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Abstract

Single-frame object detectors perform well on videos

sometimes, even without temporal context. However, chal-

lenges such as occlusion, motion blur, and rare poses of ob-

jects are hard to resolve without temporal awareness. Thus,

there is a strong need to improve video object detection by

considering long-range temporal dependencies. In this pa-

per, we present a light-weight modification to a single-frame

detector that accounts for arbitrary long dependencies in

a video. It improves the accuracy of a single-frame de-

tector significantly with negligible compute overhead. The

key component of our approach is a novel temporal relation

module, operating on object proposals, that learns the simi-

larities between proposals from different frames and selects

proposals from past and/or future to support current pro-

posals. Our final “causal” model, without any offline post-

processing steps, runs at a similar speed as a single-frame

detector and achieves state-of-the-art video object detection

on ImageNet VID dataset.

1. Introduction

Modern single-frame detectors [5, 13, 14, 15] sometimes

perform well on the task of object detection in video even

without any temporal information. However, some chal-

lenges still exist which a single-frame detector cannot re-

solve without looking at temporal context. Those include

occlusion, motion blur, rare poses of object, etc. Thus,

it is a natural desire to modify the single-frame detector

to consider information from more than one frame. Re-

cently, many methods try to use image level information

from nearby frames to help detection. It is important to note

that such methods usually assume that the scene and ob-

jects do not move drastically. For instance, FGFA [26] and

MANet [19] use optical flow from nearby images, STSN [1]

applies deformable convolutions, and D&T [3] computes

dense correlation between frames. Performance of the key

components of these methods (flow field, deformation field,

and correlation, respectively) degrades with time dramat-

ically, making it hard to leverage the relations between

frames that are far apart in time. In those methods, long-

term dependencies are only considered with extra offline

post-processing steps, such as SeqNMS [4]. Moreover, even

for the online mode of those methods, there is a significant

degrade of speed. For example, FGFA and MANet report

2.5 – 3 times slowdown compared to a single-frame detec-

tor. To speed up, many other methods either use a lighter

backbone network such as MobileNet [8] or run a single-

frame detector only at key frames and propagate image-

level features using optical flow [7, 25]. These approaches

usually suffer in accuracy because information is not di-

rectly computed from each frame. By leveraging long-

range temporal relationships between proposals from dif-

ferent frames in a video, we show that we can include long-

term dependencies even without any post-processing steps,

while running online at a similar speed as a single-frame

detector and still achieve state-of-the-art accuracy on Ima-

geNet VID dataset.

Our approach is based on aggregating features from re-

lated parts of a video in order to make a better decision

about whether a putative detection is in fact correct. This

involves determining which parts of a video are related to

a potential detection, weighted averaging of the features for

those parts, and the final detection decision on those up-

dated new features. Our approach is trained end to end, so

the features are learned in order to facilitate both identifying

related parts and to perform detection after related features

are averaged together. We consider region proposals (from

FPN detector [12]) as both potential detections and as po-

tential related parts of a video. It is also possible to use

detector outputs, e.g. from a fast high-recall single-stage

detector. In any case, a significant challenge for consider-

ing long-range temporal relationships is that there are many

possibilities. One key aspect of our approach is that we

decompose the problem of which proposals should support

detections in a frame into computations on small sets (2-3)

of frames, and aggregate the results.

The main component of our method is a novel proposal-
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Figure 1: Overall architecture. A single-frame two-stage detector is modified to include the relation module that updates the

features for proposals in the target frame based on those of proposals in the support frames. For simplicity we show single

support frame t− s, which corresponds to the causal mode with temporal kernel (K = 2, s) where s is the stride. N and M
proposals are selected for the second stage by RPN from target and support frames, respectively. After features are extracted

with ROIAlign, we inject two relation blocks into the prediction head to inform the target frame of support instances. During

inference, the temporal kernel is efficiently applied to multiple strides, gathering rich long-range temporal support.

level temporal relation block that updates the features for

potential detections (proposals) in a target frame by model-

ing appearance relationships between proposals from tar-

get and support frames. This module draws its inspira-

tion from self-attention mechanisms [18] that have recently

been proven to be beneficial for single-frame recognition

[9, 20]. In contrast, we show how to use the relation module

for modeling inter-frame dependencies on object propos-

als, and introduce direct supervision to learn the appearance

affinity. Moreover, we demonstrate that our approach bene-

fits from accumulating long-range temporal relations, while

competing models degrade when attempting to account for

frames more than a fraction of a second apart [1, 3]. Part of

this advantage comes from learning what proposals may be

related to a potential detection based on appearance features

but ignoring location and temporal disparity.

We summarize our contribution as follows:

• a novel proposal-level temporal relation block that

learns appearance similarities, and enriches target fea-

tures using features from support frames;

• a method of applying the relation block to incorporate

long-term dependencies from multiple support frames

in a video;

• online inference with comparable speed as a baseline

single-frame detector;

• thorough experiments of relation graph construction

methods, including new feature normalization and

adding graph supervision to learning.

2. Related work

Single-frame object detection. Single-frame detectors

have been improved dramatically in both accuracy and

speed in the last few years. However these methods lack

temporal awareness to resolve hard cases in videos, such as

occlusion, motion blur, and rare object poses, etc. In our

work, we build on top of a two-stage detector (FPN [12]),

modify the instance-level detection branch by infusing ap-

pearance proximity to proposals from many support frames

and improve the instance features, which yields confident

prediction for the challenging cases in video.

Pixel-level features across frames. There has been a

line of research that augments the single-frame detec-

tor with temporal connections using pixel-level features.

D&T [3] builds a dense correlation map between two fea-

ture maps of consecutive video frames, and exploits in-

stance track ids to learn bounding box frame-to-frame mo-

tion. FGFA [26] uses optical flow to guide the feature prop-

agation, and achieves pixel-to-pixel alignment of features

between frames with proper warping. STSN [1] avoids ex-

plicit optical flow computation, but uses deformable con-

volution. More generally, [20] introduces non-local net-

works to completely drop the locality of estimated corre-

spondences. All of these methods use the relationships of

pixel-level features, which are known to degrade quickly

with time. Indeed, FGFA uses 21 consecutive frames for

feature aggregation, thus looking around for only a frac-

tion of a second. Spatial stride of more than 2 frames re-

duces the accuracy of STSN. Similarly, D&T has a perfor-

mance drop when modeling relationships between frames

that are 10 frames apart rather than immediately consecu-
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tive frames. In contrast to these methods, we learn to relate

fine-grained instance-level appearance features which do

not degrade with time, and deliberately ignore spatial loca-

tion of instances to unleash the use of larger temporal strides

and aggregation over multiple temporal strides. Our module

operates on a few hundreds of proposals per frame, which

allows feature aggregation with the historical information,

and can efficiently back-propagate information down to the

RPN and backbone network end-to-end.

Instance-level features across frames. Modeling rela-

tions between objects has become a growing line of re-

search [9, 17], drawing inspiration from attention mecha-

nism and graph convolution. Recently, [21] has shown that

modeling instance-level feature relationships is important to

achieve state-of-the-art performance for action recognition.

It uses graph convolution with a learnable graph representa-

tion to create a descriptive feature for each clip. Similarly,

we use a learnable graph for modeling appearance proxim-

ity. However, our task is more fine-grained because we per-

form per-instance prediction of object location and class in

each frame, while [21] predicts only class for the video clip.

Long-term instance-level dependencies have been proven

highly important in [22], which is modified from attention-

based non-local block [20]. Our Frozen Support Setting is

inspired by this work, and a lighter model demonstrated im-

provement from using additional frozen network. However,

the final model shows no performance boost with this ap-

proach, while being over 2x slower. Thus, while [22] uses

three different networks to succeed in the task of action

recognition, we can achieve state-of-the-art performance in

video object detection by extracting the features for both

target and support instances within a single network.

Long-term relations are also studied in [23] via spatial-

temporal memory alignment in a recurrent fashion. Support

propagation is done on pixel level, based on local neigh-

bourhood, while our instance-level approach assumes no

notion of locality. [23] reportedly has difficulties with rec-

ognizing fast-moving objects due to challenge of local ap-

pearance feature propagation, but our method is robust to

fast motion according to motion-specific breakdown below.

As mentioned above, the non-local block [20] is origi-

nally proposed for pixel-level aggregation. A similar mech-

anism is applied for instance features in [9] for object de-

tection in a single frame through the use of multiple re-

lation heads. Our relation module has the same place-

ment in architecture. In contrast, we sample supporting

instances in different frames across the temporal dimen-

sion to aggregate long-term relational dependencies. Thus,

while [9] improves instance features from surrounding con-

text within the frame, we aim at boosting detection confi-

dence based on other occurrences of the same instance in

video. Apart from switching to the level of instances, we

also find that performing feature normalization before com-

puting the appearance proximity is important for long-range

connections. Moreover, we add a supervision loss directly

on the graph, which favours high similarity between detec-

tions of the same instance.

Post-processing. Current state-of-the-art methods for video

object detection all leverage pixel-level features [1, 3, 19,

26]. As we have mentioned, those methods only include

relatively short-term dependencies, and their performance

degrades over longer time period. To improve the accu-

racy and account for long-term dependencies, offline post-

processing technique such as SeqNMS [4] is required to

link and to re-score the proposals, where appearance simi-

larity is not considered. In our model, we explicitly consider

the appearance similarity deep into the network by allowing

rich feature support through back-propagation.

3. Method

In this section we present the temporal relation block

with object proposals, describe its integration in a single-

frame detector, and also introduce our training and infer-

ence settings. We define a target frame as a frame where

final prediction is done at the moment. The target frame is

allowed to have multiple support frames, which are used for

strengthening the current proposals.

Our goal is to learn to update instance-level features, and

consequently predictions of the detector while running de-

tection in an online fashion, without any post-processing

steps. In order to achieve that, we learn appearance-based

relations between object proposals.

Appearance-based relation block. Assuming there are

N target and M support proposals with features from

D-dimensional space (Xtarget ∈ R
N×D and Xsupport ∈

R
M×D), we construct an attention mechanism to update

the target features with the attention-weighted average of

the support features. We will index target instances with

index i, and support instances with index j, and thus xi de-

notes row i for matrix Xtarget, and xj — row j for matrix

Xsupport. The overview of the relation block is presented in

Figure 2. First, both target and support features are em-

bedded with a linear layer. Second, both matrices undergo

feature normalization (FeatNorm in the figure), which is

different from previous works where appearance relations

are built as a direct correlation of the embedded features

[9, 20, 22]. We notice that otherwise the correlation is dom-

inated by feature magnitudes rather than the actual relations

(i.e. if both instance i and j are of high magnitude, their

relation is high). This is especially important in ROI-level

features in detection, as those are learned to be biased and

have high magnitude. We experiment with unit-normalized

and zero-centered unit normalized vectors, where the cor-

relation in fact turns into Pearson uncentered and centered

correlation coefficients. The third step is to construct the

appearance relations matrix G (× in the figure) by perform-
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ing simple correlation between all pairs of target features xi

and support features xj :

G = G(Xtarget, Xsupport) : R
N×D ×R

M×D → R
N×M

(1)

Because matrix G is used further for computing atten-

tion weights on the support proposals, we notice that good

properties of G include having high values Gi,j for pro-

posals xi and xj that correspond to the same instance in

the video, and low values Gi,j for unrelated instances. In-

deed, if instance xi is presented in the supporting frames,

the corresponding proposals should be linked and reinforce

it. In order to enforce that constraint, we add a supervision

loss to the graph G (GraphLoss). The motivation described

above best fits into the notion of contrastive loss, which en-

courages small distance between same instances, and large

distance between different instances. L(xi,xj , yi,j) is

1− yi,j
2

d(xi,xj)
2 +

yi,j
2

[max (0, µ− d(xi,xj))]
2
, (2)

where yi,j is a dissimilarity label (i.e., yi,j = 1 if i and j
are different instances and 0 otherwise). Notice that due to

feature normalization, ‖xi‖2 = ‖xj‖2 = 1, and in the case

when graph is correlation of feature pairs, there is a direct

relation between G and d generated by L2 scalar product:

d2(xi,xj) = ‖xi‖
2

2
+ ‖xj‖

2

2
− 2(xi,xj) = 2 (1−Gi,j)

(3)

After the descriptive appearance relations matrix G is

constructed, it is used as a weight in the attention mech-

anism for support features. For that, rows of G are nor-

malized with softmax, forming Ĝ. Due to feature nor-

malization, original values of G are bounded, so we use

multiplicative constant of 10 before the softmax. One can

imagine that if a target instance i has a strong relations

support from proposals j1, j2, . . . , jk, then the values of

Gij1 , Gij2 , . . . , Gijk are high, and only those will “survive”

after the softmax operation. On the other hand, if i has no

corresponding proposals in the supporting frames, then all

values in the i-th row will be low, and the softmax will not

favour any of the supporting instances, thus the target in-

stance will receive simple average support that carries no re-

lational signal. Ĝ is used to aggregate the embedded support

features with a matrix multiplication layer (× in Figure 2),

which after an additional linear layer embedding, form a fi-

nal aggregated support feature matrix of the same size as

the input target feature matrix (the output dimensionality of

the last linear layer is designed to be exactly D). Thus, we

use element-wise sum (+) to update the target features.

Overall, the block is similar to the non-local block

in [20], but with a few differences. First, it is applied to

instances rather than to pixel-level features. Second, target

Figure 2: Relation block: the core component in the new

model. It accepts N ×D target and M ×D support feture

matrices. Both tensors are embedded with linear layers, and

passed through feature normalization layer (unit normaliza-

tion, or zero-centered unit normalization). Pairwise correla-

tions of the normalized features (via their matrix multiplica-

tion ×) constitute N×M graph matrix G. This matrix is su-

pervised, given matched track ids of the proposals to favour

high values for same instances, and low values for differ-

ent. The graph is further normalized row-wise to create an

attention distribution of M support over N target propos-

als. This attention matrix is used as a weight for embedded

support features (bottom-right linear layer) in matrix multi-

plication operator (×). After another transformation, target

features are augmented with element-wise sum +

and support features come from different frames, and are

even allowed to be computed from independent models, as

discussed in the frozen support model setting below. Third,

we add feature normalization, which aids descriptive graph

construction, and allows effective supervision on G.

Until now, we have only discussed how to update target

features based on support proposals. While the target frame

is simply the frame of interest at the moment, there are sev-

eral ways of constructing the set of support frames during

both training and inference, and computing their features.

Causal and Symmetric modes. To pick supporting frames

for a given target frame, we introduce a notion of temporal

kernel. Temporal kernel is a tuple (K, s), denoting size and

stride. The size K is a number of frames that is included in

relation reasoning. Thus, for one selected target frame there

are K − 1 supporting frames. The stride s restricts the K
frames to be sampled at a uniform time spacing of s frames.

We also define two kernel modes for a given target frame

t. In Causal mode the supporting frames are chosen only

from the past: those are t − s, t − 2s, . . . , t − (K − 1)s.

In Symmetric mode, the supporting frames are chosen from
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both the past and the future: t − ⌊K/2⌋s, . . . , t − s, t +
s, . . . , t+⌊K/2⌋s (the kernel size K is assumed to be odd).

Single Model and Frozen Support Model settings. Com-

puting target and support features within a single model is

an attractive choice due to high efficiency. In our Single

Model setting both target and support features are the ROI

features pooled from the same layer and the network trained

end-to-end. However, there are two potential issues. First,

when kernel size is set to K, during training time at least

K frames are processed on one device. Given large im-

age resolution for object detection (images are resized to a

shorter side of 600 pixels), it is only possible to fit a few

images in the memory of a standard GPU, thus the kernel

is limited in size. Second, support feature distribution is

changing during training of the detector, as it is computed

from the same set of parameters as target features. To ad-

dress those, we introduce a Frozen Support Model setting,

where a single-frame pre-trained detector (the frozen sup-

port model) is used to extract instance level support fea-

tures, while the main detector runs single image at a time,

also receiving the fixed support features as additional input.

Notice that during training the Frozen Support Model does

not need to allocate large memory, as no backpropagation is

required, which enables larger kernel size K during train-

ing. In our experiment section we demonstrate that in fact

learning both features from the same model is beneficial,

and our aggregation over different strides levels down the

need for large kernel.

Training and inference. As discussed in Section 2, geo-

metric relations between instances are believed to degrade

with time, even if sophisticated motion propagation meth-

ods are used [1, 3, 26]. In our model, geometric relations

between boxes are intentionally not used in order to enable

capturing long-term dependencies during inference. We

demonstrate the possibility to apply the kernel with large

temporal stride s to capture long-term relations. To that end,

we train a relation module to be agnostic to the temporal

kernel stride s, which enables aggregation across different

temporal strides during inference. Thus, kernel size K is

fixed as a parameter to a model for both training and test-

ing, but the temporal stride is chosen randomly on the fly.

During training, s is chosen once. Notice that the model

is trained with single s due to memory limitations, which

were mentioned above, but the relation module is agnostic

to stride during inference due to random sampling. This

enables aggregation over multiple strides. During infer-

ence, the kernel is applied multiple times for several differ-

ent strides, and feature aggregation is performed. We show

that extending the temporal stride (we use up to s = 256)

not only does not degrade the performance, but shows con-

sistent improvement of the accuracy.

4. Experiments

Dataset. We carry out our main experiments on the Im-

ageNet VID dataset [16]. The training set consists of

3862 video snippets with a total of over a million frames

(1122397). The frames are fully annotated with bound-

ing boxes across 30 object categories. Associated ground

truth track id is used in our contrastive loss to determine

positive and negative pairs during training. There are 555
validations snippets with a total of 176126 frames. As

[1, 3, 10, 11, 26], we train on the intersection of the Ima-

geNet VID and DET sets (using 30 VID classes, the subset

of 200 DET classes). As videos are of varying length, it

is important to balance the number of frames selected as

targets not to overfit to long videos. The same reasoning

applies to the class imbalance in DET. For fair compari-

son, we sample our target frames from the set publicly re-

leased by [26]. At most 15 frames are subsampled from

each video, and DET:VID balance is approximately 1:1.

Detector settings. We build our system on top of the single-

frame FPN detector [12] with ResNet [6] backbones. In our

setting, Feature Pyramid is only used in the Region Proposal

Network, while ROI feature pooling uses only C4 output

(also known as ResNet’s conv4 block). Such a modification

is made in order to make sure that features come from the

same distribution is Equation 1, avoiding the situation when

features for i and j are pooled from different layers of the

pyramid. The default IoU threshold of 0.7 is applied to RPN

proposals. Unless otherwise noted, we use ResNet-50 back-

bone. The final models are reported with ResNet-101 and

ResNeXt32x8d-101 [24]. We follow the established pro-

tocol of using the backbone model pretrained on ImageNet

classification dataset. This makes a fair comparison with the

state-of-the-art methods. We have also experimented with

pretraining our full system on COCO dataset. Although

COCO consists from still images, we can sample the same

image K times to mimic the video frames flow. With that

setting, our ResNet-50 causal model delivers 78.9 mAP, co-

mared to 78.4 mAP as reported in Table 3.

Training. Input images are always resized to have a shorter

side of 600 pixels. The system is trained on 4 GPUs, with

each GPU holding 1 sample. Learning rate starts from

0.0025, and drops by a factor of 10 on iterations 80K and

120K. Iterations stop at 135K. During training, a sample

consists of K frames (the size of the temporal kernel), in-

cluding target frame t, and K − 1 support frames. Ker-

nel stride s is sampled randomly, as our kernel is not only

location-independent, but also temporal stride-agnostic.

In the Single Model setting, for all K frames the back-

bone extracts features, and the RPN yields the proposals.

The bounding box head is run differently for support and

target instances. Support proposals are extracted in the eval-

uation mode. That is, the proposals are not sub-sampled,

and ground truth boxes are not included. We do this in or-
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Figure 3: Accuracy improvement from aggregation over

multiple strides. Using base stride s̃ means applying the

same kernel with strides s̃, . . . , T s̃, followed by average ag-

gregation. Here K = 2, and Causal mode is chosen.

der to match the support distribution between training and

inference modes. Indeed, during inference, targets are not

known, so balanced sub-sampling is not possible. Back-

propagation is still performed through the support features.

In the Frozen Support Model setting, K − 1 support

frames are fed into the frozen model that yields the propos-

als and their features. The main model is run only for the

target frame, while the support features are directly fed into

the relation module. This setting is faster in training for

larger kernels, but needs to run two models for inference,

thus at least 2x slower than the baseline in the end.

Inference with feature aggregation across multiple

strides. During inference we run the model once for the

frame that is currently fed as an input. The relation module

stores a buffer of features that it has seen so far in the cur-

rent video, truncated at the maximum allowed stride. We

apply the kernel multiple times during inference with dif-

ferent strides s. To that end, we introduce base stride s̃,

which is used in the experiments. We say that kernel is

applied T times with base stride s̃ when it is applied with

strides s ∈ {s̃, 2s̃, . . . , T s̃}. Thus, for the kernel with size

K the total number of supporting frames is (K−1)T . In the

Causal mode, support features come from previous frames

that are stored in the buffer, and output for the target frame

is given immediately. In the Symmetric mode, the output

lags behind the input by ⌊K/2⌋max(s) frames. That is,

when frame t arrives, it is stored in the buffer, and target

frame t−⌊K/2⌋max(s) is obtained from the buffer. When

the video ends, the buffer releases all the remaining frames

for final predictions. We pad edges of the video, repeating

first and last frames to get support for all frames.

The features are simply averaged over the T outputs of

the relation module. The effect of this operation is shown

in Figure 3 for base strides s̃ ∈ {1, 10, 16} in Causal mode,

where K = 2. There are two important things that the plot

Uncentered Uncentered Centered Centered no loss

dim=1024 dim=10 dim=10 dim=10

77.5 77.7 78.4 77.4

Table 1: Feature normalization. dim output dimensions are

used in the two linear layers in the bottom-left of Figure 2

for graph construction.

fc6→fc6 fc6→fc7 fc6→{fc6, fc7} fc7→fc7

77.3 77.0 78.4 77.5

Table 2: Various placements of relation blocks in a Single

Model setting. A → B notation means that support features

are taken as an output of layer A, while target features are

from the layer B (A and B are fc6 or fc7 layers of the

prediction head. Notice that fc6 → {fc6, fc7} includes

two relation modules).

baseline causal symmetric frozen support

K = 2 K = 3 K = 11
72.4 78.4 78.7 78.8

Table 3: Causal, Symmetric modes, and Frozen Support

model setting against ResNet-50 single-frame baseline. In

causal mode, K − 1 supporting frames are taken from the

past, while in Symmetric mode ⌊K/2⌋ frames are taken

from both the past and the future. Frozen Support Model

setting is in Symmetric mode and strides [10, 21, 32, 43] are

used for aggregation to avoid frame repetitions.

shows. First, a consistent improvement is gained from in-

cluding more support frames, which saturates after T = 16
for larger s̃. This result is in line with [1, 19, 26]. Second,

increasing temporal stride delivers better performance.

The intuition behind this lies in a simple fact that imme-

diate consecutive frames usually share the detection chal-

lenges (blur, occlusion, etc.), so looking at a larger temporal

window, where detection is potentially easier, is beneficial.

Unlike D&T [3] and STSN [1], our model is capable of

such long-term aggregation, because no spatial consistency

is assumed, and instances support each other based solely

on appearance proximity. Based on the study that is shown

in Figure 3, we choose s̃ = 16 and T = 16 for our Sin-

gle Model experiments that use K = 2 in causal mode and

K = 3 in symmetric mode. In order the frames not to re-

peat, frozen support model uses strides s ∈ [10, 21, 32, 43].

Ablation studies. In Section 3 we argue that feature nor-

malization in Figure 2 is needed to learn meaningful corre-

lations. Moreover, feature normalization allows us to apply

the graph regularization loss. In Table 1 we experiment with

uncentered and zero-centered normalizations. Our zero-

centered normalization uses LayerNorm that includes addi-

tional learnable parameters. We also train a model without
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Figure 4: Support visualization. Shown is Causal mode with K = 2, where temporal kernel is applied multiple times to

the fixed target image (timestep t, on the right) and different support frames t − s. We put the final prediction bounding

boxes in frame t and best supporting proposal in each of the supporting frames. Instances are color-coded. Thus, the cat

in the second row is supported by proposals centered at the same cat, and the same is true for the squirrel. Moreover, in the

third row detected planes have different best support, which hints that our model learns to relate instances rather than classes,

otherwise each plane could have support from a single plane, instead of the plane closest in appearance.

applying loss on the graph.

We notice that the features for the relation module can

come from any instance-level layer that follows ROIAlign

operation. Moreover, as in [9], our layer can be in-

cluded multiple times in the instance prediction head. Ta-

ble 2 shows different placements of the relation module.

Header indicates which layer servers as a source for sup-

port feature, and which – for target (support source layer →
target source layer(s). In one case, the relation module is

applied twice (support from fc6 to fc6 and from fc6 to

fc7). This configuration proves the best results and is used

in our further studies, and in the final model. It is also shown

in Figure 1. As in [9], we also tried using multi-head aggre-

gation inside our relation block, but did not observe any per-

formance boost. Thus, we avoid additional complexity and

claim that multi-stride long-term feature aggregation (Fig-

ure 3) is more important. We compare our ResNet-50 based

models to the single-frame baseline in Table 3.

Support visualization. For insight into which instances

are learned to support putative detections in a target frame,

we show Figure 4. The temporal kernel is applied multi-

ple times in causal mode with K = 2 to the target image

(timestep t, on the right) and different support frames t− s.

Note that target instances receive support from the objects

that are close in appearance, as encouraged by the graph

loss. For example, in the second row, the cat is correctly

linked to itself in the support frames, as is the squirrel. Also,

the planes in the fourth row are supported by the planes with

the same color of the tail.

Final results. Our final models are based on ResNet-101.

The first part of Table 4 shows performance for models,

including ours, with no post-processing. All our models

show significant improvement over the competitors, and

this holds even when heavy post-processing is applied to

the competitors. That is SeqNMS that iteratively finds the

best scoring tube in the video, suppresses other boxes, ad-

justs the scores, and repeats until no boxes are left for all

but D&T. Similarly, D&T iteratively uses Viterbi algorithm

to link propagated boxes into tubes and adjust scores.

In Table 4 we report 80.6 mAP, and the speed of 10 FPS

on Titan X Pascal GPU for the causal model with only one

relation block at fc7 layer. Our single-frame baseline runs

at 14FPS. In the case of ResNet-101 backbone, improve-

ment from using the second block (default setting, as in Fig-

ure 1) is minor, and the final score is 80.7 mAP. In compar-

ison, MANet that is also reasonably fast, reports 78.1 mAP

while running at 5 FPS on the same GPU type. Moreover,

MANet uses 12 nearby frames, which include future frames.

This implies an additional delay to the online video stream.

We simplify our block to match the design of Non-Local
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Model mAP

FGFA [26] 76.3

STSN [1] 78.9

MANet [19] 78.1

D&T loss [3] 75.8

Ours, baseline 75.6

Ours, non-local block 79.0

Ours, causalfc7 80.6

Ours, causal 80.7

Ours, symmetric 81.0

Ours, frozen support 80.6

FGFA [26]+SeqNMS [4] 78.4

STSN [1]+SeqNMS [4] 80.4

MANet [19]+SeqNMS [4] 80.3

D&T [3] (τ = 10) 78.6

D&T [3] (τ = 1) 79.8

FGFA [26]+ [4] (Inception-ResNet) 80.1

D&T [3] (Inception-v4) 82.0

Ours, causal (ResNeXt-101) 83.1

Ours, symmetric (ResNeXt-101) 84.1

Table 4: Comparison to state-of-the-art methods. Except

the last four rows, ResNet-101 backbone is used in all mod-

els. First part of the table shows the competing models with-

out post-processing. Second part represents the boost that

competing models get from heavy offline post-processing.

All our models outperform the competing models without

any additional techniques. The last part shows stronger

backbone architectures, which are reported for the final best

result of each method (all ours have no post-processing).

block [20] by removing feature normalization, graph loss,

and using 512 embedding size. Other settings are the same

(the block is applied to instance features with long-term ag-

gregation). We achieve 79.0 mAP with this. We argue that

most performance gain comes from long-term aggregation,

as shown in Figure 3. But our novel components to the Non-

Local block are important to get the extra +1.7 mAP gain.

The symmetric model is reported with K = 3. The ker-

nel includes one frame from the past, and one from the fu-

ture, and is applied 16 times, resulting in a total of 32 sup-

porting frames, and performing at 81.0 mAP. Both causal

and symmetric modes use the base stride of s̃ = 16. Thus,

the covered temporal range is up to 10 seconds, given that

frames are extracted at 25− 30 FPS in ImageNet VID.

Additionally, we train ResNeXt32x8d-101 [24] back-

bone to compare with the best results reported in [26, 3]

that are also obtained by switching to a better backbone.

Our network outperforms those in causal mode with K = 2,

demonstrating 83.1 mAP with no post-processing involved.

The best result is reported for symmetric mode at 84.1 mAP.

Following the protocol outlined in [26], we provide a

Slow Medium Fast mAP

Ours, baseline 83.6 73.7 53.4 75.6
Ours, non-local block 84.6 78.1 59.1 79.0
Ours, causal 86.3 79.3 62.7 80.7
Ours, symmetric 86.7 79.5 64.2 81.0
Ours, frozen support 84.5 79.2 63.9 80.6

Table 5: Performance breakdown into slow-, medium-, and

fast-moving objects for our ResNet-101 based models.

IoU0.05 IoU0.5 IoU0.75

Ours, baseline 49.9 36.7 11.0
Ours, causal 52.9 39.4 12.0

Table 6: Performance on EPIC KITCHENS dataset.

performance breakdown into slow, medium, and fast objects

in Table 5. All objects are divided into these three categories

based on their average IoU score between the corresponding

instances across nearby frames. Thus, objects with score

> 0.9 are slow, the ones in [0.7, 0.9] are medium, and oth-

ers are fast. Our baseline has 75.6 mAP. So, our causal

mode delivers +5.1 mAP, where most improvement comes

from fast-moving objects (+9.3 mAP). Indeed, fast motion

is the most challenging case for video object detection. Our

model is inherently robust to arbitrary motion pattern (i.e.

relation block has no notion of geometric relationship).

Additional experiments. While most previous works re-

port on ImageNet VID dataset only, we add experiments on

EPIC-KITCHENS [2]. The dataset consists of 272 cook-

ing videos gathered by 32 participants, and has 290 classes

for the active objects (annotation is not dense). We split the

dataset into 217 train, and 55 val videos, and evaluate VOC

mAP across annotated frames at three thresholds. Instance

track ids are not provided in the dataset, so we disable our

graph loss. We see a +2.7 mAP improvement at IoU0.5 due

to the long-term aggregation, as shown in Table 6.

5. Summary

We introduced a novel method of relation reasoning be-

tween object proposals in different frames that allows long-

term feature support in video object detection. The result-

ing detectors better exploit longer-term temporal dependen-

cies than previous work, at lower computational cost, only

a small addition on top of per-frame detection alone. The

system is evaluated in a “causal” setting with high accu-

racy. Our method for long-term relation reasoning between

frames uncovers techniques that may be extended beyond

video detection.
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