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Figure 1. Unsupervised 3D point clouds generated by our tree-GAN for multiple classes (e.g., Motorbike, Laptop, Sofa, Guitar,

Skateboard, Knife, Table, Pistol, and Car from top-left to bottom-right). Our tree-GAN can generate more accurate point clouds than

baseline (i.e., r-GAN [1]), and can also produce point clouds for semantic parts of objects, which are denoted by different colors.

Abstract

In this paper, we propose a novel generative adversar-

ial network (GAN) for 3D point clouds generation, which

is called tree-GAN. To achieve state-of-the-art performance

for multi-class 3D point cloud generation, a tree-structured

graph convolution network (TreeGCN) is introduced as a

generator for tree-GAN. Because TreeGCN performs graph

convolutions within a tree, it can use ancestor informa-

tion to boost the representation power for features. To

evaluate GANs for 3D point clouds accurately, we develop

a novel evaluation metric called Fréchet point cloud dis-

tance (FPD). Experimental results demonstrate that the

proposed tree-GAN outperforms state-of-the-art GANs in
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terms of both conventional metrics and FPD, and can gen-

erate point clouds for different semantic parts without prior

knowledge. The source code is available at https://

github.com/seowok/TreeGAN .

1. Introduction

Recently, 3D data generation problems based on deep

neural networks have attracted significant research interest

and have been addressed through various approaches, in-

cluding image-to-point cloud [11, 19], image-to-voxel [46],

image-to-mesh [41], point cloud-to-voxel [6, 51], and point

cloud-to-point cloud [48]. The generated 3D data has been

used to achieve outstanding performance in a wide range

of computer vision applications (e.g., segmentation [30,

38, 45], volumetric shape representation [47], object detec-
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tion [4, 35], feature extraction [24], contour detection [15],

classification [29, 34], scene understanding [37, 44], and

part semantic segmentation [22]).

However, little effort has been devoted to the develop-

ment of generative adversarial networks (GANs) that can

generate 3D point clouds in an unsupervised manner. To

the best of our knowledge, the only works on GANs for

transforming random latent codes (i.e., z vectors) into 3D

point clouds are [1] and [40]. The method in [1] generates

point clouds using only fully connected layers. The method

in [40] exploits local topology by using k-nearest neighbor

techniques to produce geometrically accurate point clouds.

However, it suffers from high computational complexity as

the number of dynamic graph updates increases. Addition-

ally, it can only generate a limited number of object cate-

gories (e.g., chair, airplane, and sofa) using point clouds.

In this paper, we present a novel method called tree-

GAN that can generate 3D point clouds from random la-

tent codes in an unsupervised manner. It can also gener-

ate multi-class 3D point clouds without training on each

class separately (e.g., [40]). To achieve state-of-the-art per-

formance in terms of both accuracy and computational ef-

ficiency, we propose a novel tree-structured graph convo-

lution network (TreeGCN) as a generator for tree-GAN.

The proposed TreeGCN preserves the ancestor information

of each point and utilizes this information to extract new

points via graph convolutions. A branching process and

loop term with K supports in TreeGCN further enhance the

representation power of points. These two properties en-

able TreeGCN to produce more accurate point clouds and

express more diverse object categories. Additionally, we

demonstrate that using the ancestors of features in TreeGCN

is more efficient computationally than using the neighbors

of features in traditional GCNs. Fig.1 shows the effective-

ness of our tree-GAN.

The main contributions of this paper are fourfold.

• We present the novel tree-GAN method, which is a deep

generative model that can generate multi-class 3D point

clouds in unsupervised settings (Section 3).

• We introduce the TreeGCN based generator. The perfor-

mance of traditional GCNs can be improved significantly

by adopting the proposed tree structures for graph convolu-

tions. Based on the proposed tree structures, tree-GAN can

generate parts of objects by selecting particular ancestors

(Section 4).

• We mathematically interpret the TreeGCN and highlight

its desirable properties (Section 5).

• We present the Fréchet point cloud distance (FPD) metric

to evaluate GANs for 3D point clouds. FPD can be consid-

ered as a nontrivial extension of Fréchet inception distance

(FID) [17], which has been widely used for the evaluation

of GANs (Section 6).

2. Related Work

Graph Convolutional Networks: Over the past few years,

a number of works have focused on the generalization of

deep neural networks for graph problems [3, 9, 16, 25]. Def-

ferrard et al. [8] proposed fast-learning convolutional fil-

ters for graph classification problems. Using these filters,

they significantly accelerated the spectral decomposition

process, which was one of the main computational bottle-

necks in traditional graph convolution problems with large

datasets. Kipf and Welling [21] introduced scalable GCNs

based on first-order approximations of spectral graph con-

volutions for semi-supervised classification, in which con-

volution filters only use the information from neighboring

vertices instead of the information from the entire network.

Because the aforementioned GCNs were originally de-

signed for classification problems, the connectivity of

graphs was assumed to be given as prior knowledge. How-

ever, this setting is not appropriate for problems of dynamic

model generation. For example, in unsupervised settings

for 3D point cloud generation, the typologies of 3D point

clouds are non-deterministic. Even for the same class (e.g.,

chairs), 3D point clouds can be represented by various ty-

pologies. To represent the diverse typologies of 3D point

clouds, our TreeGCN utilizes no prior knowledge regarding

object models.

GANs for 3D Point Clouds Generation: GANs [13] for

2D image generation tasks have been widely studied with

great success [10, 18, 23, 26, 33, 36, 42, 43, 49, 50], but

GANs for 3D point cloud generation have rarely been stud-

ied in the computer vision field. Recently, Achlioptas et

al. [1] proposed a GAN for 3D point clouds called r-GAN,

generator of which is based on fully connected layers. As

fully connected layers cannot maintain structural informa-

tion, the r-GAN has difficulty in generating realistic shapes

with diversity. Valsesia et al. [40] used graph convolutions

for generators for GANs. At each layer of graph convo-

lutions during training, adjacency matrices were dynami-

cally constructed using the feature vectors from each ver-

tex. Unlike traditional graph convolutions, the connectivity

of a graph was not assumed to be given as prior knowledge.

However, to extract the connectivity of a graph, computing

the adjacency matrix at a single layer incurs quadratic com-

putational complexity O(V 2) where V indicates the num-

ber of vertices. Therefore, this approach is intractable for

multi-batch and multi-layer networks.

Similar to the method in [40], our tree-GAN requires

no prior knowledge regarding the connectivity of a graph.

However, unlike the method in [40], the tree-GAN is com-

putationally efficient because it does not construct adja-

cency matrices. Instead, the tree-GAN uses ancestor infor-

mation from the tree to exploit the connectivity of a graph,

in which only a list of tree structure from root node to leaf

nodes is needed.
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Figure 2. Pipeline of the tree-GAN. Our tree-GAN contains two networks, namely, discriminator (Section 3) and generator (Section 4).

The generator takes a single point from a Gaussian distribution, z ∈ R96, as an input. At each layer of the generator, GraphConv (Section

4.1) and Branching (Section 4.2) operations are performed to generate the l-th set of points, pl. All points generated by previous layers are

stored and appended to the tree of the current layer. The tree begins from the root node z, splits into child nodes via Branching operations,

and modifies nodes by GraphConv operations. The generator produces 3D point clouds x′
= pL ∈ R3×n as outputs, where pL is the set of

points at the final layer L and n is the total number of points. The discriminator differentiates between real and generated point clouds to

force the generator to produce more realistic points. We use a discriminator similar to that in the r-GAN [1]. Please refer to supplementary

materials for detailed network architectures.

Tree-structured Deep Networks: There have been several

attempts to represent convolutional neural networks or long

short-term memory using tree structures [5, 20, 27, 28, 31].

However, to the best of our knowledge, no previous meth-

ods have used tree structures for either graph convolutions

or GANs. For example, Gadelha et al. [12] used tree-

structured networks to generate 3D point clouds via vari-

ational autoencoder (VAE). However, this method needed

the assumption that inputs are the 1D-ordered lists of

points obtained by space-partitioning algorithms such as K-

dimensional tree and random projection tree [7]. Thus, it

required additional preprocessing steps for valid implemen-

tations. Because its network only comprised 1D convolu-

tion layers, the method could not extract the meaningful

information from unordered 3D point clouds. In contrast,

the proposed tree-GAN can not only deal with unordered

points, but also extract semantic parts of objects.

3. 3D Point Cloud GAN

Fig.2 presents the pipeline of the proposed tree-GAN. To

generate 3D point clouds x′ from latent code z, we utilize

the objective function introduced in Wasserstein GAN [2].

The loss function of a generator, Lgen, is defined as

Lgen = −Ez∼Z [D(G(z))], (1)

where G and D denote the generator and discriminator, re-

spectively, and Z represents a latent code distribution. We

design Z with a Normal distribution, z ∈ N (0, I). The loss

function of a discriminator, Ldisc, is defined as

Ldisc = Ez∼Z [D(G(z))]− Ex∼R[D(x)]

+ λgpEx̂[(‖∇x̂D(x̂)‖2 − 1)2],
(2)

where x̂ are sampled from line segments between real and

fake point clouds, x′ ∼ G(z) and x denote generated and

real point clouds, respectively, and R represents a real data

distribution. In (2), we use a gradient penalty to satisfy the

1-Lipschitz condition [14], where λgp is a weighting param-

eter.

4. Proposed TreeGCN

To implement G in (1), we consider multi-layer graph

convolutions with first-order approximations of the Cheby-

shev expansion introduced by [21] as follows:

pl+1
i = σ



W lpli +
∑

ql
j
∈N(pl

i
)

U lqlj + bl



 , (3)

where σ(·) is the activation unit, pli is the i-th node in the

graph (i.e., 3D coordinate of a point cloud) at the l-th layer,

qlj is the j-th neighbor of pli, and N(pli) is the set of all

neighbors of pli. Then, z and x′ in (2) can be represented by

[p01] and [pL1 pL2 · · · pLn ], respectively, where L is the final

layer and n is the number of points at L.

During training, GCNs find the best weights W l and U l

and best bias bl at each layer, then generate 3D coordinates

for point clouds by using these parameters to ensure simi-

larity to real point clouds. The first and second terms in (3)

are called the loop and neighbors terms, respectively.

To enhance a conventional GCN such as that used in

[21], we propose a novel GCN augmented with tree struc-

tures (i.e., TreeGCN). The proposed TreeGCN introduces a

tree structure for hierarchical GCNs by passing information

from ancestors to descendants of vertices. The main unique

characteristic of the TreeGCN is that each vertex updates its

value by referring to the values of its ancestors in the tree

instead of those of its neighbors. Traditional GCNs, such

as those defined in (3), can be considered as methods that
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Figure 3. Loop term with K-supports. Left: a conventional loop

term uses a single parameter W l in (3) to learn the mapping from

pli to Sl+1

i . Right: our loop term introduces a fully connected

layer with K nodes (i.e., K supports, pli,1, · · · , p
l
i,k) to learn a

more complex mapping from pli to Sl+1

i .

Figure 4. Ancestor term. Left: a conventional neighbor term uses

neighbors of pli (e.g., ql1, q
l
2, · · · ) to generate pl+1

i . Right: the pro-

posed ancestor term uses ancestors of pli (e.g., ql−1

1 , ql−2

2 , · · · ) to

generate pl+1

i .

only refer to neighbors at a single depth. Then, the proposed

graph convolution is defined as

pl+1
i = σ



F
l
K(pli) +

∑

qj∈A(pl
i
)

U l
jqj + bl



 , (4)

where there are two major differences compared to (3). One

is an improved conventional loop term using a subnetwork

F
l
K , where Sl+1

i is generated by K supports from F
l
K . We

call this term a loop with K-supports, as explained in Sec-

tion 4.1. The other difference is the consideration of values

from, all ancestors in the tree to update the value of a cur-

rent point, where A(pli) denotes the set of all ancestors of

pli. We call this term ancestors, as explained in Section 4.1.

4.1. Advanced Graph Convolution

The proposed tree-structured graph convolution (i.e.,

GraphConv in Fig.2) aims to modify the coordinates of

points using the loop with K-supports and ancestor terms.

Loop term with K-supports: The goal of the new loop

term in (4) is to propose the next point based on K sup-

ports instead of using only the single parameter W l in (3)

as follows:

Sl+1
i = F

l
K(pli), (5)

where Fl
K is a fully connected layer containing K nodes. A

conventional GCN using first-order approximations adopts

a single parameter in its loop term to generate the next point

from the current point. However, for large graphs, the rep-

resentation capacity of a single parameter is insufficient for

describing a complex point distribution. Therefore, our loop

term utilizes K supports to represent a more complex dis-

tribution of points.

Ancestor term: For graph convolution, knowing the con-

nectivity of a graph is very important because this infor-

mation allows a GCN to propagate useful information from

a vertex to other connected vertices. However, in our point

cloud generation setting, it is impossible to use prior knowl-

edge regarding connectivity because we must be able to

generate diverse typologies of point clouds, even for the

same object category. Therefore, the dynamic 3D point

generation problem cannot be addressed using traditional

GCNs because such networks assume that the connectiv-

ity of a graph is given. As a replacement for the neighbor

term in (3), we define the ancestor in the second term of

(4). This term combines all information from the ancestors

qj through a linear mapping U l
j . Because each ancestor be-

longs to a different feature space at a different layer, our

ancestor term can fuse all information from previous layers

and different feature spaces. To generate the next point, the

current point refers to its ancestors in various feature spaces

to find the best mapping U l
j to combine ancestor informa-

tion effectively. By using this new ancestor term, our tree-

GAN obtains several desirable mathematical properties, as

explained in Section 5. Fig.4 illustrates the graph convolu-

tion process with the ancestor term.

4.2. Branching

Branching is a procedure for increasing the total number

of points and is similar to up-sampling in 2D convolution.

In branching, V l+1
i transforms a single point pli ∈ R3 into

dl child points, where [V l+1
i · pli] ∈ R3×dl . Therefore,

pl+1
j = [V l+1

i · pli]j , for j = 1, · · · , dl (6)

where [A]j denotes the j-th column of matrix A. Then, the

total number of points in the (l + 1)-th layer is |pl| × dl,

where |pl| is the number of points in the l-th layer. In our

experiments, we use different branching degrees for differ-

ent layers (e.g., {dl}
7
l=1 = {1, 2, 2, 2, 2, 2, 64}). Note that

the number of points in the final layer is
∏7

l=1 dl = 2048.

5. Mathematical Properties

In this section, we mathematically analyze the geomet-

ric relationships between generated points and demonstrate
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how these relationships are formulated in the output Eu-

clidean space via tree-structured graph convolutions.

Proposition 1. Let pLs and pLd in (4) be generated points

that share the same parents and different parents, respec-

tively, with pLi in the final layer L. Let Sl
i in (5) be the loop

of point pli at the l-th layer. Hereafter, we omit the super-

scripts of pls and Sl
i if the superscript l indicates the final

layer L. Then,

‖ps − pi‖
2
= ‖Ss − Si‖

2
, (7)

and

‖pd − pi‖
2 ≤

L−1
∑

l=1

∥

∥

∥S
l
Al(pd)

− Sl
Al(pi)

∥

∥

∥

2

+ ‖Sd − Si‖
2
,

(8)

where Al(p) are all ancestors of point p in the l-th layer.

For simplicity, we ignore the branch process and U l
j in (5).

Based on Proposition 1, we can prove that following two

statements are true:

• The geometric distance between two points is de-

termined by the number of shared ancestors. If two

points pd and pi have different ancestors, then the geo-

metric distance between these points is calculated as the

sum of differences between their ancestors in each layer

l

(

i.e.,
∥

∥

∥Sl
Al(pd)

− Sl
Al(pi)

∥

∥

∥

2

in (8)

)

and the differences

between their loops
(

i.e., ‖Sd − Si‖
2

in (8)
)

. Thus, as

their ancestors become increasingly different, the geomet-

ric distance between two points increases.

• Geometrically related points share the same ancestors.

If two points ps and pi share the same ancestors, the ge-

ometric distance between these points is affected by only

their loops, as shown in (7). Thus, the geometric distance

between points with the same ancestors in (7) can decreases

compared to that between points with different ancestors in

(8) as

∥

∥

∥Sl
Al(ps)

− Sl
Al(pi)

∥

∥

∥

2

= 0.

Based on these two properties, our tree-GAN can gen-

erate semantic parts of objects, as shown in Fig.5, where

points with the same ancestors are assumed to belong to the

same parts of objects. We will explore this part generation

problem for the proposed tree-GAN in Section 7.1.

6. Fréchet Point Cloud Distance

For quantitative comparisons between GANs, we require

evaluation metrics that can accurately measure the quality

of the 3D point clouds generated by GANs. In the case of

2D data generation problems, FID [17] is the most common

metric. FID adopts pre-trained inception V3 models [39] to

utilize their feature spaces for evaluation. Although the con-

ventional metrics proposed by Achlioptas et al. [1] can be

used to evaluate the quality of generated points by directly

measuring matching distances between real and generated

point clouds, they can be considered as sub-optimal metrics

because the goal of a GAN is not to generate the similar

samples (e.g., MMD or CD) but to generate synthetic prob-

ability measures that are as close as possible to real proba-

bility measures. This perspective has been explored in un-

supervised 2D image generation tasks using GANs [32, 17].

Therefore, we propose a novel evaluation metric for gener-

ated 3D point clouds called FPD.

Similar to FID, the proposed FPD calculates the 2-

Wasserstein distance between real and fake Gaussian mea-

sures in the feature spaces extracted by PointNet [29] as

follows:

FPD(P,Q) = ‖mP −mQ‖
2
2 +Tr(ΣP +ΣQ − 2(ΣPΣQ)

1

2 ),
(9)

where mP and ΣP are the mean vector and covariance ma-

trix of the points calculated from real point clouds {x}, re-

spectively, and mQ,ΣQ are the mean vector and covariance

matrix calculated from generated point clouds {x′}, respec-

tively, where x ∼ P and x′ = G(z) ∼ Q. In (9), Tr(A)
is the sum of the elements along the main diagonal of ma-

trix A. In this paper, for evaluation purposes, we use both

conventional evaluation metrics [1] and the proposed FPD.

7. Experimental Results

Implementation details: We used the Adam optimizer

for both the generator and discriminator networks with a

learning rate of α = 10−4 and other coefficients of β1 =
0 and β2 = 0.99. In generator, we used LeakyReLU as

a nonlinearity function without batch normalization. The

network architecture of discriminator was the same as that

in r-GAN [1]. The gradient penalty coefficient was set to 10
and the discriminator was updated five times per iteration,

while the generator was updated one time per iteration. As

shown in Fig.2, a latent vector z ∈ R96 was sampled from

a normal distribution N (0, I) ) to act as an input. Seven

layers (L = 7) were used for the TreeGCN. The loop term

of the TreeGCN in (5) had K = 10 supports. The total

number of points in the final layer was set to n = 2048.

Comparison: There are only two conventional GANs for

3D point cloud generation: r-GAN [1] and the GAN pro-

posed by Valsesia et al. [40]. Thus, the proposed tree-GAN

was compared to these two GANs. While the conventional

GANs in [40, 1] train separate networks for each class, our

tree-GAN trains only a single network for multiple classes

of objects.

Evaluation metrics: We evaluated the tree-GAN using

ShapeNet1, which is a large-scale dataset of 3D shapes,

containing 16 object classes. Evaluations were conducted

in terms of the proposed FPD (Section 6) and the metrics

1https://www.shapenet.org/

3863



Figure 5. Semantic part generation and interpolation results of our tree-GAN. Red and blue point clouds are generated from different

ancestors in the tree, which form geometrically different families of points. The leftmost and rightmost point clouds of the airplanes were

generated from different noise inputs. The middle airplanes were obtained by interpolating between the leftmost and rightmost point clouds

based on latent space representations.

used by Achlioptas et al [1]. As a reference model for

FPD, we used the classification module of PointNet [29] be-

cause it can handle partial inputs of objects. This property is

suitable for FPD because generated point clouds gradually

form shapes, meaning point clouds can be partially com-

plete during training. For the implementation of FPD, we

first trained a classification module for 40 epochs to attain

an accuracy of 98% for classification tasks. We then ex-

tracted a 1808-dimensional feature vector from the output

of the dense layers to calculate the mean and covariance in

(9).

7.1. Ablation Study

We analyze the proposed tree-GAN and examine its

useful properties, namely unsupervised semantic part gen-

eration, latent space representation via interpolation, and

branching.

Unsupervised semantic part generation: Our tree-GAN

can generate point clouds for different semantic parts, even

with no prior knowledge regarding those parts during train-

ing. The tree-GAN can perform this semantic generation

owing to its tree-structured graph convolution, which is a

unique characteristic among GAN-based 3D point cloud

methods. As stated in Proposition 1, the geometric distance

between points is determined by their ancestors in the tree.

Different ancestors imply geometrically different families

of points. Therefore, by selecting different ancestors, our

tree-GAN can generate semantically different parts of point

clouds. Note that these geometric families of points are con-

sistent between different latent code inputs. For example,

let z1, z2 ∼ N (0, I) be sampled latent codes. Let G(z1) =
[p1 p2 . . . p2048] and G(z2) = [q1 q2 . . . q2048] be their

corresponding generated point clouds. Let J be a certain

subset of 2048 point indices. Then, GJ(z1) = [pj ]j∈J de-

notes the subset of G(z1) from the indices J . As shown

in Fig. 5, if we select the same subsets of indices of point

clouds, it results in the same semantic parts, even though the

latent code inputs are different. For example, all red points

indexed by Jh (e.g., GJh(z1) and GJh(z2)) represent the

cockpits of airplanes, while all blue points indexed by Jt

(e.g., GJt(z1) and GJt(z2)) represent the tails of airplanes.

From this ablation study, we can verify that the differ-

ences between ancestors determine the semantic differences

between points and that two points with the same ancestor

(e.g., green and purple points in the left wings in Fig. 5)

maintain their relative distances for different latent codes.

Interpolation: We interpolated 3D point clouds by setting

the input latent code to zα = (1− α)z1 + αz2 based on six

alphas α = [α1, . . . , α6]. The leftmost and rightmost point

clouds of the airplanes in Fig.5 were generated by G(z1)
and G(z2), respectively. Our tree-GAN can also generate

realistic interpolations between two point clouds.

Branching strategy: We conducted the experiments

to show that the convergence dynamics of the proposed

metric is not sensitive to different branching strategies.

Like other experiments, the total number of the gener-

ated points are 2048 but different branching degrees were

set (e.g., {dl}
7
1 = {1, 2, 2, 2, 2, 2, 64}, {1, 2, 4, 16, 4, 2, 2},

{1, 32, 4, 2, 2, 2, 2}). Please refer to convergence graphs in

supplementary materials.

7.2. Comparisons with Other GANs

The proposed tree-GAN was quantitatively and qualita-

tively compared to other state-of-the-art GANs for point

cloud generation, in terms of both accuracy and computa-

tional efficiency. Supplementary materials contain more re-

sults and comparisons for 3D point clouds generation.

Comparisons: Tables 1 and 2 contain quantitative compar-

isons in terms of the metrics used by Achlioptas et al. [1]

(i.e., JSD, MMD-CD, MMD-EMD, COV-CD, and COV-

EMD) and the proposed FPD, respectively. The proposed

tree-GAN consistently outperforms other GANs at a large

margin in terms of all metrics, demonstrating the effective-

ness of the proposed treeGCN.

For qualitative comparisons, we equally divided the en-

tire index set into four subsets and painted the points in

each subset with the same color. Although the real 3D point

clouds were unordered as shown in Figs.1 and 6, our tree-

GAN successfully generated 3D point clouds with intuitive

semantic meaning without any prior knowledge, whereas r-
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Table 1. Quantitative comparison in terms of the metrics used by Achlioptas et al. [1]. Red and blue values denote the best and

the second-best results, respectively. Because the original paper by Valsesia et al. [40] only presented point cloud results for chair and

airplane classes, our tree-GAN was compared to [40] based on these classes. However, we additionally evaluated the proposed tree-GAN

quantitatively for all 16 classes, as shown below. For networks with ⋆, we used results reported in [40]. Higher COV-CD and COV-EMD,

and lower JSD, MMD-CD, and MMD-EMD indicate better methods.

Class Model JSD ↓ MMD-CD ↓ MMD-EMD ↓ COV-CD ↑ COV-EMD ↑
r-GAN (dense)⋆ 0.238 0.0029 0.136 33 13

r-GAN (conv)⋆ 0.517 0.0030 0.223 23 4

Valsesia et al. (no up.)⋆ 0.119 0.0033 0.104 26 20

Valsesia et al. (up.)⋆ 0.100 0.0029 0.097 30 26

Chair

tree-GAN (Ours) 0.119 0.0016 0.101 58 30

r-GAN (dense)⋆ 0.182 0.0009 0.094 31 9

r-GAN (conv)⋆ 0.350 0.0008 0.101 26 7

Valsesia et al. (no up.)⋆ 0.164 010010 0.102 24 13

Valsesia et al. (up.)⋆ 0.083 0.0008 0.071 31 14

Airplane

tree-GAN (Ours) 0.097 0.0004 0.068 61 20

All (16 classes)
r-GAN (dense) 0.171 0.0021 0.155 58 29

tree-GAN (Ours) 0.105 0.0018 0.107 66 39

Table 2. Quantitative comparison in terms of the proposed

FPD. The FPD for the real point clouds was almost nearly zero.

This value can serve as the lower bound for the generated point

clouds. Note that we could not evaluate the GAN proposed by

Valsesia et al. [40] in terms of FPD because the source code was

not available. Better methods have smaller values of FPD.

Class Model FPD ↓
r-GAN 1.860

Chair
tree-GAN (Ours) 0.809

r-GAN 1.016
Airplane

tree-GAN (Ours) 0.439

r-GAN 4.726

All (16 classes) tree-GAN (Ours) 3.600

Real (Low bound) 0

GAN failed to generate semantically ordered point clouds.

Additionally, our tree-GAN could generate detailed and

complex parts of objects, whereas r-GAN generated more

dispersed point distributions. Fig.6 presents qualitative re-

sults of our tree-GAN. The tree-GAN generated realistic

point clouds for multi-object categories and produced very

diverse typologies of point clouds for each class.

Computational cost: In methods using static links for

graph convolution, adjacency matrices are typically used

for the convolution of vertices. Although these methods are

known to produce good results for graph data, prior knowl-

edge regarding connectivity is required. In other methods

that use dynamic links for graph convolution, adjacency ma-

trices must be constructed from vertices to derive connec-

tivity information for every convolution layer instead of us-

ing prior knowledge. For example, let L,B, Vl denote the

number of layers, batch size, and induced vertex size of an

output graph at the l-th layer, respectively. The methods

described above require additional computations to utilize

connectivity information. These computations require time

and memory resources on the order of
∑L

l=1 B × Vl × Vl.

However, our TreeGCN does not require any prior con-

nectivity information like static link methods and does not

require additional computation like dynamic link methods.

Therefore, our network can use time and memory resources

much more efficiently and requires less resources on the or-

der of
∑L

l=1 B × Vl.

8. Conclusion

In this paper, we proposed a generative adversarial net-

work called the tree-GAN that can generate 3D point clouds

in an unsupervised manner. The proposed generator for

tree-GAN, which is called tree-GCN, preforms graph con-

volutions based on tree structures. The tree-GCN utilizes

ancestor information from a tree and employs multiple sup-

ports to represent 3D point clouds. Thus, the proposed tree-

GAN outperforms other GAN based point cloud genera-

tion methods in terms of accuracy and computational effi-

ciency. Through various experiments, we demonstrated that

the tree-GAN can generate semantic parts of objects with-

out any prior knowledge and can represent 3D point clouds

in latent spaces via interpolation.
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Figure 6. Unsupervised 3D point cloud generation results of baseline (i.e. r-GAN [1]) and our tree-GAN. The proposed tree-GAN

generates more accurate and detailed point clouds of objects as comparison with r-GAN, and produces point clouds for each part of the

objects even with no prior knowledge on that part. The point clouds generated by the tree-GAN can represent a variety of geometrical

typologies for each class. The first, second, and third columns show point clouds of ground truth, baseline, and tree-GAN, respectively.
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