+1, and post-train only ψ by

setting the objective to O1. The block ψ will capture

the variation between the latent representations z0 and

z1, that correspond to O0 and O1, respectively.

⊲ Testing:

Fix both the main blocks as well as the tuning block ψ, and

do as follows:

• Propagate the input until layer l of the main network to

get z0.

• Generate an “intermediate” point in latent space, zm =
z0 + αmψ(z0), by tuning the scalar parameter αm.

• Propagate zm through the rest of the main network to

obtain outcome ym that corresponds to objective Om.

The justification for our approach stems from the follow-

ing two assumptions:

Assumption 1 We adopt the hypothesis of [1] that “CNNs

linearize the manifold of natural images into a Euclidean

subspace of deep features”.

This assumption implies that the latent representation of an

intermediate point can be written as zm=z0+αm(z1− z0)
where αm ∈ [0, 1]. Setting αm = 0 yields working point 0

while setting αm=1 yields working point 1.

Assumption 2 For any pair of working points O0,O1, with

corresponding latent representations z0, z1, it is possible to

train a block ψ such that z1 ≈ z0 + ψ(z0).

Putting assumptions 1 and 2 together suggests that we can

approximate any intermediate working point Om by com-

puting ẑm = z0 + αmψ(z0) and have that zm ≈ ẑm.

To provide further intuition we revisit the example where

the objectives are of the form O=LA+λLB. Here the pa-

rameter λ controls the balance between the two loss terms

3217



LA and LB. To interpolate in objective space we would like

to modify λ but this is not possible to do directly at test-

time. Instead, our scheme enables interpolation in latent

space by modifying the parameter α, which controls zm.

Our main hypothesis is that the suggested training scheme

will lead to a proportional relation between α and λ. That

is, increasing α will correspond to a monotonic increase in

λ, thus implicitly achieving the desired interpolation in ob-

jective space.

In the more general case, when the objectives O0 and O1

are of different forms, the interpolation we propose in ob-

jective space cannot be formulated mathematically so intu-

itively. Nonetheless, the conceptual meaning of such inter-

polation could be sensible. For example, we could train an

image generation network with two different adversarial ob-

jectives, one that prefers blond hair and another that prefers

dark hair. Interpolating between the two objectives should

correspond to generating images with varying hair shades.

Therefore, to prove broad applicability of the proposed ap-

proach to a variety of objectives, we present in Section 4

several applications and corresponding results.

3.2. Multi­block Dynamic­Net

In practice, adding a single tuning-block, at a specific

layer, might be insufficient. It limits the manipulation to

linear transformations in a single layer of the latent space.

Therefore, we propose adding multiple blocks, at different

layers of the network as illustrated in Figure 2(b).

The training framework is similar to that of single-block,

except that now we have multiple tuning blocks ψl, each

associated with a corresponding weight αl
m. When training

the tuning-blocks we fix all the weights to αl
m = 1. Then

at inference-time, we can tune each of the weights indepen-

dently to yield a plethora of networks and results.

4. Experiments

In this section we present experiments with several

applications that demonstrate the utility of the proposed

Dynamic-Net and support the validity of our hypotheses. In

order to emphasize broad applicability we selected applica-

tions of varying nature, with a variety of loss functions and

network architectures, as summarized in Table 1. Tuning-

blocks were implemented as conv−relu−conv−relu−conv.

Further implementation details, architectures and parameter

values are listed in the supplementary.

The motivation behind Dynamic-Net was three-fold: (i)

provide ability to modify the working point at test-time, (ii)

allow image-specific adaptation, and (iii) reduce the depen-

dence on optimal objective selection at training time. In

what follows we explore these contributions one by one,

through various applications.

In the next subsections, if not stated otherwise, we used

the multi-block framework while setting all {αl} to be

Application Objectives Architecture

Style Transfer Lcontent,Lstyle [11]

Image Completion LL1,Ladv [10]

Face Generation Ladv [25]

Table 1: Applications summary: We evaluate Dynamic-

Net on three different applications: image manipulation

(style transfer), reconstruction (image completion) and gen-

eration (faces). The applications minimize different loss

terms and are based on a variety of architectures.

equal, i.e., α0 = α1... ≡ α, and we tune α.

4.1. Tuning the objective at test­time
:: Style Transfer

Our first step is to show that the proposed approach can

indeed traverse the objective space, and emulate multiple

meaningful working points at test-time, without re-training.

We chose to show this via experiments in Style Transfer.

Super-position of objectives: We begin with the com-

mon scenario where the objective-space is a super-position

of two loss terms. We followed the setup of fast style trans-

fer [11], where the goal is to transfer the style of a specific

style image to any input image. This is done by training

a CNN to optimize the objective: O = Lcontent+λLstyle,

where Lcontent is the Perceptual loss [6] between the out-

put image and input image, and Lstyle is the Gram loss [6]

between the output image and style image. The hyper-

parameter λ balances between preserving the content image

and transferring the texture and appearance of the style im-

age. Our goal here is to show that tuning α of the Dynamic-

Net at test-time can replace tuning of λ at training-time.

Following the training procedure suggested in Section 3

we first train the main network with objective O0 =
Lcontent + λ0Lstyle, then freeze their weights and train

the tuning-blocks with O1 = Lcontent + λ1Lstyle. Simi-

lar to [11] we use the MS-COCO [15] dataset for training.

Figure 3 shows a few example results together with the

corresponding working points in the objective-space, which

trade-offs the content and style loss terms. We successfully

control the level of stylization, at test-time, by tuning α. An

important result is that the working points emulated by the

Dynamic-Net correspond to fixed networks trained for that

specific working point (marked by ×) in terms of style loss

and content loss.

The figure also compares to interpolation in image space,

i.e., blending images produced by different fixed networks

directly. For this baseline we use the following two net-

works; the main network of our Dynamic-Net and the clos-

est fixed network (in terms of loss) to Dynamic-Net with

3218



λ=2 · 104 λ=5 · 104 λ=105 λ=2 · 105 λ=5 · 105

F
ix

ed
n
et

s
p

α=0 α=0.25 α=0.5 α=0.75 α=1

Im
ag

e
in

te
rp

O
u
rs

p

Image interp Ours

Figure 3: Tuning the objective at test-time: First row shows the results of the fixed networks, each was trained separately

for a different objective (corresponding to the red ×’s). Second row shows results for image interpolation between two fixed

nets - λ=2 ·104 and λ=5 ·105 (corresponding to the green curve) as baseline. Third row shows results of Dynamic-Net with

three tuning-blocks (main network was trained with λ0=2 · 104 and tuning-blocks with λ0=106) where we increase α from

0 to 1 and α=α0=α1=α2 (corresponding to the blue curve). The graph shows the Lstyle vs. Lcontent where the cyan dots

represent a grid search of Dynamic-Net for 1000 possible values of α0, α1, α2. In the bottom right corner is a zoomed-in

patch of our approach vs. image interpolation for α=0.25, it can be observed that the baseline is dissolving one image upon

the other reader than naturally increase the style as our approach and empirical evidence can be seen in the graph.

α = 1. It can be seen that the results are inferior qual-

itatively and quantitatively, since the style loss does not

change monotonically.

Our method also allow tuning each tuning-block indi-

vidually as can be observed by the grid search in the graph.

Each point of the grid search represent a result produced

with a different value of α0, α1 and α2. This allows us to

traverse the objective space in many interesting ways and

even produce different images for the same working point.

Disjoint objectives: To further explore the generality of

our approach we next experiment with disjoint objectives.

As a case study we chose to traverse between stylization

with two different style images. That is, O0 was trained

with one style image, while O1 was trained with a different

style image. At test time we tune α to traverse between the

two objectives. Figure 4 presents results when the style im-

ages are completely different. We compare our result to two

algorithms, Arbitrary Style Transfer using AdaIN [9] and

Conditional-IN [5]. A third baseline is a simple interpola-

3219



α=0 α=0.25 α=0.5 α=0.75 α=1

A
d
aI

n
p

C
o
n
d
it

io
n
al

IN
p

Im
ag

e
in

te
rp

O
u
rs

p

α=0 α=0.5 α=1

A
d
aI

n
p

C
o
n
d
it

io
n
al

IN
p

Im
ag

e
in

te
rp

O
u
rs

p

Ours Image interp Ours Image interp

Figure 4: Traversing between styles: results of four dif-

ferent methods. Last row shows a zoomed-in patch of our

method vs. image interpolation for α = 0.5. Best viewed

zoomed-in.

α=−1 α=−

1

2
α=0 α=0.5 α=1 α=

3

2
α=2

Figure 5: Objective extrapolation: Style transfer results

where the main-blocks are trained with a high resolution

style image, while the tuning-blocks are trained with a low

resolution style image. Since the tuning-blocks capture the

trend between the two style images the Dynamic-Net can

generate different scales of texture: (green-box) interpo-

lation along the style scale (red-box): extrapolation to the

low-resolution side, and (yellow): extrapolation to the high-

resolution side (style images in the supplementary).

tion in image space between results of two fixed networks.

Conditional-IN reduces each style image into a point in an

embedding space, each style shears the same convolutional

weights of the network but it has its own normalization pa-

rameters. A blending effect is achieved by interpolating

the normalization parameters of two styles. Arbitrary Style

Transfer network consists of a fixed-encoder, AdaIN layer

and a decoder. AdaIN is used to adjust the mean and vari-

ance of the content input image to match those of an arbi-

trary style image. Interpolating between AdaIN parameters

of two styles produces a blending effect. For AdaIN we use

the official implementation and pre-trained network, while

for Conditional-IN we use the official implementation but

trained the network for 10 different styles used in our paper.

For the image interpolation baseline we use the following

two networks; the main network of our Dynamic-Net and a

fixed network trained for the second style image. Note that

both AdaIN and Conditional-IN require specific constraints

on the architecture, while our method is general and can

extend existing high-quality pre-trained networks (as main

networks). This can explain why our results are more faith-

ful to the given style images. In addition, as we can observe

from the zoomed-in images, our method achieves a natural

blending of the two styles as opposed to a ”fade away” ef-

fect of one image on top of another, formed by the baseline.

In Figure 5 the style images are two versions of the same

style image, albeit at different resolutions. It can be seen

that Dynamic-Net provides a smooth transition between

the objectives. We also examine the ability to extrapolate

in objective-space as shown in Figure 5. Specifically, we

wanted to see if we can emulate working points that are not

intermediate to those used during training. Interestingly,

setting α < 0 or α > 1 also leads to meaningful results,

corresponding to extrapolation in scale space of the style.

3220



Male −→ Female

Dark Hair −→ Blond Hair

α=0 =================================⇒ α=1

Figure 6: Controlled generation results: the proposed

method allow us to interpolate between different facial at-

tributes. The values of α are gradually increasing from left

to right, results in a monotonic change of the specific at-

tribute. Most left: α=0 correspond to the baseline result of

DCGAN [21].

4.2. The objective is user specific
:: Face Generation

In some applications the desired output is not only im-

age dependent but further depends on the user’s preference.

This could be observed previously in the style transfer ex-

periments, were every user could prefer different stylization

options. As another example for such a case we chose the

task of face generation, where our approach endows the user

with fine control over certain facial attributes, such as hair

color or gender.

We adopted the architecture of DCGAN [21] that is

trained with a single adversarial loss O = Ladv over the

CelebA [17] dataset. To provide control over an attribute,

such as hair color, we split the dataset into two sub-sets,

e.g., dark hair vs. blond. Both, the main network and the

tuning-blocks were trained with an adversarial loss, but with

different data sub-set. The two objectives are thus disjoint

in this case.

At test-time, the user can tune α to generate a face with

desired properties. For example, the user can tune the hair

color or the masculinity of the generated face. Qualitative

results are presented in Figure 6 for two attributes: male-to-

female and dark hair-to-blond hair. It can be seen that our

Dynamic-Net smoothly traverses between the two objec-

tives, generating plausible images, with a smooth attribute

Input Network results

α=0 α=0.4 α=1

α=0 α=0.4 α=1

α=0 α=0.4 α=1

α=0 α=0.5 α=1

α=0 α=0.4 α=1

Figure 7: Robustness to hyper-parameter: The main net-

work (α = 0) produces artifacts common to adversarial

training while α = 1 produces blurry images common to

L1 loss. Using 0 < α < 1 results in high quality images

preventing the need to retrain the main network numerous

times with different objectives to achieve high quality re-

sults.

control.

4.3. Robustness to hyper­parameter
:: Image Completion

Our last goal is to show that our approach shrinks the

required search space over the objective at training time.

In this experiment we use the task of image completion to

show that by using tuning-blocks we can effectively pre-

vent exhaustive re-training for tuning the objective. We in-

tentionally train the main network for a sub-optimal objec-

tive that leads to poor quality completion and artifacts and

use the tuning-blocks to adjust the objective post training to

achieve high quality results. This was in order to show that

even when the main network is of poor quality, adding the

3221



tuning-blocks with an appropriate α could result in a better

overall network, getting rid of the artifacts. This is possible

because we can traverse the objective space and thus iden-

tify good working points, even when those used for training

were sub-optimal.

In our experimental setup the input is a face image with a

large hole at the center, and the goal is to complete the miss-

ing details in a faithful and realistic manner. As architecture

we adopted a version of pix2pix [10] (see supplementary for

details). The objective for training the main network was

O0 = LL1 + λLadv (λ = 0.005) and three tuning-blocks

were trained with O1 = LL1.

Figure 7 shows some of our results. The main network

(α = 0) produces artifacts common for adversarial losses

while on the other hand using the whole wight of the tuning-

blocks (α = 1) results in blurry images common to L1

losses. Using 0 < α < 1 We traverse the objective space

and produce high quality images. This suggests that during

training rather then trying multiple values for λ one can just

select a single value, and then at test-time adapt α. The

training of the tuning-blocks demonstrate robustness and

implies that our Dynamic-Net forms a good alternative to

the traditional greedy search. Choosing α can be done in-

teractively in real-time, to tailor the network for a specific

image. Since for different images there can be found a bet-

ter objective that suit them specifically, interactively edit-

ing the results per image can be significant and difficult to

achieve using fixed networks. Setting α is fast and provides

an interesting alternative to hyper-parameter search at train-

ing time, both in terms of computing efficiency and as it

enables image and user specific tuning.

5. Method Analysis

Limitations Figure 8 present the limitation of the pro-

posed method, when using extreme objectives. Specifically,

we trained the tuning-blocks without a style loss term, i.e.

O1=Lcontent. We observe that, the simple image interpo-

lation (green curve) achieves better results than our method

(red curve) when approaching near point C, that is, near the

objective O1. The main reason for that, is that the main

network was trained for style transfer, and the ability of the

tuning blocks to “Turn the table upside down” and produce

image with very little style, is limited. Last, we show that

using Dynamic-Net with a smaller range between the ob-

jectives, B→C, (blue curve) outperform both methods and

approximate the fixed nets accurately.

6. Conclusions

We propose Dynamic-Net a novel two phase training

framework that allow traversing the objective space at in-

ference time without re-training the model. We have shown

its broad applicability on variety vision tasks: style transfer,

face generation and image completion. In all application we

Image interp (2nd column) Ours (2nd column)

Figure 8: Failure Case: Top: Each curve corresponds to

a different setting: (green) image-space interpolation be-

tween fixed net (A) and the input image. (red) Dynamic-

Net results with O0 = OA (λ = 106) and O1 = OC .

(blue) Dynamic-Net results with O0 = OB (λ = 104) and

O1 =OA. Bottom: Example images, the box color corre-

spond to the curve color. Training with medium objective

range (B→A) achieved great results, however, increasing

the range too much, i.e. A→C, weaken the results quality.

showed that our method allow easy and intuitive control of

the objective trade-off. This work is a first step in provid-

ing a model that is not limited to a specific static working

point – a dynamic model. Future work include bringing the

dynamic concept to other application and expend it to other

objective spaces.

In the supplementary we present additional results and

provide implementation details.

Acknowledgements

This research was supported by the Israel Science Foun-

dation under Grant 1089/16 and by the Ollendorf founda-

tion.

3222



References

[1] Yoshua Bengio, Grégoire Mesnil, Yann Dauphin, and Salah

Rifai. Better mixing via deep representations. In ICML,

2013. 2, 3

[2] Yochai Blau and Tomer Michaeli. The perception-distortion

tradeoff. In CVPR, 2018. 1, 2

[3] Ying-Cong Chen, Huaijia Lin, Michelle Shu, Ruiyu Li, Xin

Tao, Xiaoyong Shen, Yangang Ye, and Jiaya Jia. Facelet-

bank for fast portrait manipulation. In CVPR, 2018. 2

[4] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and An-

drew Rabinovich. Gradnorm: Gradient normalization for

adaptive loss balancing in deep multitask networks. In ICML,

2018. 2

[5] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur.

A learned representation for artistic style. Proc. of ICLR, 2,

2017. 5

[6] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-

age style transfer using convolutional neural networks. In

CVPR, 2016. 1, 2, 4

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

2

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. 2016 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 770–778, 2016. 2

[9] Xun Huang and Serge J. Belongie. Arbitrary style transfer in

real-time with adaptive instance normalization. 2017 IEEE

International Conference on Computer Vision (ICCV), pages

1510–1519, 2017. 5

[10] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. In CVPR, 2017. 1, 2, 4, 8

[11] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

ECCV, 2016. 1, 2, 4

[12] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee,

and Jiwon Kim. Learning to discover cross-domain relations

with generative adversarial networks. In ICML, 2017. 1

[13] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew P Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative ad-

versarial network. In CVPR, 2017. 2

[14] Zhizhong Li and Derek Hoiem. Learning without forgetting.

IEEE TPAMI, 2017. 2

[15] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

ECCV, 2014. 4

[16] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang,

Andrew Tao, and Bryan Catanzaro. Image inpainting for ir-

regular holes using partial convolutions. In ECCV, 2018. 1

[17] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In ICCV, 2015.

7

[18] Roey Mechrez, Itamar Talmi, Firas Shama, and Lihi Zelnik-

Manor. Maintaining natural image statistics with the contex-

tual loss. In ACCV, 2018. 1

[19] Roey Mechrez, Itamar Talmi, and Lihi Zelnik-Manor. The

contextual loss for image transformation with non-aligned

data. In ECCV, 2018. 1

[20] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Mar-

tial Hebert. Cross-stitch networks for multi-task learning. In

CVPR, 2016. 2

[21] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-

vised representation learning with deep convolutional gener-

ative adversarial networks. In ICLR, 2016. 7

[22] Clemens Rosenbaum, Tim Klinger, and Matthew Riemer.

Routing networks: Adaptive selection of non-linear func-

tions for multi-task learning. In ICLR, 2018. 2

[23] Sebastian Ruder. An overview of multi-task learning in deep

neural networks. arXiv preprint arXiv:1706.05098, 2017. 2

[24] Wei Shen and Rujie Liu. Learning residual images for face

attribute manipulation. In CVPR. IEEE, 2017. 1

[25] Paul Upchurch, Jacob R Gardner, Geoff Pleiss, Robert Pless,

Noah Snavely, Kavita Bala, and Kilian Q Weinberger. Deep

feature interpolation for image content changes. In CVPR,

2017. 2, 4

[26] Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel

Cohen-Or, and Hui Huang. Non-stationary texture synthesis

by adversarial expansion. arXiv preprint arXiv:1805.04487,

2018. 2

3223


