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Fig. 1: [Better viewed on-line in color and zoomed in for details] Comparing our Fixed-Point GAN with StarGAN [8], the state of the art

in multi-domain image-to-image translation, by translating images into five domains. Combining the domains may yield a same-domain

(e.g., black to black hair) or cross-domain (e.g., black to blond hair) translation. For clarity, same-domain translations are framed in red

for StarGAN and in green for Fixed-Point GAN. As illustrated, during cross-domain translations, and especially during same-domain

translations, StarGAN generates artifacts: introducing a mustache (Row 1, Col. 2; light blue arrow), changing the face colors (Rows 2–5,

Cols. 2–6), adding more hair (Row 5, Col. 2; yellow circle), and altering the background (Row 5, Col. 3; blue arrow). Our Fixed-Point

GAN overcomes these drawbacks via fixed-point translation learning (see Sec. 3) and provides a framework for disease detection and

localization with only image-level annotation (see Fig. 2).

Abstract

Generative adversarial networks (GANs) have ushered in

a revolution in image-to-image translation. The devel-

opment and proliferation of GANs raises an interesting

question: can we train a GAN to remove an object, if

present, from an image while otherwise preserving the im-

age? Specifically, can a GAN “virtually heal” anyone by

turning his medical image, with an unknown health sta-

tus (diseased or healthy), into a healthy one, so that dis-

eased regions could be revealed by subtracting those two

images? Such a task requires a GAN to identify a minimal

subset of target pixels for domain translation, an ability that

we call fixed-point translation, which no GAN is equipped

with yet. Therefore, we propose a new GAN, called Fixed-

Point GAN, trained by (1) supervising same-domain trans-

lation through a conditional identity loss, and (2) regular-

izing cross-domain translation through revised adversarial,

domain classification, and cycle consistency loss. Based on

fixed-point translation, we further derive a novel framework

for disease detection and localization using only image-

level annotation. Qualitative and quantitative evaluations

demonstrate that the proposed method outperforms the state

of the art in multi-domain image-to-image translation and

that it surpasses predominant weakly-supervised localiza-

tion methods in both disease detection and localization.

Implementation is available at https://github.com/

jlianglab/Fixed-Point-GAN .
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Fig. 2: [Better viewed on-line in color and zoomed in for details] Comparing Fixed-Point GAN with the state-of-the-art image-to-image

translation [8], weakly-supervised localization [37], and anomaly detection [24] for detecting and localizing eyeglasses and diseases using

only image-level annotation. Using disease detection as an example, our approach is to translate any image, diseased or healthy, into

a healthy image, allowing diseased regions to be revealed by subtracting those two images. Through fixed-point translation learning,

our Fixed-Point GAN aims to preserve healthy images during the translation, thereby few differences between the generated (healthy)

images and the original (healthy) images are observed in the difference maps (columns framed in red). For diseased images, owing to the

transformation learning from diseased images to healthy ones, disease locations are revealed in the difference maps (columns framed in

yellow). For comparison, the localized diseased regions are superimposed on the original images (Loc. Columns), showing that Fixed-Point

GAN is more precise than CAM [37] and f-AnoGAN [24] for localizing eyeglasses and diseases (bottom row; detailed in Sec. 4).

1. Introduction

Generative adversarial networks (GANs) [9] have proven

to be powerful for image-to-image translation, such as

changing the hair color, facial expression, and makeup of

a person [8, 6], and converting MRI scans to CT scans for

radiotherapy planning [34]. Now, the development and

proliferation of GANs raises an interesting question: Can

GANs remove an object, if present, from an image while

otherwise preserving the image content? Specifically, can

we train a GAN to remove eyeglasses from any image

of a face with eyeglasses while keeping unchanged those

without eyeglasses? Or, can a GAN “heal” a patient on his

medical image virtually1? Such a task appears simple, but it

actually demands the following four stringent requirements:

• Req. 1: The GAN must handle unpaired images. It may

be too arduous to collect a perfect pair of photos of the

1Virtual healing (see Fig. 6 in Appendix) turns an image (diseased or

healthy) into a healthy image, thereby subtracting the two images reveals

diseased regions.

same person with and without eyeglasses, and it would

be too late to acquire a healthy image for a patient with

an illness undergoing medical imaging.

• Req. 2: The GAN must require no source domain la-

bel when translating an image into a target domain (i.e.,

source-domain-independent translation). For instance, a

GAN trained for virtual healing aims to turn any image,

with unknown health status, into a healthy one.

• Req. 3: The GAN must conduct an identity transforma-

tion for same-domain translation. For “virtual healing”,

the GAN should leave a healthy image intact, injecting

neither artifacts nor new information into the image.

• Req. 4: The GAN must perform a minimal image trans-

formation for cross-domain translation. Changes should

be applied only to the image attributes directly relevant

to the translation task, with no impact on unrelated at-

tributes. For instance, removing eyeglasses should not

affect the remainder of the image (e.g., the hair, face

color, and background), or removing diseases from a dis-
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eased image should not impact the region of the image

labeled as normal.

Currently, no single image-to-image translation method sat-

isfies all aforementioned requirements. The conventional

GANs for image-to-image translation [13], although suc-

cessful, require paired images. CycleGAN [39] mitigates

this limitation through cycle consistency, but it still requires

two dedicated generators for each pair of image domains

resulting a scalability issue due to a requirement for dedi-

cated generators. CycleGAN also fails to support source-

domain-independent translation: selecting the suitable gen-

erator requires labels for both the source and target domain.

StarGAN [8] overcomes both limitations by learning one

single generator for all domain pairs of interest. However,

StarGAN has its own shortcomings. First, StarGAN tends

to make unnecessary changes during cross-domain transla-

tion. As illustrated in Fig. 1, StarGAN tends to alter the face

color, although the goal of domain translation is to change

the gender, age, or hair color in images from the CelebFaces

dataset [20]. Second, StarGAN fails to competently han-

dle same-domain translation. Referring to examples framed

with red boxes in Fig. 1, StarGAN needlessly adds a mus-

tache to the face in Row 1, and unnecessarily alters the hair

color in Rows 2–5, where only a simple identity transfor-

mation is desired. These shortcomings may be acceptable

for image-to-image translation in natural images, but in sen-

sitive domains, such as medical imaging, they may lead to

dire consequences—unnecessary changes and artifacts in-

troduction may result in misdiagnosis. Furthermore, over-

coming the above limitations is essential for adapting GANs

for object/disease detection, localization, segmentation—

and removal.

Therefore, we propose a novel GAN. We call it Fixed-

Point GAN for its new fixed-point2 translation ability,

which allows the GAN to identify a minimal subset of pixels

for domain translation. To achieve this capability, we have

devised a new training scheme to promote the fixed-point

translation during training (Fig. 3-3) by (1) supervising

same-domain translation through an additional conditional

identity loss (Fig. 3-3B), and (2) regularizing cross-domain

translation through revised adversarial (Fig. 3-3A), domain

classification (Fig. 3-3A), and cycle consistency (Fig. 3-3C)

loss. Owing to its fixed-point translation ability, Fixed-

Point GAN performs a minimal transformation for cross-

domain translation and strives for an identity transformation

for same-domain translation. Consequently, Fixed-Point

GAN not only achieves better image-to-image translation

for natural images but also offers a novel framework for dis-

ease detection and localization with only image-level anno-

tation. Our experiments demonstrate that Fixed-Point GAN

2Mathematically, x is a fixed point of function f(·) if f(x) = x. We

borrow the term to describe the pixels to be preserved when applying the

GAN translation function.

significantly outperforms StarGAN over multiple datasets

for the tasks of image-to-image translation and predomi-

nant anomaly detection and weakly-supervised localization

methods for disease detection and localization. Formally,

we make the following contributions:

1. We introduce a new concept: fixed-point translation,

leading to a new GAN: Fixed-Point GAN.

2. We devise a new scheme to train fixed-point translation

by supervising same-domain translation and regulariz-

ing cross-domain translation.

3. We show that Fixed-Point GAN outperforms the state-

of-the-art method in image-to-image translation for

both natural and medical images.

4. We derive a novel method for disease detection and lo-

calization using image-level annotation based on fixed-

point translation learning.

5. We demonstrate that our disease detection and local-

ization method based on Fixed-Point GAN is supe-

rior to not only its counterpart based on the state-of-

the-art image-to-image translation method but also su-

perior to predominant weakly-supervised localization

and anomaly detection methods.

Our Fixed-Point GAN has the potential to exert impor-

tant clinical impact on computer-aided diagnosis in medi-

cal imaging, because it requires only image-level annota-

tion for training. Obtaining image-level annotation is far

more feasible and practical than manual lesion-level anno-

tation, as a large number of diseased and healthy images

can be collected from the picture archiving and communi-

cation systems, and labeled at the image level by analyzing

their radiological reports with NLP. With the availability of

large databases of medical images and their corresponding

radiological reports, we envision not only that Fixed-Point

GAN will detect and localize diseases more accurately, but

also that it may eventually be able to “cure”1, thus segment

diseases in the future.

2. Related Work

Fixed-Point GAN can be used for image-to-image trans-

lation as well as disease detection and localization with only

image-level annotation. Hence, we first compare our Fixed-

Point GAN with other image-to-image translation methods,

and then explain how Fixed-Point GAN differs from the

weakly-supervised lesion localization and anomaly detec-

tion methods suggested in medical imaging.

Image-to-image translation: The literature surrounding

GANs [9] for image-to-image translation is extensive [13,

39, 14, 40, 19, 35, 8, 16]; therefore we limit our discussion

to only the most relevant works. CycleGAN [39] has made

a breakthrough in unpaired image-to-image translation via

cycle consistency. Cycle consistency has proven to be ef-

fective in preserving object shapes in translated images, but
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it may not preserve other image attributes, such as color;

therefore, when converting Monet’s painting to photos (a

cross-domain translation), Zhu et al. [39] imposes an extra

identity loss to preserve the colors of input images. How-

ever, identity loss cannot be used for cross-domain transla-

tion in general, as it would limit the transformation power.

For instance, it would make it impossible to translate black

hair to blond hair. Therefore, unlike CycleGAN, we condi-

tionally incorporate the identity loss only during fixed-point

translation learning for same-domain translations. More-

over, during inference, CycleGAN requires that the source

domain be provided, thereby violating our Req. 2 as dis-

cussed in Sec. 1 and rendering CycleGAN unsuitable for

our purpose. StarGAN [8] empowers a single generator

with the capability for multi-domain image-to-image trans-

lation, and does not require the source domain of the input

image at inference time. However, StarGAN has its own

shortcomings, which violate Reqs. 3 and 4 as discussed in

Sec. 1. Our Fixed-Point GAN overcomes StarGAN’s short-

comings, not only dramatically improving image-to-image

translation but also opening the door to an innovative use of

the generator as a disease detector and localizer (Figs.1-2).

Weakly-supervised localization: Our work is also closely

related to weakly-supervised localization, which, in natu-

ral imaging, is commonly tackled by saliency map [27],

global max pooling [22], and class activation map (CAM)

based on global average pooling (GAP) [37]. In particular,

the CAM technique has recently been the subject of fur-

ther research, resulting in several extensions with improved

localization power. Pinheiro and Collobert [23] replaced

the original GAP with a log-sum-exponential pooling layer,

while other works [28, 36] aim to force the CAM to discover

the complementary parts rather than just the most discrim-

inative parts of the objects. Selvaraju et al. [25] proposed

GradCAM where the weights used to generate the CAM

come from gradient backpropagation; that is, the weights

depend on the input image as opposed to the fixed pre-

trained weights used in the original CAM.

Despite the extensive literature in natural imaging,

weakly supervised localization in medical imaging has

taken off only recently. Wang et al. [33] used the CAM

technique for the first time for lesion localization in chest X-

rays. The following research works, however, either com-

bined the original CAM with extra information (e.g., lim-

ited fine-grained annotation [17, 26, 3] and disease severity-

level [32]), or slightly extended the original CAM with

no significant localization gain. Noteworthy, as evidenced

by [5], the adoption of more advanced versions of the CAM

such as the complementary-discovery algorithm [28, 36]

has not proved promising for weakly-supervised lesion lo-

calization in medical imaging. Different from the previous

works, Baumgartner et al. [4] propose VA-GAN to learn

the difference between a healthy brain and the one affected

by Alzheimer’s disease. Although unpaired, VA-GAN re-

quires that all images be registered; otherwise, it fails to

preserve the normal brain structures (see the appendix for

illustrations). Furthermore, VA-GAN requires the source-

domain label at inference time (input image being healthy

or diseased), thus violating our Req. 2 as listed in Sec. 1.

Therefore, the vanilla CAM remains as a strong perfor-

mance baseline for weakly-supervised lesion localization in

medical imaging.

To our knowledge, we are among the first to develop

GANs based on image-to-image translation for disease de-

tection and localization with image-level annotation only.

Both qualitative and quantitative results suggest that our

image-translation-based approach provides more precise lo-

calization than the CAM-based method [37].

Anomaly detection: Our work may seem related to

anomaly detection [7, 24, 1] where the task is to detect

rare diseases by learning from only healthy images. Chen

et al. [7] use an adversarial autoencoder to learn healthy

data distribution. The anomalies are identified by feeding

a diseased image to the trained autoencoder followed by

subtracting the reconstructed diseased image from the in-

put diseased image. The method suggested by Schlegl et

al. [24] learns a generative model of healthy training data

through a GAN, which receives a random latent vector as in-

put and then attempts to distinguish between real and gener-

ated fake healthy images. They further propose a fast map-

ping that can identify anomalies of the diseased images by

projecting the diseased data into the GAN’s latent space.

Similar to [24], Alex et al. [1] use a GAN to learn a gen-

erative model of healthy data. To identify anomalies, they

scan an image pixel-by-pixel and feed the scanned crops to

the discriminator of the trained GAN. An anomaly map is

then constructed by putting together the anomaly scores by

the discriminator.

However, Fixed-Point GAN is different from anomaly

detectors in both training and functionality. Trained us-

ing only the healthy images, anomaly detectors cannot

distinguish between different types of anomalies, as they

treat all anomalies as “a single category”. In contrast, our

Fixed-Point GAN can take advantage of anomaly labels, if

available, enabling both localization and recognition of all

anomalies. Nevertheless, for a comprehensive analysis, we

have compared Fixed-Point GAN against [24] and [1].

3. Method

In the following, we present a high-level overview of

Fixed-Point GAN, followed by a detailed mathematical de-

scription of each individual loss function.

Like StarGAN, our discriminator is trained to classify

an image as real/fake and its associated domain (Fig. 3-1).

Using our new training scheme, the generator learns both

cross- and same-domain translation, which differs from
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Fig. 3: Fixed-Point GAN training scheme. Similar to StarGAN, our discriminator learns to distinguish real/fake images and classify

the domains of input images (1A–B). However, unlike StarGAN, our generator learns to perform not only cross-domain translations via

transformation learning (2A–B), but also same-domain translations via fixed-point translation learning (3A–C), which is essential for

mitigating the limitations of StarGAN (Fig. 1) and realizing disease detection and localization using only image-level annotation (Fig. 2).

StarGAN, wherein the generator only learns the former.

Mathematically, for any input x from domain cx and tar-

get domain cy , the StarGAN generator learns to perform

cross-domain translation (cx 6= cy), G(x, cy) −→ y′, where

y′ is the image in domain cy . Since cy is selected randomly

during training of StarGAN, there is a slender chance that

cy and cx turn out identical, but StarGAN is not designed to

learn same-domain translation explicitly. The Fixed-Point

GAN generator, in addition to learning the cross-domain

translation, learns to perform the same-domain translation

as G(x, cx) −→ x′.

Our new fixed-point translation learning (Fig. 3-3) not

only enables same-domain translation but also regularizes

cross-domain translation (Fig. 3-2) by encouraging the gen-

erator to find a minimal transformation function, thereby

penalizing changes unrelated to the present domain trans-

lation task. Trained for only cross-domain image trans-

lation, StarGAN cannot benefit from such regularization,

resulting in many artifacts as illustrated in Fig. 1. Con-

sequently, our new training scheme offers three advan-

tages: (1) reinforced same-domain translation, (2) regu-

larized cross-domain translation, and (3) source-domain-

independent translation. To realize these advantages, we

define the loss functions of Fixed-Point GAN as follows:

Adversarial Loss. In the proposed method, the generator

learns the cross- and same-domain translations. To ensure

the generated images appear realistic in both scenarios, the

adversarial loss is revised as follows and the modification is

highlighted in Tab. 1:

Ladv =
∑

c∈{cx,cy}

Ex,c[log (1−Dreal/fake(G(x, c)))]

+ Ex[logDreal/fake(x)]

(1)

Domain Classification Loss. The adversarial loss ensures

the generated images appear realistic, but it cannot guar-

antee domain correctness. As a result, the discriminator is

trained with an additional domain classification loss, which

forces the generated images to be of the correct domain.

The domain classification loss for the discriminator is iden-

tical to that of StarGAN,

Lr
domain = Ex,cx [− logDdomain(cx|x)] (2)

but we have updated the domain classification loss for the

generator to account for both same- and cross-domain trans-

lations, ensuring that the generated image is from the cor-

rect domain in both scenarios:

Lf
domain =

∑

c∈{cx,cy}

Ex,c[− logDdomain(c|G(x, c))] (3)

Cycle Consistency Loss. Optimizing the generator, for un-

paired images, with only the adversarial loss has multiple

possible, but random, solutions. The additional cycle con-

sistency loss (Eq. 4) helps the generator to learn a trans-

formation that can preserve enough input information, such

that the generated image can be translated back to original

domain. Our modified cycle consistency loss ensures that

both cross- and same-domain translations are cycle consis-

tent.

Lcyc = Ex,cx,cy [||G(G(x, cy), cx)− x||1] +

Ex,cx [||G(G(x, cx), cx)− x||1]
(4)

Conditional Identity Loss. During training, StarGAN [8]

focuses on translating the input image to different target do-

mains. This strategy cannot penalize the generator when it

changes aspects of the input that are irrelevant to match tar-

get domains (Fig. 1). In addition to learning a translation

to different domains, we force the generator, using the con-

ditional identity loss (Eq. 5), to preserve the domain iden-

tity while translating the image to the source domain. This

also helps the generator learn a minimal transformation for

translating the input image to the target domain.

Lid =

{

0, c = cy

Ex,c[||G(x, c)− x||1], c = cx
(5)

Full Objective. Combining all losses, the final full objec-

tive function for the discriminator and generator can be de-

scribed by Eq. 6 and Eq. 7, respectively.

LD = −Ladv + λdomainL
r
domain (6)
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Tab. 1: Loss functions in Fixed-Point GAN. Terms inherited from

StarGAN are in black, while highlighted in blue are our modifica-

tions to mitigate StarGAN’s limitations (Fig. 1).

LG = Ladv + λdomainL
f
domain + λcycLcyc + λidLid (7)

where λdomain, λcyc, and λid determine the relative impor-

tance of the domain classification loss, cycle consistency

loss, and conditional identity loss, respectively. Tab. 1 sum-

marizes the loss functions of Fixed-Point GAN.

4. Applications

4.1. MultiDomain ImagetoImage Translation

Dataset. To compare the proposed Fixed-Point GAN with

StarGAN [8] (the current state of the art), we use the Celeb-

Faces Attributes (CelebA) dataset [20]. This dataset is com-

posed of a total of 202,599 facial images of various celebri-

ties, each with 40 different attributes. Following StarGAN’s

public implementation [8], we adopt 5 domains (black

hair, blond hair, brown hair, male, and young)

for our experiments and pre-process the images by crop-

ping the original 178×218 images into 178×178 and then

re-scaling to 128×128. We use a random subset of 2,000

samples for testing and the remainder for training.

Method and Evaluation. We evaluate the cross-domain

image translation quantitatively by classification accuracy

and qualitatively by changing one attribute (e.g. hair color,

gender, or age) at a time from the source domain. This step-

wise evaluation facilitates tracking changes to image con-

tent. We also evaluate the same-domain image translation

both qualitatively and quantitatively by measuring image-

level L1 distance between the input and translated images.

Results. Fig. 1 presents a qualitative comparison between

StarGAN and Fixed-Point GAN for multi-domain image-

to-image translation. For the cross-domain image transla-

tion, StarGAN tends to make unnecessary changes, such

as altering the face color when the goal of translation is to

change the gender, age, or hair color (Rows 2–5 in Fig. 1).

Fixed-Point GAN, however, preserves the face color while

successfully translating the images to the target domains.

Furthermore, Fixed-Point GAN preserves the image back-

ground (marked with a blue arrow in Row 5 of Fig. 1), but

StarGAN fails to do so. This capability of Fixed-Point GAN

is further supported by our quantitative results in Tab. 2.

Real Images (Acc.) Our Fixed-Point GAN StarGAN

94.5% 92.31% 90.82%

Tab. 2: Comparison between the quality of images generated by

StarGAN and our method. For this purpose, we have trained a

classifier on all 40 attributes of CelebA dataset, which achieves

94.5% accuracy on real images, meaning that the generated im-

ages should also have the same classification accuracy to look as

realistic as the real images. As seen, the quality of generated im-

ages by Fixed-Point GAN is closer to real images, underlining the

necessity and effectiveness of fixed-point translation learning in

cross-domain translation.

Autoencoder Our Fixed-Point GAN StarGAN

0.11 ± 0.09 0.36 ± 0.35 2.40 ± 1.24

Tab. 3: Image-level L1 distance comparison for same-domain

translation. Fixed-Point GAN achieves significantly lower same-

domain translation error than StarGAN, approximating the lower

bound error that can be achieved by a stand-alone autoencoder.

The superiority of Fixed-Point GAN over StarGAN is

even more striking for the same-domain image translation.

As shown in Fig. 1, Fixed-Point GAN effectively keeps the

image content intact (images outlined in green) while Star-

GAN undesirably changes the image content (images out-

lined in red). For instance, the input image in the fourth

row of Fig. 1 is from the domains of blond hair, female, and

young. The same domain translation with StarGAN results

in an image in which the hair and face colors are signifi-

cantly altered. Although this color is closer to the average

blond hair color in the dataset, it is far from that in the in-

put image. Fixed-Point GAN, with fixed-point translation

ability, handles this problem properly. Further qualitative

comparisons between StarGAN and Fixed-Point GAN are

provided in the appendix.

Tab. 3 presents a quantitative comparison between Star-

GAN and Fixed-Point GAN for the task of same-domain

image translation. We use the image-level L1 distance be-

tween the input and generated images as the performance

metric. To gain additional insights into the comparison,

we have included a dedicated autoencoder model that has

the same architecture as the generator used in StarGAN

and Fixed-Point GAN. As seen, the dedicated autoencoder

has an image-level L1 reconstruction error of 0.11±0.09,

which can be regarded as a technical lower bound for the re-

construction error. Fixed-Point GAN dramatically reduces

the reconstruction error of StarGAN from 2.40±1.24 to

0.36±0.35. Our quantitative comparisons are commensu-

rate with the qualitative results shown in Fig. 1.

4.2. Brain Lesion Detection and Localization with
ImageLevel Annotation

Dataset. We extend Fixed-Point GAN from an image-to-

image translation method to a weakly supervised brain le-
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(a) Image-level detection

on synthetic images

(b) Lesion-level localization

on synthetic images

(c) Image-level detection

on real images

(d) Lesion-level localization

on real images

Fig. 4: Comparing Fixed-Point GAN with StarGAN, f-AnoGAN, GAN-based brain lesion detection method by Alex, et al. [1], and ResNet-

50 on BRATS 2013. ROCs for image-level detection and FROCs for lesion-level localization on synthetic brain images are provided in (a),

(b) respectively and on real brain images in (c), (d) respectively.

sion detection and localization method, which requires only

image-level annotation. As a proof of concept, we use the

BRATS 2013 dataset [21, 15]. BRATS 2013 consists of

synthetic and real images. We randomly split the synthetic

and real images at the patient-level into 40/10 and 24/6 for

training/testing, respectively. More details about the dataset

selection are provided in the appendix.

Method and Evaluation. For training we use only image-

level annotation (healthy/diseased). Fixed-Point GAN is

trained for the cross-domain translation (diseased images to

healthy images and vice versa) as well as the same-domain

translation using the proposed method. At inference time,

we focus on translating any images into the healthy domain.

The desired GAN behaviour is to translate diseased images

to healthy ones while keeping healthy images intact. Hav-

ing translated the images into the healthy domain, we then

detect the presence and location of a lesion in the difference

image by subtracting the translated healthy image from the

input image. We refer the resultant image as difference map.

We evaluate the difference map at two different levels:

(1) image-level disease detection and (2) lesion-level local-

ization. For image-level detection, we take the maximum

value across all pixels in the difference map as the detection

score. We then use receiver operating characteristics (ROC)

analysis for performance evaluation. For the lesion-level

localization task, we first binarize the difference maps us-

ing color quantization followed by a connected component

analysis. Each connected component with an area larger

than 10 pixels is considered as a lesion candidate. A lesion

is considered “detected” if the centroid of at least a lesion

candidate falls inside the lesion ground truth.

We evaluate Fixed-Point GAN in comparison with Star-

GAN [8], CAM [37], f-AnoGAN [24], GAN-based brain le-

sion detection method proposed by Alex, et al. [1]. Compar-

ison with StarGAN allows us to study the effect of the pro-

posed fixed-point translation learning. We choose CAM for

comparison because it covers an array of weakly-supervised

localization works in medical imaging [33, 32, 12], and as

discussed in Sec. 2, it is arguably a strong performance

baseline for comparison. We train a standard ResNet-50

classifier [11] and compute CAM following [37] for local-

ization, referring as ResNet-50-CAM in the rest of this pa-

per. To get higher resolution CAMs, we truncate ResNet-50

at three levels and report localization performance in 8×8,

16×16, and 32×32 feature maps. Although [24] and [1]

stand as state of the art for anomaly detection, we select

them for more comparison since they also fulfill the task

requirements. We use the official implementation of [24].

Results. Fig. 4a compares the ROC curves of Fixed-Point

GAN and the competing methods for image-level lesion de-

tection using synthetic MRI images. In terms of the area

under the curve (AUC), Fixed-Point GAN achieves compa-

rable performance with ResNet-50 classifier, but substan-

tially outperforms StarGAN, f-AnoGAN, and Alex, et al.

Note that, for f-AnoGAN, we use the average activation of

difference maps as the detection score, because we find it

more effective than using the maximum activation of differ-

ence maps and also more effective than the anomaly scores

proposed in the original work.

Fig. 4b shows the Free-Response ROC (FROC) analysis

for synthetic MR images. Our Fixed-Point GAN achieves

a sensitivity of 84.5% at 1 false positive per image, out-

performing StarGAN, f-AnoGAN, and Alex, et al. with the

sensitivity levels of 13.6%, 34.6%, 41.3% at the same level

of false positive. The ResNet-50-CAM at 32x32 resolu-

tion achieves the best sensitivity level of 60% at 0.037 false

positives per image. Furthermore, we compare ResNet-50-

CAM with Fixed-Point GAN using mean IoU (intersection

over union) score, obtaining mean IoU of 0.2609±0.1283

and 0.3483±0.2420, respectively. Similarly, ROC and

FROC analysis on real MRI images are provided in Fig. 4c

and Fig. 4d, respectively, showing that our method is out-

performed at the low false positive range, but achieves a

significantly higher sensitivity overall. Qualitative compar-

isons between StarGAN, Fixed-Point GAN, CAM, and f-

AnoGAN for brain lesion detection and localization are pro-
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vided in Fig. 2. More qualitative comparisons are available

in the appendix.

4.3. Pulmonary Embolism Detection and Localiza
tion with ImageLevel Annotation

Dataset. Pulmonary embolism (PE) is a blood clot that

travels from a lower extremity source to the lung, where it

causes blockage of the pulmonary arteries. It is a major na-

tional health problem, but computer-aided PE detection and

localization can improve diagnostic capabilities of radiol-

ogists for the detection of this disorder, leading to earlier

and effective therapy for this potentially deadly disorder.

We utilize a database consisting of 121 computed tomog-

raphy pulmonary angiography (CTPA) scans with a total

of 326 emboli. The dataset is pre-processed as suggested

in [38, 31, 30], divided at the patient-level into a training

set with 3,840 images, and a test set with 2,415 images.

Further details are provided in the appendix.

Method and Evaluation. As with brain lesion detection

and localization (Sec. 4.2), we use only image-level annota-

tions during training. At inference time, we always remove

PE from the input image (i.e. translating both PE and non-

PE images into the non-PE domain) irrespective of whether

PE is present or absent in the input image. We follow the

same procedure described in Sec. 4.2 to generate the differ-

ence maps, detection scores, and ROC curves. Note that,

since each PE image has an embolus in its center, an em-

bolus is considered as “detected” if the corresponding PE

image is correctly classified; otherwise, the embolus is con-

sidered “missed”. As such, unlike Sec. 4.2, we do not pur-

sue a connected component analysis for PE localization.

We compare our Fixed-Point GAN with StarGAN and

ResNet-50. We have excluded GAN-based method [1] and

f-AnoGAN from the quantitative comparisons because, de-

spite our numerous attempts, the former encountered con-

vergence issues and the latter produced poor detection and

localization performance. Nevertheless, we have provided

images generated by f-AnoGAN in appendix.

Results. Fig. 5a shows the ROC curves for image-level PE

detection. Fixed-Point GAN achieves an AUC of 0.9668

while StarGAN and ResNet-50 achieve AUC scores of

0.8832 and 0.8879, respectively. Fig. 5b shows FROC

curves for PE localization. Fixed-Point GAN achieves a

sensitivity of 97.2% at 1 false positive per volume, outper-

forming StarGAN and ResNet-50 with sensitivity levels of

of 88.9% and 80.6% at the same level of false positives per

volume. The qualitative comparisons for PE removal be-

tween StarGAN and Fixed-Point GAN are given in Fig. 2.

4.4. Discussions

In Fig. 4, we show that StarGAN performs poorly for

image-level brain lesion detection, because StarGAN is

designed to perform general-purpose image translations,

(a) Image-level detection (b) Lesion-level localization

Fig. 5: Comparing Fixed-Point GAN with StarGAN, f-AnoGAN,

and ResNet-50 on the PE dataset. (a) ROCs for image-level detec-

tion. (b) FROCs for lesion-level localization.

rather than an image translation suitable for the task of dis-

ease detection. Owing to our new training scheme, Fixed-

Point GAN can achieve precise image-level detection.

Comparing Fig. 4 and 5, we observe that StarGAN per-

forms far better for PE than brain lesion detection. We be-

lieve this is because brain lesions can appear anywhere in

the input images, whereas PE always appears in the center

of the input images, resulting in a less challenging prob-

lem for StarGAN to solve. Nonetheless, Fixed-Point GAN

outperforms StarGAN for PE detection, achieving an AUC

score of 0.9668 compared to 0.8832 by StarGAN.

Referring to Fig. 2, we further observe that neither Star-

GAN nor Fixed-Point GAN can completely remove large

objects, like sunglasses or brain lesions, from the images.

Nevertheless, for image-level detection and lesion-level lo-

calization, it is sufficient to remove the objects partially, but

precise lesion-level segmentation using an image-to-image

translation network requires complete removal of the object.

This challenge is the focus for our future work.

5. Conclusion

We have introduced a new concept called fixed-point

translation, and developed a new GAN called Fixed-Point

GAN. Our comprehensive evaluation demonstrates that our

Fixed-Point GAN outperforms the state of the art in image-

to-image translation and is significantly superior to predom-

inant anomaly detection and weakly-supervised localization

methods in both disease detection and localization with only

image-level annotation. The superior performance of Fixed-

Point GAN is attributed to our new training scheme, real-

ized by supervising same-domain translation and regulariz-

ing cross-domain translation.
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