
Disentangling Monocular 3D Object Detection

Andrea Simonelli ,⋆, Samuel Rota Bulò , Lorenzo Porzi , Manuel López-Antequera , Peter Kontschieder

Mapillary Research ⋆University of Trento, Fondazione Bruno Kessler

research@mapillary.com

Figure 1: Results obtained from our single image, monocular 3D object detection network MonoDIS on a KITTI3D test

image with corresponding birds-eye view, showing its ability to estimate size and orientation of objects at different scales.

Abstract

In this paper we propose an approach for monocular 3D

object detection from a single RGB image, which leverages

a novel disentangling transformation for 2D and 3D detec-

tion losses and a novel, self-supervised confidence score for

3D bounding boxes. Our proposed loss disentanglement

has the twofold advantage of simplifying the training dy-

namics in the presence of losses with complex interactions

of parameters, and sidestepping the issue of balancing in-

dependent regression terms. Our solution overcomes these

issues by isolating the contribution made by groups of pa-

rameters to a given loss, without changing its nature. We

further apply loss disentanglement to another novel, signed

Intersection-over-Union criterion-driven loss for improving

2D detection results. Besides our methodological innova-

tions, we critically review the AP metric used in KITTI3D,

which emerged as the most important dataset for compar-

ing 3D detection results. We identify and resolve a flaw in

the 11-point interpolated AP metric, affecting all previously

published detection results and particularly biases the re-

sults of monocular 3D detection. We provide extensive ex-

perimental evaluations and ablation studies and set a new

state-of-the-art on the KITTI3D Car class.

1. Introduction

Recent developments in object recognition [17] have

led to near-human performance on monocular 2D detec-

tion tasks. For applications with given, realistic accuracy

requirements or constraints on computational budget, it

is possible to choose general-purpose 2D object detectors

from a large pool [26, 18, 25, 16, 12].

The performance situation considerably changes in the

3D object detection case. Even though there are promising

methods based on multi-sensor fusion (usually exploiting

LIDAR information [14, 33, 30] next to RGB images), 3D

detection results produced from a single, monocular RGB

input image lag considerably behind. This can be attributed

to the ill-posed nature of the problem, where a lack of ex-

plicit knowledge about the unobserved depth dimension in-

troduces ambiguities in 3D-to-2D mappings and hence sig-

nificantly increases the task complexity.

To still enable 3D object detection from monocular im-

ages, current works usually make assumptions about the

scene geometry, camera setup or the application (e.g. that

cars cannot fly [24]). The implementation of such priors de-

termines the encoding of extent and location/rotation of the

3D boxes, the corresponding 2D projections or their 3D box

center depths. The magnitudes of these parameters have dif-

ferent units and therefore non-comparable meanings, which

can negatively affect the optimization dynamics when er-

ror terms based on them are directly combined in a loss

function. As a consequence, state-of-the-art, CNN-based

monocular 3D detection methods [19, 24] report to train

their networks in a stage-wise way. First the 2D detectors

are trained until their performance stabilizes, before 3D rea-

soning modules can be integrated. While stage-wise train-

ing per se is not unusual in the context of deep learning, it

could be an indication that currently used loss functions are

yet sub-optimal.

A significant amount of recent works are focusing their

experimental analyses on the KITTI3D dataset [6], and in

1991



particular its Car category [19, 24, 27, 34]. The avail-

ability of suitable benchmark datasets confines the scope

of experimental analyses and when only few datasets are

available, progress in the research field is strongly tied to

the expressiveness of used evaluation metrics. KITTI3D

adopted the 11-point Interpolated Average Precision met-

ric [29] used in the PASCAL VOC2007 [5] challenge. We

found a major flaw in the metric where using a single, con-

fident detection result per difficulty category (KITTI3D dis-

tinguishes between easy, moderate and hard samples) suf-

fices to obtain AP scores of ≈ 9% on a dataset level, which

is up to 3× higher than the performance reported by recent

works [3, 2, 9, 34].

The contributions of our paper disentangle the task of

monocular 3D object detection at several levels. Our major

technical contribution disentangles dependencies of differ-

ent parameters by isolating and handling parameter groups

individually at a loss-level. This overcomes the issue of

non-comparability for parameter magnitudes, while pre-

serving the nature of the final loss. Our loss disentan-

glement significantly improves losses on both, 2D and 3D

tasks. It also enables us to effectively train the entire CNN

architecture (2D+3D) together and end-to-end, without the

need of hyperparameter-sensitive, stage-wise training or

warm-up phases. As additional contributions we i) lever-

age 2D detection performance through a novel loss based

on a signed Intersection-over-Union criterion and ii) intro-

duce a loss term for predicting detection confidence scores

of 3D boxes, learned in a self-supervised way.

Another major contribution is a critical review of the

3D metrics used to judge progress in monocular 3D object

detection, with particular focus on the predominantly used

KITTI3D dataset. We observe that a flaw in the definition of

the 11-point, interpolated AP metric significantly biases 3D

detection results at the performance level of current state-

of-the-art methods. Our applied correction, despite bring-

ing all works evaluating on KITTI3D back down to earth,

more adequately describes their true performance.

For all our contributions, we provide ablation studies on

the Car category of the KITTI3D dataset. Fair comparisons

indicate that our work considerably improves over current

monocular 3D detection methods.

2. Related Work

We review the most recent, related works from 3D ob-

ject detection and group them according to the data modal-

ities used therein. After discussing RGB-only works just

like ours, we list works exploiting also depth and/or syn-

thetic data augmentation or 3D shape information, before

finalizing with a high-level summary about LIDAR and/or

stereo-based approaches.

RGB images only. Deep3DBox [20] proposed to estimate

full 3D pose and object dimensions from a 2D box by ex-

ploiting constraints from projective geometry. The core idea

is that the perspective projection of a 3D bounding box

should fit tightly to at least one side of its corresponding

2D box detection. In SSD-6D [10] an initial 2D detection

hypothesis is lifted to provide 6D pose of 3D objects by

using structured discretizations of the full rotational space.

3D model information is learned by only training from syn-

thetically augmented datasets. OFTNet [27] introduces an

orthographic feature transform, mapping features extracted

from 2D to a 3D voxel map. The voxel map’s features

are eventually reduced to 2D (birds-eye view) by integra-

tion along the vertical dimension, and detection hypotheses

are efficiently processed by exploiting integral-image rep-

resentations. Mono3D [2] emphasized on generation of 3D

candidate boxes, scored by different features like class se-

mantics, contour, shape and location priors. Even though at

test time the results are produced based on single RGB im-

ages only, their method also requires semantic and instance

segmentation results in input. The basic variant (w/o us-

ing depth) of ROI-10D [19] proposes a novel loss to lift 2D

detection, orientation and scale into 3D space that can be

trained in an end-to-end fashion. MonoGRNet [24] is the

current state-of-the-art for RGB-only input, using a CNN

comprised of four sub-networks for 2D detection, instance

depth estimation, 3D location estimation and local corner

regression, respectively. The three latter sub-networks em-

phasize on geometric reasoning, i.e. instance depth esti-

mation predicts the central 3D depth of the nearest object

instance, 3D location estimation seeks for the 3D bound-

ing box center by exploiting 3D to 2D projections at given

instance depth estimations, and local corner regression di-

rectly predicts the eight 3D bounding box corners in a lo-

cal (or allocentric [11, 19] way). It is relevant to mention

that [24] reports that training was conducted stage-wise:

First, the backbone is trained together with the 2D detec-

tor using Adam. Next, the geometric reasoning modules

are trained (also with Adam). Finally, the whole network is

trained end-to-end using stochastic gradient descent.

Including depth. An expansion stage of ROI-10D [19]

takes advantage of depth information provided by Su-

perDepth [22], which itself is learned in a self-supervised

manner. In [34], a multi-level fusion approach is proposed,

exploiting disparity estimation results from a pre-trained

module during both, the 2D box proposal generation stage

as well as the 3D prediction part of their network.

Including 3D shape information. 3D-RCNN [11] exploits

the idea of using inverse graphics for instance-level, amodal

3D shape and pose estimation of all object instances per

image. They propose a differentiable Render-and-Compare

loss, exploiting available 2D annotations in existing datasets

for guiding optimization of 3D object shape and pose.

In [35], the recognition task is tackled by jointly reasoning

1992



about the 3D shape of multiple objects. Deep-MANTA [1]

uses 3d CAD models and annotated 3d parts in a coarse-to-

fine localization process. The work in [21] encodes shape

priors using keypoints for recovering the 3D pose and shape

of a query object. In Mono3D++ [9], the 3D shape and pose

for cars is provided by using a morphable wireframe, and it

optimizes projection consistency between generated 3D hy-

potheses and corresponding, 2D pseudo-measurements.

LIDAR and/or stereo-based. 3DOP [3] exploits stereo im-

ages and prior knowledge about the scene to directly reason

in 3D. Stereo R-CNN [13] tackles 3D object detection by

exploiting stereo imagery and produces stereo boxes, key-

points, dimensions and viewpoint angles, summarized in a

learned 3D box estimation module. In MV3D [4], a sensor-

fusion approach for LIDAR and RGB images is presented,

approaching 3D object proposal generation and multi-view

feature fusion via individual sub-networks. Conversely,

Frustrum-PointNet [23] directly operates on LIDAR point

clouds and aligns candidate points provided from corre-

sponding 2D detections for estimating the final, amodal

3D bounding boxes. PointRCNN [30] describes a 2-stage

framework where the first stage provides bottom-up 3D pro-

posals and the second stage refines them in canonical coor-

dinates. RoarNet [31] applies a 2D detector to first estimate

3D poses of objects from a monocular image before pro-

cessing corresponding 3D point clouds to obtain the final

3D bounding boxes.

3. Task Description

We address the problem of monocular 3D object detec-

tion, where the input is a single RGB image and the output

consists in a 3D bounding box, expressed in camera coor-

dinates, for each object that is present in the image (see,

Fig. 1). As opposed to other methods in the literature, we do

not take additional information as input like depth obtained

from LIDAR or other supervised or self-supervised monoc-

ular depth estimators. Also the training data consists solely

of RGB images with corresponding annotated 3D bounding

boxes. Nonetheless, we require a calibrated setting so we

assume that per-image calibration parameters are available

both at training and test time.

4. Proposed Architecture

We adopt a two-stage architecture that shares a simi-

lar structure with the state-of-the-art [19]. It consists of a

single-stage 2D detector (first stage) with an additional 3D

detection head (second stage) constructed on top of features

pooled from the detected 2D bounding boxes. Details of the

architecture are given below.

4.1. Backbone

The backbone we use is a ResNet34 [8] with a Feature

Pyramid Network (FPN) [15] built on top of it. The FPN

network has the same structure as in [16] with 3+2 scales,

connected to the output of modules conv3, conv4 and conv5

of ResNet34, corresponding to downsampling factors of

×8, ×16 and ×32, respectively. Our ResNet34 differs from

the standard one by replacing BatchNorm+ReLU layers

with the synchronized version of InPlaceABN (iABNsync)

activated with LeakyReLU with negative slope 0.01 as pro-

posed in [28]. This modification does not affect the perfor-

mance of the network, but allows to free up a significant

amount of GPU memory, which can be exploited to scale

up the batch size or input resolution. All FPN blocks de-

picted in Fig. 2 correspond to 3 × 3 convolutions with 256
channels, followed by iABNsync.

Inputs. The input x to the backbone is a single RGB image.

Outputs. The backbone provides 5 output tensors

{f1, . . . , f5} corresponding to the 5 different scales of the

FPN network, covering downsampling factors of ×8, ×16,

×32, ×64, and ×128, each with 256 feature channels (see,

Fig. 2).

conv1

conv2

conv3

conv4

conv5

1×1
256

1×1
256

1×1
256

3×3/2
256

3×3/2
256

3×3
256

3×3
256

3×3
256

FPN
R

es
N

et
34

×8

×16

×32

×8

×16

×32

×64

×128

×32

Figure 2: Backbone architecture. Rectangles in the “FPN”

block represent convolutions followed by iABNsync.

4.2. 2D Detection Head

We consider the head of the single-stage 2D detector

implemented in RetinaNet [16], which applies a detection

module independently to each output fi of the backbone

described above. The detection modules share the same pa-

rameters but work inherently at different scales, according

to the scale of the features that they receive as input. As

opposed to the standard RetinaNet, we employ iABNsync

also in this head. The head, depicted in Fig. 3, is com-

posed of two parallel stacks of 3 × 3 convolutions, and is

parametrized by na reference bounding box sizes (anchors)

per scale level.

Inputs. The inputs are the 5 outputs {f1, . . . , f5} of the

backbone, where fi has a spatial resolution of hi × wi.

Outputs. For each image, and each input tensor fi, the 2D

1993



Figure 3: 2D detection module. Rectangles represent con-

volutions. All convolutions but the last per row are followed

by iABNsync.

detection head generates na bounding box proposals (one

per anchor) for each spatial cell g in the hi × wi grid. Each

proposal for a given anchor a with size (wa, ha) is encoded

as a 5-tuple (ζ2D, δu, δv, δw, δh) such that

• p2D = (1 + e−ζ2D)−1 gives the confidence of the 2D

bounding box prediction,

• (ub, vb) = (ug+δuwa, vg+δvha) gives the center of the

bounding box with (ug, vg) being the image coordinates

of cell g, and

• (wb, hb) = (wae
δw , hae

δh) gives the bounding box size.

Fig. 5 gives a visual description of the head’s outputs.

Losses. We employ the focal loss [16] to train the bounding

box confidence score. This loss takes the following form,

for a given cell g and anchor a with target confidence y ∈
{0, 1} and predicted confidence p ∈ [0, 1]:

Lconf
2D

(p2D, y) = −αy(1−p2D)γ log p2D−ᾱȳpγ2D log(1−p2D) ,

where α ∈ [0, 1] and γ > 0 are hyperparameters that

modulate the importance of errors and positives, respec-

tively, ᾱ = 1 − α and ȳ = 1 − y. The confidence tar-

get y does not depend on the regressed bounding box, but

only on the cell g and the anchor a. It takes value 1 if

the reference bounding box centered in (ug, vg) with size

(wa, ha) exhibits an Intersection-over-Union (IoU) with a

ground-truth bounding box larger than a given threshold

τiou. For each cell g and anchor a that matches a ground-

truth bounding box b̂ with predicted bounding box b =
(ub − wb

2 , vb −
hb

2 , ub +
wb

2 , vb +
hb

2 ) we consider the fol-

lowing detection loss:

Lbb
2D
(b, b̂) = 1− sIoU(b, b̂) , (1)

where sIoU represents an extension of the common IoU

function, which prevents gradients from vanishing in case

of non-overlapping bounding boxes. We call it signed IoU

function, as, intuitively, it creates negative intersections in

case of disjoint bounding boxes (please refer to [32] for

further discussions). In Sec. 5, we discuss a disentangling

transformation of the loss in Eq. (1) that allows to isolate

the contribution of each network’s output to the loss, while

preserving the fundamental nature of the loss.

Output Filtering. The dense output of the 2D head is fil-

tered as in [16]: first, detections with scores lower than

0.05 are discarded, then Non-Maxima Suppression (NMS)

Figure 4: 3D detection head. “FC” rectangles represent

fully connected layers. All FCs except the last of each row

are followed by iABN.

with IoU threshold 0.5 is performed on the 5000 top-scoring

among the remaining ones, and the best 100 are kept.

4.3. 3D Detection Head

The 3D detection head (Fig. 4) regresses a 3D bound-

ing box for each 2D bounding box returned by the 2D

detection head (surviving the filtering step). It starts by

applying ROIAlign [7] to pool features from FPN into

a 14 × 14 grid for each 2D bounding box, followed by

2× 2 average pooling, resulting in feature maps with shape

7 × 7 × 128. The choice of which FPN output is selected

for each bounding box b follows the same logic as in [15],

namely the features are pooled from the output fk, where

k = min(5,max(1, ⌊2 + log2(
√
wbhb/224)⌋)). On top of

this, two parallel branches of fully connected layers with

512 channels compute the outputs detailed below. Each

fully connected layer but the last one per branch is followed

by iABN (non-synchronized).

Input. The inputs are a 2D bounding box proposal b re-

turned by the 2D detection head and features fk from the

backbone.

Output. The head returns for each 2D proposal

b with center (ub, vb) and dimensions (wb, hb) a 3D

bounding box encoded in terms of a 10-tuple θ =
(δz,∆u,∆v, δW , δH , δD, qr, qi, qj , qk) and an additional

output ζ3D such that

• p3D|2D = (1 + e−ζ3D)−1 represents the confidence of the

3D bounding box prediction given the 2D proposal,

• z = µz+σzδz represents the depth of the center C of the

predicted 3D bounding box, where µz and σz are given,

dataset-wide depth statistics,

• c = (ub+∆u, vb+∆v) gives the position of C projected

on the image plane (in image coordinates),

• s = (W0e
δW , H0e

δH , D0e
δD ) is the size of the 3D

bounding box, where (W0, H0, D0) is a given, dataset-

wide reference size, and

• q = qr + qii + qjj + qkk is the quaternion providing

the pose of the bounding box with respect to an allocen-

tric [11], local coordinate system.

Fig. 5 gives a visual description of the head’s outputs.

Losses. Let θ be the 10-tuple representing the regressed

3D bounding box and let B̂ ∈ R
3×8 be the ground-truth

3D bounding box in camera coordinates. By applying the

1994



lifting transformation F introduced in [19] and reviewed in

[32], given the network’s output θ we obtain the predicted

3D bounding box B, i.e. B = F(θ). The loss on the 3D

bounding box regression is then given by

Lbb
3D
(B, B̂) =

1

8
‖B − B̂‖H , (2)

where ‖ · ‖H denotes the Huber loss with parameter δH ap-

plied component-wise to each element of the argument ma-

trix. The loss for the confidence p3D|2D about the predicted

3D bounding box is self-supervised by the 3D bounding box

loss remapped into a probability range via the transforma-

tion p̂3D|2D = e−
1

T
Lbb

3D
(B,B̂), where T > 0 is a temperature

parameter. The confidence loss for the 3D bounding box is

then the standard binary cross entropy loss:

Lconf
3D (p3D|2D, p̂3D|2D) = −p̂ log p− (1− p̂) log(1− p) ,

where we have omitted the subscripts for the sake of read-

ability. This loss allows to obtain a more informed confi-

dence about the quality of the returned 3D bounding box

than just using the 2D confidence. Akin to the 2D case, we

employ also a different variant of Eq. (2) that disentangles

the contribution of groups of parameters in order to improve

the stability and effectiveness of the training. Yet, the con-

fidence computation will be steered by Eq. (2).

Output Filtering. The final output will be filtered based on

a combination of the 2D and 3D confidences, following a

Bayesian rule. The 3D confidence p3D|2D is implicitly con-

ditioned on having a valid 2D bounding box and the latter

probability is reflected by p2D. At the same time the confi-

dence of a 3D bounding box given an invalid 2D bounding

box defaults to 0. Hence, the unconditioned 3D confidence

can be obtained by the law of total probability as

p3D = p3D|2Dp2D .

This is the final confidence that our method associates to

each 3D detection and that is used to filter the predictions

via a threshold τconf. We do not perform further NMS steps

on the regressed 3D bounding boxes nor filtering based on

3D prior knowledge (e.g. one could reduce false positives

by dropping ”flying” cars).

5. Disentangling 2D and 3D Detection Losses

In this section we propose a transformation that can be

applied to the 2D bounding box loss Lbb
2D and the 3D coun-

terpart Lbb
3D, as well as a broader set of loss functions. We

call it disentangling transformation because it isolates the

contribution of groups of parameters to a given loss, while

preserving its inherent nature. Each parameter group keeps

its independent loss term, but they are all made comparable,

thus sidestepping the difficulty of finding a proper weight-

ing. While losses that combine parameters in a single term,

Figure 5: Visualization of the semantics of the outputs of the

2D and 3D detection heads. Left: 2D bounding box regres-

sion on image plane. Center: 3D bounding box regression.

Right: allocentric angle from bird-eye view.

such as those in Eq. (1) and Eq. (2), are immune to the bal-

ancing issue, they might exhibit bad dynamics during the

optimization as we will show with a toy experiment. The

transformation we propose, instead, retains the best of both

worlds.

Disentangling Transformation. Let L : Y × Y → R+

be a loss function defined on a space Y (e.g. the space of

3D bounding boxes) such that L(y, ŷ) = 0 if ŷ = y. Let

Θ ⊂ R
d be a set of possible network outputs that can be

mapped to elements of Y via a function ψ that we assume to

be one-to-one. This property holds for 2D bounding boxes

via the common 4D parametrization (center + dimensions),

as well as for the 3D bounding boxes via the 10D represen-

tation described in Sec. 4.3. In the latter case, ψ coincides

with the lifting transformation F . Let ŷ be a fixed output

element (e.g. a ground-truth bounding box) and consider a

partitioning of the d dimensions of Θ into k groups. To

give a concrete example, in case of 2D bounding boxes we

can have 2 groups of parameters: one for the dimensions,

and one for the center. In the case of 3D bounding boxes

we consider 4 groups related intuitively to depth, projected

center, rotation and dimensions. Given θ ∈ Θ we denote

by θj the sub-vector corresponding to the jth group and by

θ−j the sub-vector corresponding to all but the jth group.

Moreover, given θ,θ′ ∈ Θ, we denote by ψ(θj ,θ
′
−j) the

mapping of a parametrization that takes the jth group from

θ and the rest of the parameters from θ′. The disentangle-

ment of loss L given ŷ, the mapping ψ and a decomposition

of parameters into k groups is defined as:

Ldis(y, ŷ) =

k∑

j=1

L(ψ(θj , θ̂−j), ŷ) ,

where θ = ψ−1(y) and θ̂ = ψ−1(ŷ). The idea be-

hind the transformation is very intuitive besides the math-

ematical formalism. We simply replicate k times the loss

L, each copy having only a group of parameters that can

be optimized, the other being fixed to the ground-truth

parametrization, which can be recovered via ψ−1. We have

1995



1
2

3

5

3

3.5

4

Start

Target

W

H

D

0
0.2

0.4
0.6 0

0.5

−5

0

5

·10−2 Start

Target

qi

qj

q
k

420 440 460 480 500 520

200

220

240

260

280

300

Start

Target

u

v

0 5 10 15 20 25 30

·102

10

12

14

16

18

20

n. of iterations

z

0 5 10 15 20 25 30

·102

0

5

10

n. of iterations

L
b
b
3
D

Entangled

Disentangled

Figure 6: Trajectories of the optimization process for each group of parameters (dimensions, rotation quaternion, projected

center, depth), when using the entangled (magenta) and disentangled (blue) 3D detection losses. Left-to-right: trajectories of

dimensions, rotation quaternion (last 3 coordinates), projection of the 3D bounding box center on the image and depth of the

3D bounding box center. The last plot shows the evolution of the entangled Lbb
3D

loss for both cases.

applied the disentangling transformation to both the 2D loss

in Eq. (1) and to the 3D loss in Eq. (2) and used them to con-

duct our experiments, unless otherwise stated.

Explanatory Toy Example. We conduct a toy experiment

where we fix a ground-truth 3D bounding box from the

KITTI3D training set and optimize the 10 parameters θ di-

rectly using Stochastic Gradient Descent (SGD) using both

the 3D bounding box loss from Eq. (2) (called entangled

loss) and the disentangled counterpart that we obtain when

grouping together the parameters related to dimensions, ro-

tation, projection of the center, and depth of the center. We

start both optimizations from the same perturbed 3D bound-

ing box and report in Fig. 6 the trajectories that we obtain

in terms of bounding box dimensions, the last 3 quaternion

components, image coordinates of the projected bounding

box center and the depth of the center. We indicate the

initial and target values for each group of parameters, and

mark with a bullet each iteration of the optimization pro-

cess. As we can see, the use of the disentangled loss leads

to more efficient and stable trajectories than the entangled

loss. Notably, the rotation parameters converge almost im-

mediately with the disentangled loss, while they follow a

long and convoluted trajectory when optimizing the entan-

gled one. Something similar also happens with the bound-

ing box dimensions. In particular, the entangled loss opti-

mization process first reduces the distance to the target by

flattening some dimensions (the height in this case). This

flattening persists until the target and predicted boxes start

overlapping, after which the optimization dynamics can fi-

nally converge to the target dimensions. This sub-optimal

behaviour is entirely avoided by the disentangled loss, since

the predicted and target boxes are, by construction, always

centered. More details about this toy experiment are pro-

vided in [32].

6. Critical Review on the KITTI3D AP Metric

The KITTI3D benchmark dataset [6] significantly deter-

mines developments and general progress on 3D object de-

tection, and has emerged as the most decisive benchmark

for monocular 3D detection algorithms like ours. It con-

tains a total of 7481 training and 7518 test images and has

no official validation set. However, it is common practice

to split the training data into 3712 training and 3769 vali-

dation images as proposed in [3], and then report validation

results. On the official test split, there is no common agree-

ment which of the training sets to use, but in case validation

data is used for snapshot cherry-picking, it is imperative to

provide test data scores from the same model.

Each 3D ground truth detection box is assigned to one

out of three difficulty classes (easy, moderate, hard), and

the used 11-point Interpolated Average Precision metric is

separately computed on each difficulty class. This metric

was originally proposed in [29], and was used in the PAS-

CAL VOC challenges [5] between 2007 and 2010. It ap-

proximates the shape of the Precision/Recall curve as

AP|R =
1

|R|
∑

r∈R

ρinterp(r) ,

averaging the precision values provided by ρinterp(r). In

the current setting, KITTI3D applies exactly eleven equally

spaced recall levels, i.e. R11 = {0, 0.1, 0.2, . . . , 1}. The in-

terpolation function is defined as ρinterp(r) = max
r′:r′≥r

ρ(r′),

where ρ(r) gives the precision at recall r, meaning that

instead of averaging over the actually observed precision

values per point r, the maximum precision at recall value

greater or equal than r is taken. The recall intervals start

at 0, which means that a single, correctly matched predic-

tion (according to the applied IoU level) is sufficient to ob-

tain 100% precision at the bottom-most recall bin. In other

words, if for each difficulty level a single, but correct predic-

tion is provided to the evaluation, this produces an AP|R11

score of 1/11 ≈ 0.0909 for the entire dataset, which as

shown in our experimental section already outperforms a

number of recent methods while it clearly does not properly

assess the quality of an algorithm.

In light of KITTI3Ds importance, we propose a sim-

ple but effective fix that essentially exploits more of the

information provided by the official evaluation server and

evaluation scripts. Instead of sub-sampling 11 points

from the provided 41 points, we approximate the area

1996



2D detection 3D detection Bird’s eye view

Method Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Regression 70.10 73.20 66.80 1.30 0.90 0.70 2.60 1.90 1.70

3D BB 74.30 77.10 69.50 3.90 2.70 2.50 6.90 5.10 4.40

Regression w/ IoUDIS, 3DConf 70.10 75.10 66.90 2.60 1.70 1.40 5.40 3.80 3.00

3D BB w/ IoUDIS, 3DConf 95.10 88.90 78.60 8.80 6.10 5.00 14.60 10.10 8.30

3D BB w/ disentangling 80.50 80.80 74.40 4.10 3.00 2.70 7.10 5.40 4.80

MonoDIS 94.96 89.22 80.58 11.06 7.60 6.37 18.45 12.58 10.66

Table 1: AP|R40
validation set ablation results on KITTI3D (0.7 IoU threshold).

2D detection 3D detection Bird’s eye view

Method Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

OFTNet [27] – – – 1.61 1.32 1.00 1.28 0.81 0.51

ROI-10D w/ Depth, Synthetic [19] 76.56 70.16 61.15 4.32 2.02 1.46 9.78 4.91 3.74

MonoGRNet [24] 88.65 77.94 63.31 9.61 5.74 4.25 18.19 11.17 8.73

MonoDIS 93.11 85.86 73.61 7.03 4.89 4.08 12.18 9.13 7.38

MonoDIS, larger training split 94.61 89.15 78.37 10.37 7.94 6.40 17.23 13.19 11.12

Table 2: AP|R40
test set SOTA results on KITTI3D (0.7 IoU threshold)

under the curve by simply replacing R11 with R40 =
{1/40, 2/40, 3/40, . . . , 1} thus averaging precision results

on 40 recall positions but not at 0. This eliminates the glitch

encountered at the lowest recall bin, and allows to post-

process all currently provided test server results on 2D and

3D AP scores.

7. Experiments

We focus the validation of our method on the KITTI3D

benchmark dataset that we described in Sec. 6, using the 0.7

IoU threshold for calculating AP.

7.1. Implementation Details

In this section we provide details about our implementa-

tion and instantiation of hyperparameters.

2D and 3D Detection Heads. For details regarding the

FPN, 2D anchors as well as Car class reference size and

depth statistics, please refer to [32].

Losses. We applied the same weighting policies in all our

experiments. We set weight 1.0 to all losses in the 2D detec-

tion head and 0.5 to all losses in the 3D detection head. The

Huber parameters is set to δH = 3.0 and the 3D confidence

temperature of T = 1.

Optimization. Our training schedule is the same for all ex-

periments, and it does not involve any multi-step or warm-

up procedures. We used SGD with a learning rate set at

0.01 and apply weight decay of 0.0001 to all parameters

but scale and biases of iABN. We also freeze conv1 and

conv2 of ResNet34 in the backbone. We trained with batch

size of 96 on 4 NVIDIA V-100 GPUs for a total of 20k

iterations, scaling the learning rate by a 0.1 factor at 12k

and 16k iterations. Our input resolution is set according

to [19]. We applied horizontal flipping as the only form

of training-data augmentation. No augmentation was per-

formed for test/validation.

7.2. 2D Detection

In a first set of experiments, we study the signed IoU

loss function (Sec. 4.2) in isolation. To do this, we train our

backbone + 2D head to perform pure 2D detection of cars

in KITTI3D, comparing between the original RetinaNet re-

gression loss, signed IoU and signed IoU with disentangle-

ment. For this simpler task we reduce the training schedule

to 3.5k iterations, with learning rate steps after 2k and 3k,

while keeping all other parameters as in Sec. 7.1. As shown

in Tab. 3, using signed IoU leads to a modest performance

increase, which improves considerably when adding disen-

tanglement.

Method Easy Moderate Hard

RetinaNet 87.77 83.74 74.02

RetinaNet + IoU 88.37 84.05 74.32

RetinaNet + IoUDIS 89.35 85.38 76.26

Table 3: Ablation results on KITTI3D with 2D detection

networks, AP|R40
scores.

7.3. 3D Detection

In this section we focus on our main task and perform a

detailed ablation of our contributions, comparing the results

with most relevant state-of-the-art algorithms for monoc-

ular 3D detection. Keeping the network architecture and

training schedule fixed, we evaluate different loss functions

and detection scoring strategies. Following the discussion

in Sec. 6, we report both, our revised AP|R40
metric (Tab. 1

and 2) and the original AP|R11
(Tab. 4).

Ablation study. First, we make a comparison between a

direct regression of the the 10D parameters θ [19] with the

1997



2D detection 3D detection Bird’s eye view

Method Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Regression 66.50 72.30 66.00 1.60 1.50 1.20 2.70 2.10 2.30

3D BB 70.80 77.10 66.50 4.70 3.00 2.90 7.80 5.40 5.80

Regression w/ IoUDIS, 3DConf 67.20 73.60 65.50 3.20 2.90 2.00 5.80 4.80 4.30

3D BB w/ IoUDIS, 3DConf 90.20 88.40 78.40 15.40 13.60 12.00 20.50 16.20 15.70

3D BB w/ disentangling 76.40 80.30 73.20 4.90 3.40 3.10 7.30 5.70 6.30

Single correct hypothesis per difficulty 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09

OFTNet [27] – – – 4.07 3.27 3.29 11.06 8.79 8.91

Xu et al. [34] – – – 7.85 5.39 4.73 19.20 12.17 10.89

Deep3DBox [20] – – – 5.85 4.10 3.84 9.99 7.71 5.30

Mono3D [2] 93.89 88.67 79.68 2.53 2.31 2.31 5.22 5.19 4.13

Mono3D++ [9] – – – 10.60 7.90 5.70 16.70 11.50 10.10

ROI-10D [19] 78.57 73.44 63.69 10.12 1.76 1.30 14.04 3.69 3.56

ROI-10D w/ Depth [19] 89.04 88.39 78.77 7.79 5.16 3.95 10.74 7.46 7.06

ROI-10D w/ Depth, Synthetic [19] 85.32 77.32 69.70 9.61 6.63 6.29 14.50 9.91 8.73

MonoGRNet [24] – – – 13.88 10.19 7.69 – – –

MonoDIS 90.23 88.64 79.10 18.05 14.98 13.42 24.26 18.43 16.95

Table 4: AP|R11
validation set scores on KITTI3D (0.7 IoU): ablation results (top), SOTA results (bottom).

3D BB loss in Eq. (2). The results of this comparison can be

found in 1st and 2nd row of Tab. 1 and 4. Confirming the

findings in [19], we observe increased 3D detection scores

when tying all parameters together in the (entangled) 3D

BB loss function in metric space. Perhaps surprisingly, this

loss also leads to better 2D detection performance: we sup-

pose this could be due to more informative gradients prop-

agating from the 3D head improving the backbone features.

Adding our disentangled 2D detection loss IoUDIS based

on the signed IoU (Eq. (1)) and the 3D confidence predic-

tion 3DConf (Sec. 4.3), consistently improves performance

for both regression and 3D BB (3rd and 4th row). Similarly,

applying disentangling to the 3D BB loss improves 3D de-

tection performance, and has an even larger impact on the

2D side (5th row). Finally, bringing all the contributions

together in our method MonoDIS leads to noticeable per-

formance increases under all considered metrics (last row

in Tab. 1 and 4).

Comparison with SOTA. In Tab. 2 and 4 we report test

and validation set results of many recent monocular 3D de-

tection approaches. When evaluating on the validation set,

we consider the split defined in [3], as is done in all the

baselines. For the test set, we consider both the split in [3],

which is shared with OFTNet [27] and ROI-10D [19], and

a larger training split1, since the setting used for MonoGR-

Net [24] is not clear. For the sake of space, we only show

AP|R40
scores2 for the test set results, and report the corre-

sponding AP|R11
scores in [32]. With a single exception,

our approach beats all baselines on all 3D and bird’s eye

view metrics, often by a large margin. Note that some of

the outperformed methods rely on additional data, such as

synthetic images (ROI-10D [19]), or a pre-trained monocu-

lar depth prediction network (ROI-10D [19], Xu et al. [34]).

1https://github.com/MarvinTeichmann/KittiBox
2Calculated from the PR-curves in the KITTI3D leaderboard page.

Interestingly, many existing approaches score lower than

the “single correct hypothesis” baseline (see Sec. 6) on 3D

detection AP|R11
, highlighting the need for an improved AP

metric.

8. Conclusions

We proposed a new loss disentangling transformation

that allowed us to effectively train a 3D object detection

network end-to-end without the need of stage-wise training

or warm-up phases. Our solution isolates the contribution

made by groups of parameters to a given loss into sepa-

rate terms that retain the same nature of the original loss,

thus being compatible without the need of further, cumber-

some loss balancing steps. We proposed two further loss

functions where i) is based on a novel signed Intersection-

over-Union criterion to improve 2D detection results and ii)

is used to predict a detection confidence for the 3D bound-

ing box predictions, learned in a self-supervised way. Be-

sides the methodological contributions, we reveal a flaw

in the primary detection metric used in KITTI3D, where

a single, correctly predicted bounding box yields overall

AP scores of 9.09% on validation or test splits. Our sim-

ple fix corrects performance results of previously published

methods in general, and shows how significantly it was bi-

asing monocular 3D object detection results in particular. In

our extensive experimental results and ablation studies we

demonstrated the effectiveness of our proposed model, and

significantly improve over previous state-of-the-art.

Acknowledgments

We would like to thank Fabian Manhardt, Wadim Kehl

and Adrien Gaidon at Toyota Research Institute for helpful

discussions.

1998



References

[1] Florian Chabot, Mohamed Chaouch, Jaonary Rabarisoa, Ce-

line Teuliere, and Thierry Chateau. Deep manta: A coarse-

to-fine many-task network for joint 2d and 3d vehicle analy-

sis from monocular image. In (CVPR), July 2017. 3

[2] Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma,

Sanja Fidler, and Raquel Urtasun. Monocular 3d object de-

tection for autonomous driving. In (CVPR), 2016. 2, 8

[3] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G

Berneshawi, Huimin Ma, Sanja Fidler, and Raquel Urtasun.

3d object proposals for accurate object class detection. In

(NIPS), 2015. 2, 3, 6, 8

[4] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.

Multi-view 3d object detection network for autonomous

driving. In (CVPR), July 2017. 3

[5] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The Pascal visual object classes (VOC)

challenge. (IJCV), 88(2):303–338, 2010. 2, 6

[6] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? The kitti vision benchmark

suite. In (CVPR), 2012. 1, 6

[7] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.

Girshick. Mask R-CNN. In (ICCV), 2017. 4

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. CoRR,

abs/1512.03385, 2015. 3

[9] Tong He and Stefano Soatto. Mono3d++: Monocular 3d ve-

hicle detection with two-scale 3d hypotheses and task priors.

CoRR, abs/1901.03446, 2019. 2, 3, 8

[10] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan

Ilic, and Nassir Navab. Ssd-6d: Making rgb-based 3d detec-

tion and 6d pose estimation great again. In (ICCV), October

2017. 2

[11] Abhijit Kundu, Yin Li, and James M. Rehg. 3D-

RCNN: Instance-level 3d object reconstruction via render-

and-compare. In (CVPR), June 2018. 2, 4

[12] Hei Law and Jia Deng. Cornernet: Detecting objects as

paired keypoints. In (ECCV), September 2018. 1

[13] Peiliang Li, Xiaozhi Chen, and Shaojie Shen. Stereo r-

cnn based 3d object detection for autonomous driving. In

(CVPR), 2019. 3

[14] Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urta-

sun. Multi-task multi-sensor fusion for 3d object detection.

In (CVPR), 2019. 1

[15] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He,

Bharath Hariharan, and Serge J. Belongie. Feature pyramid

networks for object detection. CoRR, abs/1612.03144, 2016.

3, 4

[16] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He,

and Piotr Dollár. Focal loss for dense object detection.

CoRR, abs/1708.02002, 2017. 1, 3, 4

[17] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul W. Fieguth,

Jie Chen, Xinwang Liu, and Matti Pietikäinen. Deep

learning for generic object detection: A survey. CoRR,

abs/1809.02165, 2018. 1

[18] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.

Berg. Ssd: Single shot multibox detector. In (ECCV), 2016.

1

[19] Fabian Manhardt, Wadim Kehl, and Adrien Gaidon. Roi-

10d: Monocular lifting of 2d detection to 6d pose and metric

shape. In (CVPR), 2019. 1, 2, 3, 5, 7, 8

[20] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and

Jana Kosecka. 3d bounding box estimation using deep learn-

ing and geometry. In (CVPR), July 2017. 2, 8

[21] Krishna J. Murthy, Sai G.V. Krishna, Falak Chhaya, and

Madhava K. Krishna. Reconstructing vehicles from a sin-

gle image: Shape priors for road scene understanding. In

(ICRA), 2017. 3

[22] Sudeep Pillai, Rares Ambrus, and Adrien Gaidon. Su-

perdepth: Self-supervised, super-resolved monocular depth

estimation. In (ICRA), 2019. 2

[23] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and

Leonidas J. Guibas. Frustum pointnets for 3d object detec-

tion from rgb-d data. In (CVPR), June 2018. 3

[24] Zengyi Qin, Jinglu Wang, and Yan Lu. Monogrnet: A ge-

ometric reasoning network for 3d object localization. In

(AAAI), 2019. 1, 2, 7, 8

[25] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In (CVPR), June 2016. 1

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with re-

gion proposal networks. In (NIPS), 2015. 1

[27] Thomas Roddick, Alex Kendall, and Roberto Cipolla. Ortho-

graphic feature transform for monocular 3d object detection.

CoRR, abs/1811.08188, 2018. 2, 7, 8

[28] Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder.

In-place activated batchnorm for memory-optimized training

of DNNs. In (CVPR), 2018. 3

[29] Gerard Salton and Michael J. McGill. Introduction to Mod-

ern Information Retrieval. McGraw-Hill, Inc., New York,

NY, USA, 1986. 2, 6

[30] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-

cnn: 3d object proposal generation and detection from point

cloud. In (CVPR), 2019. 1, 3

[31] Kiwoo Shin, Youngwook Paul Kwon, and Masayoshi

Tomizuka. Roarnet: A robust 3d object detection based on

region approximation refinement. CoRR, abs/1811.03818,

2018. 3

[32] Andrea Simonelli, Samuel Rota Bulò, Lorenzo Porzi,

Manuel Lòpez-Antequera, and Peter Kontschieder. Dis-

entangling monocular 3d object detection. CoRR,

abs/1905.12365, 2019. 4, 5, 6, 7, 8

[33] Zhixin Wang and Kui Jia. Frustum convnet: Sliding frustums

to aggregate local point-wise features for amodal 3d object

detection. CoRR, abs/1903.01864, 2019. 1

[34] Bin Xu and Zhenzhong Chen. Multi-level fusion based 3d

object detection from monocular images. In (CVPR), June

2018. 2, 8

[35] Muhammad Zeeshan Zia, Michael Stark, and Konrad

Schindler. Are cars just 3d boxes? Jointly estimating the

3d shape of multiple objects. In (CVPR), 2014. 2

1999


