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Abstract

Crowd counting presents enormous challenges in the

form of large variation in scales within images and across

the dataset. These issues are further exacerbated in highly

congested scenes. Approaches based on straightforward fu-

sion of multi-scale features from a deep network seem to

be obvious solutions to this problem. However, these fu-

sion approaches do not yield significant improvements in

the case of crowd counting in congested scenes. This is

usually due to their limited abilities in effectively combin-

ing the multi-scale features for problems like crowd count-

ing. To overcome this, we focus on how to efficiently lever-

age information present in different layers of the network.

Specifically, we present a network that involves: (i) a multi-

level bottom-top and top-bottom fusion (MBTTBF) method

to combine information from shallower to deeper layers and

vice versa at multiple levels, (ii) scale complementary fea-

ture extraction blocks (SCFB) involving cross-scale resid-

ual functions to explicitly enable flow of complementary

features from adjacent conv layers along the fusion paths.

Furthermore, in order to increase the effectiveness of the

multi-scale fusion, we employ a principled way of generat-

ing scale-aware ground-truth density maps for training. Ex-

periments conducted on three datasets that contain highly

congested scenes (ShanghaiTech, UCF CROWD 50, and

UCF-QNRF) demonstrate that the proposed method is able

to outperform several recent methods in all the datasets.

1. Introduction

Computer vision-based crowd counting [8, 17, 26, 27,

36, 44, 48, 56, 68, 69, 74, 77] has witnessed tremendous

progress in the recent years. Algorithms developed for

crowd counting have found a variety of applications such

as video and traffic surveillance [15, 21, 38, 59, 64, 71, 72],

agriculture monitoring (plant counting) [35], cell counting

[22], scene understanding, urban planning and environmen-

tal survey [11, 68].

Crowd counting from a single image, especially in con-

gested scenes, is a difficult problem since it suffers from

multiple issues like high variability in scales, occlusions,

perspective changes, background clutter, etc. Recently,

several convolutional neural network (CNN) based meth-

ods [3, 7, 34, 43, 48, 49, 51, 56, 69, 74] have attempted

to address these issues with varying degree of successes.

Among these issues, the problem of scale variation has

particularly received considerable attention from the re-

search community. Scale variation typically refers to large

variations in scale of the objects being counted (in this

case heads) (i) within image and (ii) across images in

a dataset. Several other related tasks like object detec-

tion [6, 16, 23, 30, 37, 45] and visual saliency detection

[10, 14, 41, 73] are also affected by such effects. However,

these effects are more evident especially in crowd counting

in congested scenes. Furthermore, since the annotation pro-

cess for highly congested scenes is notoriously challenging,

the datasets available for crowd counting typically provide

only x, y location information about the heads in the im-

ages. Since the scale labels are unavailable, training the

networks to be robust to scale variations is much more chal-

lenging. In this work, we focus on addressing the issue of

scale variation and missing scale information from the an-

notations.

CNNs are known to be relatively less robust to the pres-

ence of such scale variations and hence, special techniques

are required to mitigate their effects. Using features from

different layers of a deep network is one approach that has

been successful in addressing this issue for other problems

like object detection. It is well known that feature maps

from shallower layers encode low-level details and spatial

information [6, 13, 29, 42, 67], which can be exploited to

achieve better localization. However, such features are typ-

ically noisy and require further processing. Meanwhile,

deeper layers encode high-level context and semantic in-

formation [6, 13, 29, 42] due to their larger receptive field

sizes, and can aid in incorporating global context into the

network. However, these features lack spatial resolution,

resulting in poor localization. Motivated by these observa-

tions, we believe that high-level global semantic informa-
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Figure 1. Illustration of different multi-scale fusion architectures: (a) No fusion, (b) Fusion through concat or add, (c) Bottom-top fusion,

(d) Top-bottom fusion, (e) Bottom-top and top-bottom fusion, (f) Multi-level bottom-top and top-bottom fusion (proposed).

tion and spatial localization play an important role in gener-

ating effective features for crowd counting, and hence, it is

important to fuse features from different layers in order to

achieve lower count errors.

In order to perform an effective fusion of information

from different layers of the network, we explore different

fusion architectures as shown in Fig. 1(a)-(d), and finally

arrive at our proposed method (Fig. 1(f)). Fig. 1(a) is a

typical deep network which processes the input image in

a feed-forward fashion, with no explicit fusion of multi-

scale features. The network in Fig. 1(b) extracts features

from multiple layers and fuses them simultaneously using a

standard approach like addition or concatenation. With this

configuration, the network needs to learn the importances

of features from different layers automatically, resulting in

a sub-optimal fusion approach. As will be seen later in Sec-

tion 5.2, this method does not produce significant improve-

ments as compared to the base network.

To overcome this issue, one can choose to progressively

incorporate detailed spatial information into the deeper lay-

ers by sequentially fusing the features from lower to higher

layers (bottom-top) as shown in Fig. 1(c) [58]. This fu-

sion approach explicitly incorporates spatial context from

lower layers into the high-level features of the deeper lay-

ers. Alternatively, a top-bottom fusion (Fig. 1(d)) [47] may

be used that involves suppressing noise in lower layers, by

propagating high-level semantic context from deeper layers

into them. These approaches achieve lower counting errors

as compared to the earlier configurations. However, both of

these methods follow uni-directional fusion which may not

necessarily result in optimal performance. For instance, in

the case of bottom-top fusion, noisy features also get prop-

agated to the top layers in addition to spatial context. Sim-

ilarly, in the case of top-bottom fusion, the features from

the top layer may end up suppressing more than necessary

details in the lower layers. Variants of these top-bottom ap-

proaches and bottom-top approaches have been proposed

for other problems like semantic segmentation and object

detection [12, 32, 40, 52].

Recently, a few methods [66, 76] have demonstrated

superior performance on other tasks by using multi-

directional fusion technique (Fig. 1(e)) as compared to

uni-directional fusion. Motivated by the success of these

methods on their respective tasks, we propose a multi-level

bottom-top and top-bottom fusion (MBTTBF) technique as

shown in Fig 1(f). By doing this, more powerful features

can be learned by enabling high-level context and spatial

information to be exchanged between scales in a bidirec-

tional manner. The bottom-top path ensures flow of spatial

details into the top layer, while the top-bottom path propa-

gates context information back into the lower layers. The

feedback through both the paths ensures that minimal noise

is propagated to the top layer in the bottom-top direction,

and also that the context information does not over-suppress

the details in the lower layers. Hence, we are able to ef-

fectively aggregate the advantages of different layers and

suppress their disadvantages. Note that, as compared to ex-

isting multi-directional fusion approaches [66, 76], we pro-

pose a more powerful fusion technique that is multi-level

and aided by scale-complementary feature extraction blocks

(see Section 3.2). Additionally, the fusion process is guided

by a a set of scale-aware ground-truth density maps (see

Section 3.3), resulting in scale-aware features.

Furthermore, we propose a scale complementary feature

extraction block (SCFB) which uses cross-scale residual

blocks to extract features from adjacent scales in such a way

that they are complementary to each other. Traditional fu-

sion approaches such as feature addition or concatenation

are not necessarily optimal because they simple merge the

features and have limited abilities to extract relevant infor-

mation from different layers. In contrast, the proposed scale

complementary extraction enables the network to compute

relevant features from each scale.

Lastly, we address the issue of missing scale-information
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in crowd-datasets by approximating the same based on the

crowd-density levels and superpixel segmentation princi-

ples. Zhang et al. [74] also estimate the scale information,

however, they rely on heuristics based on the nearest num-

ber of heads. In contrast, we combine information from the

annotations and super-pixel segmentation of the input im-

age in a Markov Random Field (MRF) framework [25].

The proposed counting method is evaluated and com-

pared against several recent methods on three recent

datasets that contain highly congested scenes: Shang-

haiTech [74], UCF CROWD 50[17], and UCF-QNRF [19].

The proposed method outperforms all existing methods by

a significant margin.

We summarize our contributions as follows:

• A multi-level bottom-top and top-bottom fusion scheme

to effectively merge information from multiple layers in

the network.

• A scale-complementary feature extraction block that is

used to extract relevant features form adjacent layers of

the network.

• A principled way of estimating scale-information for

heads in crowd-counting datasets that involves effectively

combining annotations and super-pixel segmentation in a

MRF framework.

2. Related work

Compared to traditional approaches ([9, 17, 22, 24, 39,

46, 65]), recent methods have exploited Convolutional neu-

ral networks (CNNs) [2, 5, 38, 48, 48, 56, 60, 62, 69, 74]

to obtain dramatic improvements in error rates. Typically,

existing CNN-based methods have focused on design of dif-

ferent architectures to address the issue of scale variation in

crowd counting. Switching-CNN, proposed by Babu et al.

[48], learns multiple independent regressors based on the

type of image patch and has an additional switch classi-

fier to automatically choose the appropriate regressor for

a particular input patch. More recently, Sindagi et al. [56]

proposed Contextual Pyramid CNN (CP-CNN), where they

demonstrated significant improvements by fusing local and

global context through classification networks. For a more

elaborate study and discussion on these methods, interested

readers are referred to a recent survey [57] on CNN-based

counting techniques.

While the these methods build techniques that are ro-

bust to scale variations, more recent methods have focused

on other aspects such as progressively increasing the ca-

pacity of the network based on dataset [3], use of adver-

sarial loss to reduce blurry effects in the predicted output

maps [49, 56], learning generalizable features via deep neg-

ative correlation based learning [51], leveraging unlabeled

data for counting by introducing a learning to rank frame-

work [34], cascaded feature fusion [43] and scale-based fea-

ture aggregation [7], weakly-supervised learning for crowd

counting [58]. Recently, Idrees et al. [19] created a new

large-scale high-density crowd dataset with approximately

1.25 million head annotations and a new localization task

for crowded images.

Most recently, several methods have focused on incor-

porating additional cues such as segmentation and semantic

priors [61, 75], attention [31, 54, 58], perspective [50],

context information respectively [33], multiple-views [70]

and multi-scale features [20] into the network. Wang et

al. [63] introduced a new synthetic dataset and proposed a

SSIM based CycleGAN [78] to adapt the synthetic datasets

to real world dataset.

3. Proposed method

In this section, we discuss details of the proposed multi-

level feature fusion scheme along with the scale comple-

mentary feature extraction blocks. This is followed by a

discussion on the estimation of head sizes using the MRF

framework.

3.1. Multi­level bottom­top and top­bottom Fusion
(MBTTBF)

The proposed method for crowd counting is based on the

recently popular density map estimation approach [22, 39,

65], where the network takes image as an input, processes

it and produces a density map. This density map indicates

the per-pixel count of people in the image. The network

weights are learned by optimizing the L2 error between the

predicted density map and the ground truth density map. As

discussed earlier, crowd counting datasets provide x, y lo-

cations and these are used to create the ground-truth density

maps for training by imposing 2D Gaussians at these loca-

tions:

Di(x) =
∑

xg∈S

N (x− xg, σ), (1)

where σ is the Gaussian kernel’s scale and S is the list of

all locations of people. Integrating the density map over its

width and height produces the total count of people in the

input image.

Fig 2 illustrates the overview of the proposed network.

We use VGG16 [53] as the backbone network. Conv1 -

conv5 in Fig. 2 are the first five convolutional layers of

the VGG16 network. The last layer conv6 is defined as

{M2 − C512,128,1 − R}1). As it can be observed from this

figure, the network consists of primarily three branches: (i)

main branch (VGG16 backbone), (ii) multi-level bottom-

top fusion branch, and (iii) multi-level top-bottom fusion

1 Ms denotes max-pooling with stride s, CNi ,No ,k is convolutional layer

(where Ni = number of input channels, No = number of output channels,

k×k = size of filter), R is activation function (ReLU).
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Figure 2. Overview of the proposed multi-level top-bottom and

bottom-top fusion method for crowd counting.

branch. The input image is passed through the main branch

and multi-scale features from conv3-conv6 layers are ex-

tracted. These multi-scale features are then forwarded

through dimensionality reduction (DR) blocks that consists

of 1×1 conv layers to reduce the channel dimensions to 32.

The feature maps extracted from the lower conv layers

of the main branch contain detailed spatial information

which are important for accurate localization, whereas the

feature maps from higher layers contain global context

and high-level information. The information contained

in these different layers are fused with each other in two

separate fusion branches: multi-level bottom-top branch

and multi-level top-bottom branch.

Multi-level bottom-top fusion: The bottom-top branch hi-

erarchically propagates spatial information from the bot-

tom layers to the top layers. This branch has two levels

of fusion. In the first level, features from the main branch

are progressively forwarded through a series of scale com-

plementary feature extraction blocks (SCFB1

34
-SCFB1

45
-

SCFB1

56
). First, SCFB1

34
combines the feature maps from

conv3 and conv4 to produce enriched feature maps Fbt1
34

.

These features are then combined with conv5 features of the

main branch through SCFB1

45
to produce Fbt1

45
. Finally,

these feature maps are combined with conv6 feature maps

through SCFB1

56
to produce Fbt1

56
.

Further, we add another level of bottom-top fusion path

which progressively combines features from the first level

through another series of scale complementary feature

extraction blocks (SCFB2

345
-SCFB2

456
). Specifically,

Fbt1
34

and Fbt1
45

are combined through SCFB2

345
to

produce Fbt2
345

. Finally, Fbt2
345

is combined with Fbt1
56

through SCFB2

456
to produce Fbt2

456
. The two levels of

fusion together form a hierarchy of fusion paths.

Multi-level top-bottom fusion: The bottom-top branch

while propagating spatial information to the top layers, in-

advertently passes noise information as well. To overcome

this, we add a top-bottom fusion path that hierarchically

propagates high-level context information into the lower

layers. Similar to the bottom-top path, the top-bottom path

also consists of two levels of fusion. In the first level,

features from the main branch are progressively forwarded

through a series of scale complementary feature extraction

blocks (SCFB1

65
-SCFB1

54
-SCFB1

43
). First, SCFB1

65

combines the feature maps from conv6 and conv5 to pro-

duce enriched feature maps Ftb1
65

. These features are then

combined with conv4 features of the main branch through

SCFB1

54
to produce Ftb1

54
. Finally, these feature maps

are combined with conv3 feature maps through SCFB1

43

to produce Ftb1
43

.

The second level of bottom-top fusion path progres-

sively combines features from the first level through

another series of scale complementary feature extraction

blocks (SCFB2

654
-SCFB2

543
). Specifically, Ftb1

65
and

Ftb1
54

are combined through SCFB2

654
to produce Ftb2

654
.

Finally, Ftb2
654

is combined with Ftb1
43

through SCFB2

543

to produce Fbt2
543

. Again, the two levels of fusion together

form a hierarchy of fusion paths in the top-bottom module.

Self attention-based fusion: The features produced by

the bottom-top fusion (Fbt1
56

and Fbt2
456

), although re-

fined, may contain some unnecessary background clutter.

Similarly, the features (Ftb1
43

and Ftb2
543

) produced by

the top-bottom fusion may over suppress the detail in-

formation in the lower layers. In order to further sup-

press the background noise in the bottom-top path and

avoid over-suppression of detail information due to the top-

bottom path, we introduce a self-attention based fusion

module at the end that combines feature maps from the

two fusion paths. Given the set of feature maps (Fbt1
56

, Fbt2
456

, Ftb1
43

and Ftb2
543

) from the fusion branches,

the attention module concatenates them and forwards them

through a set of conv layers ({C128,16,3 − R − {C16,4,1}
1)

and a sigmoid layer to produces an attention maps with

four channels, with each channel specifying the impor-

tance of the corresponding feature map from the fusion
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branch. The attention maps are calculated as follows: A =
sigmoid(cat(F 1

56
, F 2

456
, F 1

43
, F 2

543
)).

These attention maps are then multiplied element-wise

to produce the final feature map: Ff = A1 ⊙ F 1

56
+ A2 ⊙

F 2

456
+ A3 ⊙ F 1

43
+ A4 ⊙ F 2

543
, where ⊙ denotes element-

wise multiplication. This self-attention module effectively

combines the advantages of the two paths, resulting in more

powerful and enriched features. Fig. 3(a) shows the self-

attention block used to combine different feature maps. The

final features Ff are then forwarded through 1×1 conv layer

to produce the density map Ypred.
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pred pred

X

XX

Fbt2
456

Fbt1
56

Fbt1
43

Fbt2
543

Fi Fj

Ri Rj

Fr
i Fr

j

c1i

c2i

c3i

c1

c2

C3

cross-scale 


residual connections

c2j

c3j

c1j

Scale-aware 

supervision

(a) (b)
Figure 3. (a)Attention fuse module. (b) Scale complementary fea-

ture extraction block (SCFB).

3.2. Scale complementary feature extraction block
(SCFB)

In this section, we describe the scale complementary fea-

ture extraction block that is used to combine features from

adjacent layers in the network. Existing methods such as

feature addition or concatenation are limited in their abili-

ties to learn complementary features. This is because fea-

tures of adjacent layers are correlated, and this results in

some ambiguity in the fused features. To address this is-

sue, we introduce scale complementary feature extraction

block as shown in Fig. 3(b). This block enables extraction

of complementary features from each of the scales being

fused. The initial conv layers c1i, c1j , c2i, c2j in Fig. 3(b)

are defined as {C32,32,3 −R}1, where as the final conv lay-

ers c3i, c3j are defined as {C32,1,1 −R}1.

The SCFB consists of cross-scale residual connections

(Ri and Rj) which are followed by a set of conv layers.

The individual branches in the SCFB are supervised by

scale-aware supervision (which is now possible due to the

scale estimation framework discussed in Section 3.3). More

specifically, in order to combine feature maps Fi, Fj from

layers i, j, first the corresponding cross-scale residual fea-

Figure 4. Scale aware ground truth density maps imposed on the

input image. The overall density map is divided into four maps

based on the size/scale of the heads. The first image (leftmost) has

density corresponding to the smallest set of heads, whereas the last

image (rightmost) has densities corresponding to the largest set of

heads.

tures F r
i , F

r
j are estimated and added to the original fea-

ture maps Fi, Fj to produce F̂i, F̂j , i.e., F̂i = Fi + F r
j

and F̂j = Fj + F r
i . These features are then forwarded

through a set of conv layers, before being supervised by the

scale-aware ground-truth density maps Y s
i , Y

s
j . By adding

these intermediate supervisions and introducing the cross-

scale residual connections, we are able to compute comple-

mentary features from the two scales in the form of residu-

als. This reduces the ambiguity as compared to the existing

fusion methods. For example, if a feature map Fi from a

particular layer/scale i is sufficient enough to obtain perfect

prediction, then the residual F r
j is simply driven towards

zero. Hence, involving residual functions reduces the ambi-

guity as compared to the existing fusion techniques.

In order to supervise the SCFBs, we create scale-aware

ground-truth density maps based on the scales/sizes esti-

mated as described in Section 3.3. Annotations in a par-

ticular image are divided into four categories based on

the corresponding head sizes, and these four categories

are used to create four separate ground-truth density maps

(Y s
3
, Y s

4
, Y s

5
andY s

6
) for a particular image. Fig. 4 shows

the four scale-aware ground-truth density maps for two

sample images. It can be observed that the first ground-truth

(left) has labels corresponding to the smallest heads, where

as the last ground-truth (right) has labels corresponding to

the largest heads. These maps (Y s
3
, Y s

4
, Y s

5
andY s

6
) are used

to provide intermediate supervision to feature maps coming

from conv layers 3,4,5 and 6 coming from the main branch

in SCFBs.

3.3. Head size estimation using MRF framework

As discussed earlier, the ground truth density maps for

training the CNNs are created by imposing 2D Gaussians

at the head locations (Eq. (1)) provided in the dataset. The

scale/variance of these Gaussians needs to be decided based

on the heads size. Existing methods either assume constant

1006



variance [56] or estimate the variance based on the number

of nearest heads [74]. Assuming constant variance results

in ambiguity in the density maps and hence, prohibits the

network to learn scale relevant features. Fig. 5(a) shows

the scales for annotations assuming constant variance. On

the other hand, estimating the variance based on nearest

neighbours leads to better results in regions of high den-

sity. However, in regions of low density, the estimates are

incorrect leading to ambiguity in such regions (as shown in

Fig. 5(b)).

To overcome these issues, we propose a principled way

of estimating the scale or variance by considering the input

images which were not exploited earlier. We leverage color

cues from the input image and combine them with the an-

notation data to better estimate the scale. Specifically, we

first over-segment the input image using a super-pixel al-

gorithm (SLIC [1]) and then combine with watershed seg-

mentation [4] resulting from the distance transform of the

head locations in an MRF framework. The size of the seg-

ments resulting from this procedure are then used to esti-

mate the scale of the corresponding head lying in that seg-

ment. Fig. 5(c) shows the scales/variances estimated using

the proposed method. It can be observed that this method

performs better in both sparse and dense regions.

(a) (b) (c)
Figure 5. Scale estimation comparison. Scale estimated using (a)

Constant scale (b) Nearest neighbours (c) Our method.

4. Details of implmentation and training

The network weights are optimized in and end-to-end fash-

ion. We use Adam optimizer with a learning rate of 0.00005

and a momentum of 0.9. We add random noise and per-

form random flipping of images for data augmentation. We

use mean absolute error (MAE) and mean squared error

(MSE) for evaluating the network performance. These

metrics are defined as: MAE = 1

N

∑N

i=1
|yi − y′i| and

MSE =
√

1

N

∑N

i=1
|yi − y′i|

2 respectively, where N is

the total number of test images, yi is the ground-truth/target

count of people in the image and y′i is the predicted count

of people in to the ith image. Supervision is provided to the

network at the final level as well as at intermediate levels

in the SCFBs using Euclidean loss. At the final level, the

network is supervised by the overall density map (consist-

ing of annotations corresponding to all the heads), whereas

the paths in the SCFBs are supervised by the corresponding

scale-aware ground-truths.

5. Experiments and results

In this section, we first analyze the different components

involved in the proposed network through an ablation study.

This is followed by a detailed evaluation of the proposed

method and comparison with several recent state-of-the-art

methods.

5.1. Datasets

We use three different congested crowd scene datasets

(ShanghaiTech [74], UCF CROWD 50[17] and UCF-

QNRF [19]) for evaluating the proposed method. The

ShanghaiTech [74] dataset contains 1198 annotated images

with a total of 330,165 people. This dataset consists of two

parts: Part A with 482 images and Part B with 716 images.

Both parts are further divided into training and test datasets

with training set of Part A containing 300 images and that

of Part B containing 400 images. The UCF CC 50 is an ex-

tremely challenging dataset introduced by Idrees et al. [17].

The dataset contains 50 annotated images of different res-

olutions and aspect ratios crawled from the internet. The

UCF-QNRF [19] dataset, introduced recently by Idrees et

al., is a large-scale crowd dataset containing 1,535 images

with 1.25 million annotations. The images are of high res-

olution and are collected under a diverse backgrounds such

as buildings, vegetation, sky and roads. The training and

test sets in this dataset consist of 1201 and 334 images, re-

spectively.

5.2. Ablation Study

We perform a detailed ablation study to understand the

effectiveness of various fusion approaches described earlier.

The ShanghaiTech Part A and UCF-QNRF datasets con-

tain different conditions such as high variability in scale,

occluded objects and large crowds, etc. Hence, we used

these datasets for conducting the ablations. The following

configurations were trained and evaluated:

(i) Baseline: VGG16 network with conv6 at the end (Fig.

1(a)),

(ii) Baseline + fuse-a: Baseline network with multi-scale

feature fusion using feature addition (Fig. 1(b)),

(iii) Baseline + fuse-c: Baseline network with multi-scale

feature fusion using feature concatenation (Fig. 1(b)),

(iv) Baseline + BT + fuse-c: Baseline network with bottom-

top multi-scale feature fusion using feature concatenation

(Fig. 1(c)),

(v) Baseline + TB + fuse-c: Baseline network with
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(a) (b) (c) (d) (e)
Figure 6. Ablation study results: (a) Input, (b) Simple feature concatenation (experiment-ii), (c) Bottom-top and top-bottom fusion (exper-

iment - vi), (d) MBTTF (experiment - viii), (e) Ground-truth density map.

Table 1. Ablation study results.
Dataset Shanghaitech-A[74] UCF-QNRF[19]

Method MAE MSE MAE MSE

Baseline (Fig. 1a) 78.3 126.6 150.2 220.1

Baseline + fuse-a (Fig. 1b) 73.6 118.4 140.3 210.8

Baseline + fuse-c (Fig. 1b) 73.4 115.6 135.2 200.2

Baseline + BT + fuse-c (Fig. 1c) 68.1 122.2 114.1 185.2

Baseline + TB + fuse-c (Fig. 1d) 70.2 118.5 120.1 188.1

Baseline + BTTB + fuse-c (Fig. 1e) 66.9 112.2 115.4 174.5

Baseline + MBTTB + fuse-c (Fig. 1f) 63.2 108.5 105.5 169.5

Baseline + MBTTB + SCFB-NS (Fig. 2) 62.5 105.1 102.1 168.1

Baseline + MBTTB + SCFB (Fig. 2) 60.2 94.1 97.5 165.2

top-bottom multi-scale feature fusion using feature con-

catenation (Fig. 1(d)),

(vi) Baseline + BTTB + fuse-c: Baseline network with

bottom-top and top-bottom multi-scale feature fusion using

feature concatenation (Fig. 1(e)),

(vii) Baseline + MBTTB + fuse-c: Baseline network with

multi-level bottom-top and top-bottom multi-scale feature

fusion using feature concatenation (Fig. 1(f)),

(viii) Baseline + MBTTB + SCFB-NS: Baseline network

with multi-level bottom-top and top-bottom multi-scale

feature fusion using SCFB, without using scale-aware

supervision (Fig. 2)

(ix) Baseline + MBTTB + SCFB: Baseline network with

multi-level bottom-top and top-bottom multi-scale feature

fusion using SCFB (Fig. 2)

The quantitative results of the ablation study are shown

in Table 1. As it can be observed, simple fusion scheme of

addition/concatenation (experiments (i) and (ii)) of multi-

scale features at the end, does not yield significant improve-

ments as compared to the baseline network. This is due to

the reason that in case of feature fusion at the end, the su-

pervision directly affects the initial conv layers in the main

branch, which may not be necessarily optimal.

However, when the features are fused in either bottom-

top/top-bottom fashion, the results improve considerably,

when compared to the baseline. Since this kind of fu-

sion sequentially propagates the information in a particu-

lar direction, the initial conv layers do not get affected di-

rectly. The bottom-top and top-bottom (experiment (vi))

further improves the performance. The multi-level bottom-

top and top-bottom configuration, in which an additional

level of bottom-top and top-bottom fusion path is added

(experiment-vii), reduces the count error further, signifying

the importance of the multi-level fusion paths.

Next, we replace the fusion blocks in experiment-vii

with the SCFB blocks, which amounts to the proposed

method as shown in Fig. 2 (experiment viii). However, the

SCFB blocks are not supervised by the scale-aware ground-

truths. The use of these blocks enables the network to prop-

agate relevant and complementary features along the fusion

paths, thus leading to improved performance. Finally, we

provide scale-aware ground-truth as supervision signal to

the SCFB blocks (experiment - ix), which results in further

improvements as compared to without scale-aware supervi-

sion.

Fig. 6 shows qualitative results for different fusion con-

figurations. Due to space constraints and also to explain

better, we show the results of experiments (iii) Baseline

+ fuse-c, (vi) Baseline + BTTB + fuse-c, (ix) Baseline +

MBTTB + SCFB only. It can be observed from Fig. 6(b),

that simple concatenation of feature maps results in lot of

background noise and loss of details in the final predicted

density map, indicating that such an approach is not ef-

fective. The bottom-top and top-bottom approach, shown

in Fig. 6(c) results in the refined density maps, however,

they still contain some amount of noise and loss of details.

Lastly, the results of experiment (ix) as shown in Fig. 6(d)
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which have more details where necessary with much lesser

background clutter as compared to earlier configurations.

5.3. Comparison with recent methods

In this section, we present the results of the proposed

method and compare them with several recent approaches

on the three different datasets described in Section 5.1.

Comparison of results the ShanghaiTech and

UCF CROWD 50 datasets are presented in Table 2

and 3 respectively. The proposed method achieves the best

results among all the existing methods on the ShanghaiTech

Part A dataset and the UCF CROWD 50 dataset. On the

ShanghaiTech B dataset and UCF CROWD 50dataset, our

method achieves a close 2nd position, only behind CAN

[33].

Table 2. Comparison of results on ShanghaiTech [74].

Part A Part B

Method MAE MSE MAE MSE

Switching-CNN [48] (CVPR-17) 90.4 135.0 21.6 33.4

TDF-CNN [47] (AAAI-18) 97.5 145.1 20.7 32.8

CP-CNN [56] (ICCV-17) 73.6 106.4 20.1 30.1

IG-CNN [3] (CVPR-18) 72.5 118.2 13.6 21.1

Liu et al. [34] (CVPR-18) 73.6 112.0 13.7 21.4

CSRNet [28] (CVPR-18) 68.2 115.0 10.6 16.0

SA-Net [7] (ECCV-18) 67.0 104.5 8.4 13.6

ic-CNN [43] (ECCV-18) 69.8 117.3 10.7 16.0

ADCrowdNet [31] (CVPR-19) 63.2 98.9 8.2 15.7

RReg [61] (CVPR-19) 63.1 96.2 8.7 13.5

CAN [33] (CVPR-19) 61.3 100.0 7.8 12.2

Jian et al. [20] (CVPR-19) 64.2 109.1 8.2 12.8

HA-CCN [58] (TIP-19) 62.9 94.9 8.1 13.4

MBTTBF-SCFB (proposed) 60.2 94.1 8.0 15.5

Results on the recently released large-scale UCF-QNRF

[19] dataset are shown in Table 4. We compare our results

with several recent approaches. The proposed achieves the

best results as compared to other recent methods on this

complex dataset, thus demonstrating the significance of the

proposed multi-level fusion method.

Qualitative results for sample images from the Shang-

haiTech dataset are presented in Fig. 7.

6. Conclusion

We presented a multi-level bottom-top and top-bottom

fusion scheme for overcoming the issues of scale varia-

tion that adversely affects crowd counting in congested

scenes. The proposed method first extracts a set of scale-

complementary features from adjacent layers before prop-

agating them hierarchically in bottom-top and top-bottom

fashion. This results in a more effective fusion of features

from multiple layers of the backbone network. The effec-

tiveness of the proposed fusion scheme is further enhanced

by using ground-truth density maps that are created in a

principled way by combining information from the image

Table 3. Comparison of results on UCF CROWD 50[18].

UCF CROWD 50

Method MAE MSE

Switching-CNN [48] (CVPR-17) 318.1 439.2

TDF-CNN [47] (AAAI-18) 354.7 491.4

CP-CNN [56] (ICCV-17) 295.8 320.9

IG-CNN [3] (CVPR-18) 291.4 349.4

D-ConvNet [51] (CVPR-18) 288.4 404.7

Liu et al. [34] (CVPR-18) 289.6 408.0

CSRNet [28] (CVPR-18) 266.1 397.5

ic-CNN [43] (ECCV-18) 260.9 365.5

SA-Net-patch [7] (ECCV-18) 258.5 334.9

ADCrowdNet [31] (CVPR-19) 266.4 358.0

CAN [33] (CVPR-19) 212.2 243.7

Jian et al. [20] (CVPR-19) 249.9 354.5

HA-CCN [58] (TIP-19) 256.2 348.4

MBTTBF-SCFB (ours) 233.1 300.9

Table 4. Comparison of results on the UCF-QNRF datastet [19].

Method MAE MSE

CMTL [55] (AVSS-17) 252.0 514.0

MCNN [74] (CVPR-16) 277.0 426.0

Switching-CNN [48] (CVPR-17) 228.0 445.0

Idrees et al. [19] (ECCV-18) 132.0 191.0

Jian et al. [20] (CVPR-19) 113.0 188.0

CAN [33] (CVPR-19) 107.0 183.0

HA-CCN [58] (TIP-19) 118.1 180.4

MBTTBF-SCFB (ours) 97.5 165.2

Figure 7. Qualitative results of the proposed method on Shang-

haiTech [74] First column: Input. Second column: Ground truth

Third column: Predicted density map.

and location annotations in the dataset. In comparison to

existing fusion schemes and state-of-the-art counting meth-

ods, the proposed approach is able to achieve significant im-

provements when evaluated on three popular crowd count-

ing datasets.
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