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Abstract

Batch normalization (BN) has been very effective for deep

learning and is widely used. However, when training with

small minibatches, models using BN exhibit a significant

degradation in performance. In this paper we study this

peculiar behavior of BN to gain a better understanding of

the problem, and identify a cause. We propose ‘EvalNorm’

to address the issue by estimating corrected normalization

statistics to use for BN during evaluation. EvalNorm sup-

ports online estimation of the corrected statistics while the

model is being trained, and does not affect the training

scheme of the model. As a result, EvalNorm can also be used

with existing pre-trained models allowing them to benefit

from our method. EvalNorm yields large gains for models

trained with smaller batches. Our experiments show that

EvalNorm performs 6.18% (absolute) better than vanilla BN

for a batchsize of 2 on ImageNet validation set and from 1.5

to 7.0 points (absolute) gain on the COCO object detection

benchmark across a variety of setups.

1. Introduction

Batch Normalization (BN) [11] has significantly con-

tributed to the wide application and success of deep learn-

ing. It has enabled training of larger and deeper mod-

els [7, 8, 22, 23] leading to significant advances in computer

vision. However, a well-acknowledged drawback of BN is

that it requires sufficiently large minibatches [7, 10, 23], and

results in drastically reduced model performance for smaller

mini-batches. In this paper we study this peculiar behavior

of BN to gain a better understanding of the source of the

problem. We identify a cause and propose EvalNorm to ad-

dress the issue. EvalNorm estimates corrected normalization

statistics to use for BN during evaluation only. EvalNorm

supports online estimation of the corrected statistics while

the model is being trained and does not affect the training

scheme of the model. As a result, EvalNorm can also be used

with existing pre-trained models allowing them to benefit
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from our method without retraining. For pre-trained models

EvalNorm suggests: 1) a rule of thumb that is trivial to im-

plement and, 2) an offline estimation method that requires

a pass through data (but doesn’t update the model). The

ability to estimate corrected statistics online for new models

helps avoid an otherwise two step process. The model is

still trained as it would be without our method. Note that

proposing a new normalization technique is not a goal of

this paper. Instead, the goal is to gain a better understand-

ing of the behavior of BN for small minibatches. We limit

ourselves to explorations that only affect the evaluation of

a model trained with BN and refer to our method as ‘Eval

Normalization’ (EvalNorm or EN).

Reliance of BN on large minibatches is prohibitive in

several settings due to the hardware memory limitations. For

example, applications requiring high-resolution inputs (ob-

ject detection, segmentation, medical image analysis, etc.) or

high-capacity (deeper and wider) networks are constrained

to using smaller minibatches and thus take a performance

hit. As a result, several normalization techniques, such as

Group Normalization [25] and Batch Re-normalization [10],

have been proposed to address the problem due to smaller

minibatches. However, these approaches don’t shed any

light on the source of the problem with BN. Instead, they

propose alternatives that make changes to the model and

require retraining. As a result, many already trained and de-

ployed models that use BN, where retraining is not possible,

can not benefit from these alternatives. Our experimental

evaluation of EN shows that it addresses the shortcomings

of BN for small batches and provides a feasible alternative

when retraining isn’t an option.

Training and evaluation discrepancy in BN: During train-

ing, BN normalizes each channel for an example using the

mean and variance of that channel aggregated across the full

minibatch. This aggregation across the minibatch introduces

a dependency on other minibatch samples. However, during

evaluation each example is evaluated by itself and thus an

approximation of the minibatch statistics is required. Typi-

cally, an exponential moving average (EMA) of minibatch

moment statistics is maintained during training and used as

a substitute during evaluation. Normalization using EMA
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Figure 1: Discrepancy in train vs. test distributions: In each plot we show normalized activation distributions using different

normalization operations and different normalization minibatch sizes for an arbitrary channel of a ResNet-20 trained on

CIFAR-100. ‘BN’ denotes result of batch normalization during training, ‘EMA’ denotes normalization used during evaluation

using EMA, and ‘Ours’ is using our EvalNorm adjustment during evaluation. Notice that for larger minibatches (128 samples)

in (a), all three normalization operation result in similar distributions. However, for small minibatches (2 samples) in (b) and

(c), ‘Ours’ using test time EN is much closer to the train time ‘BN’ than the standard ‘EMA’ statistics.

statistics is assumed to provide an accurate approximation

to normalization observed during training. While reasonable

for larger minibatches, we demonstrate that this assumption

is erroneous for small minibatches (Section 3.2). This is

because the mean and variance used to normalize a sample

in a minibatch during training depend on that sample itself.

For small minibatches this dependency is significant but ig-

nored by the default method of using EMA. We qualitatively

illustrate the discrepancy in train and test normalization in

Figure 1, where we plot the distribution of normalized fea-

tures at train (‘BN’) and test (‘EMA’) time. Each plot shows

smoothed histograms of activations for an arbitrary channel

of an arbitrary layer (in a ResNet-20 model) using different

methods. For larger minibatches (Figure 1a), we observe

that the distribution of normalized activations during training

and testing match well. However, for small minibatches (Fig-

ures 1b and 1c), normalized feature distributions are quite

different. Lastly, note that our method (‘Ours’) reduces this

discrepancy and brings the distribution of normalized activa-

tions during testing closer to that during training (‘BN’).

To summarize our contributions, we: 1) quantify the de-

pendence of the normalization statistics used by BN on a

particular minibatch sample leading to an insight into the

source of poor small minibatch performance, 2) propose two

methods for estimating a correction without retraining exist-

ing models that use BN, and 3) propose a method to estimate

corrections online during training of new models without

affecting the training. We have included an extensive exper-

imental section that analyzes and validates our insight and

demonstrates that our insight leads to an improved evaluation

performance of BN on a variety of common benchmarks.

2. Related work

Normalization of data for training is regularly used in

machine learning. For example, it’s a common practice to

normalize features (scale or whiten) before learning clas-

sifiers like SVM. Similarly, for deep networks, many tech-

niques have been proposed to normalize both inputs and

intermediate representations, which make the training better

and faster [6, 13]. Batch Normalization or BatchNorm (BN)

is one such technique which aims to stabilize latent feature

distributions in a deep network. BN normalizes features

using the statistics computed from a minibatch; and has been

shown to ease the learning problem and enable fast conver-

gence of very deep network architectures. However, with

BN’s widespread adoption, it has been observed that models

using BN exhibit severe degradation in performance when

trained with smaller minibatches (as discussed in Section 1).

To address the stochasticity due to small minibatches

and bias due to non-iid samples, Ioffe [10] introduced batch

renormalization (Renorm) which constrains the minibatch

moments to a specific range. This limits the variation in mini-

batch statistics during training. Ioffe [10] also introduced

hyperparameters to prevent drift in the EMA statistics due

to the variability of small minibatches. However, Renorm

is still dependent on minibatch statistics with small mini-

batches, leading to worse performance. For tasks where

small minibatches are standard (e.g., object detection), an-

other approach is to engineer systems that can circumvent

the issue. Peng et al. [17] proposed to perform synchronized

computation of BN statistics across GPUs (Cross-GPU BN)

to obtain better statistics. However, since images/GPU for

object detection is small (1-2 images), this approach requires

„128 GPUs to compute reasonable BN estimates. Further,

this does not address the original problem of BN with small

minibatches. Moreover, the need for synchronized computa-

tion prohibits the use of asynchronous training, which is a

standard and practical tool for large-scale problems.

Instead of dealing with the small minibatch problem, sev-

eral normalization techniques have been proposed that do not

utilize the construct of a ‘minibatch.’ Instance Normaliza-

tion [24] performs normalization similar to BN but only for

a single sample and was shown to be effective on image style
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transfer applications. Similarly, Layer Normalization [2]

utilizes the entire layer (all channels) to estimate the normal-

ization statistics. These approaches [2, 24] have not shown

benefits on image recognition tasks, which is the applica-

tion we focus on. Instead of normalizing the activations,

Weight Normalization [20] reparameterizes the weights in

the neural network to accelerate convergence. Normalization

Propagation [1] uses data independent moment estimates in

every layer, instead of computing them from minibatches

during training. Group Normalization (GN) [25] divides

the channels into groups and, within each group, computes

the moments for normalization. GN alleviates the small

minibatch problem to some extent, but it performs worse

than BN for larger minibatches. Ren et al. [18] provide a

unifying view of the different normalization approaches by

characterizing them as the same transformation but along

different dimensions (layers, samples, filters, etc.).

Unlike many approaches discussed above, the proposed

EN does not modify the training scheme of batch normal-

ization. It only estimates a different set of evaluation time

statistics. The parameters used in EN are independent of

the deep network, and training the parameters does not im-

pact the network’s training in any way. We conjecture that

EN may be complementary to some of the above-mentioned

approaches and may be used in conjunction with them to

normalize across batch dimension. However, we consider

this beyond the focus of this study.

3. Eval Normalization (EN)

We first briefly describe the relevant aspects of batch

normalization and then present our method.

3.1. Batch Normalization (BN)

BN normalizes a particular channel of a sample in a mini-

batch using the mean and variance of that channel computed

across the whole minibatch. Since the normalization of the

channels is decoupled, we analyze the normalization of a

single (but arbitrary) channel. Consider the set of activations

B “ tx1, . . . ,xBu of a particular channel in an arbitrary

layer for a minibatch of size B. Typically, xi is a two di-

mensional field of scalars. During training, BN uses the

minibatch mean µB and variance σ2

B
to compute the normal-

ized activations x̂i as

x̂i “
pxi ´ µBq

σB

. (1)

This has two notable ramifications during training: 1) For

activations xi the normalization statistics µB and σ2

B
are a

function of the statistics of activations xi themselves, 2) the

normalized activations x̂i for a particular sample are stochas-

tic as they depend on the statistics of the other samples in a

stochastic minibatch.

During evaluation randomness of x̂i due to stochastic

dependency on other minibatch elements poses a difficulty

for BN. To keep the evaluation deterministic and remove the

dependency on other test samples BN substitutes x̂i by an

estimate of its expected value Erx̂is. This is done by treating

µB and σ2

B
encountered during training as random variables

and substituting them by an estimate of their expected values

as µE « ErµBs and σ2

E
« Erσ2

B
s to construct a first order

approximation of Erx̂is as

Erx̂is «
pxi ´ ErµBsq

a

Erσ2

B
s

«
pxi ´ µEq

a

σ2

E

. (2)

The estimates µE and σ2

E
are typically maintained as expo-

nential moving averages (EMA) during training.

Note that BN also employs a learned affine transform

after normalization. We omit this affine transform in the text

as it is not relevant to the discussion of normalization.

3.2. Source of stochasticity in x̂i

As noted earlier, µB and σ2

B
are a function of xi. How-

ever, eq. (2) ignores this dependency entirely. Let us first

make this dependency explicit. Let µi and σ2

i
be the mean

and variance respectively of xi. Denote C “ B ´ xi as the

set of B ´ 1 mini-batch elements excluding xi with com-

bined mean µC and variance σ2

C
. The full minibatch mean

µB and variance σ2

B
can be expressed in terms of the above

with the combined population mean and variance formulae.

Let α “ 1{B, then

µB “ αµi ` p1 ´ αqµC (3)

σ2

B “ ασ2

i
` p1 ´ αqσ2

C ` αp1 ´ αqpµi ´ µCq2. (4)

First note that 0 ă α ď 1, since B ě 1. Therefore, α

can be viewed as interpolating between the contributions

from the sample being normalized and the other minibatch

samples. For normalized activations x̂i it is evident that the

true source of stochasticity are µC and σ2

C
due to randomized

minibatch. Therefore, we assert that Erx̂is in eq. (2) for the

minibatch sample xi should be approximated using eqs. (3)

and (4) as opposed to approximating µB and σ2

B
directly.

Note that for large minibatches α « 0, resulting in a

nominal contribution of µi and σ2

i
to the normalizing statis-

tics (i.e., ErµBs « ErµCs and Erσ2

B
s « Erσ2

C
s). Therefore,

ErµBs « ErµCs « µE and Erσ2

B
s « Erσ2

C
s « σ2

E
(that is,

using the EMA statistics for normalization) are reasonable

approximations. However, for small minibatches the contri-

butions of µi and σ2

i
in eqs. (3) and (4) can not be ignored

and these approximations are not accurate. We argue that

this inaccuracy is the primary reason for observed distribu-

tion mis-matches between BN and EMA in Figure 1, and

poor performance of BN for small minibatches.
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Figure 2: Classification error on CIFAR-10 and CIFAR-100. EN consistently outperforms both EMA and Renorm for all

minibatch sizes. Notice that the error does not decrease monotonically with increasing minibatch sizes. One intuition behind

this is that at the inflection point, the stochasticity of the estimates act as a good regularizer (similar trends were observed

by Masters and Luschi [16]).

3.3. Approximating Erx̂is for small minibatches

Simple approximation: At first glance a simple solu-

tion would be to directly use α “ 1{B and approximate

ErµBs and Erσ2

B
s using eqs. (3) and (4). More specifically,

ErµBs « αµi`p1´αqµE and Erσ2

B
s « ασ2

i
`p1´αqσ2

E
`

αp1´αqpµi ´µEq2. These can then be substituted in eq. (2)

for normalization. Note that we have made the additional

approximations of ErµCs « µE ,Erσ2

C
s « σ2

E
. However, for

small minibatches µC and σ2

C
exhibit high variance and these

approximations may be inaccurate. Unfortunately, higher or-

der approximations to account for the variance either require

tracking higher order moments, whose estimates would them-

selves be unreliable, or making strong assumptions about the

distributions of xi. Nevertheless, we explore this alternative

in experiments where it turns out that α “ 1{B is less than

ideal. Experimenting with a few heuristic choices for the

value of α leads to a simple rule-of-thumb of α “ 1{B2

(Figure 4 and Table 1) that is found to work well empirically.

Estimated approximation: Instead of using a fixed α, we

propose to turn α into an estimated variable. We instantiate

two separate copies of α, namely α̂ and β̂, and construct the

following approximations to eqs. (3) and (4)

ErµBs « α̂µi ` p1 ´ α̂qµE (5)

Erσ2

Bs « β̂σ2

i
` p1 ´ β̂qσ2

E ` β̂p1 ´ β̂qpµi ´ µEq2. (6)

Our method estimates α̂ and β̂ (Section 3.4) such that nor-

malized activations using above approximations match the

normalized activations using minibatch statistics. Note that,

decoupled α̂ and β̂ lead to slightly better empirical results

than a single value.

3.4. Estimating α̂ and β̂

Offline estimation: Given a trained model, we propose

to estimate α̂ and β̂ for a particular layer by minimiz-

ing an auxiliary loss Laux as below. Let x¨y represent a

stop gradient operation that does not allow flow of

gradients to its argument in automatic differentiation frame-

works. Then Laux is computed as

µ̂ “ α̂xµiy ` p1 ´ α̂qµE (7)

σ̂2 “ β̂xσiy
2 ` p1 ´ β̂qσ2

E ` β̂p1 ´ β̂qpxµiy ´ µEq2 (8)

Laux “

∥

∥

∥

∥

B

xi ´ µB

σB

F

´
xxiy ´ µ̂

σ̂

∥

∥

∥

∥

1

(9)

Minimizing this objective allows us to estimate α̂, β̂ such

that evaluation time normalization produces activations that

are similar to those observed using minibatch statistics for

normalization. Further, the stop gradient operation

prevents the estimation from affecting the model parameters.

Online estimation: For training a new model a naı̈ve ap-

proach would be to first train the model as usual with BN

and then estimate α̂ and β̂ in a second pass while freezing

rest of the parameters using Laux above. However, use of

stop gradient as above allows us to collapse the two

steps into a single one without affecting the training of the

model parameters.

4. Experiments

We evaluate our approach on two tasks and four datasets:

image classification on CIFAR-10, CIFAR-100 [12], and

ImageNet [3], and object detection on COCO [14]. We use

CIFAR-100 as a test-bed to perform ablation experiments

and study various aspects of our method. The results on Ima-

geNet and COCO demonstrate the utility of using EvalNorm
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Figure 3: Estimated α̂ (top) and β̂ (bottom) values for different batchsizes on CIFAR-100. Each set of bars corresponds to a

BN operation (e.g. G1/B0 represents group 1, block 0; BN0 and BN1 represent first and second BN operation) and each color

corresponds to a batch size (increasing left to right in a set). Both α̂ and β̂ take larger values for smaller batchsizes indicating

that individual statistics need to be included in the normalization statistics and weighted in accordance with the batchsize.

(EN), especially for models trained with small mini-batches.

Note that, unless explicitly stated, α̂ and β̂ in all the experi-

ments are estimated online for ease of experimentation.

4.1. Image Classification on CIFAR­10/100

Experimental setup. CIFAR-10 and CIFAR-100 contain

images from 10 and 100 classes respectively. For both

CIFAR-10 and CIFAR-100, we train on the 50000 train-

ing images and evaluate on the 10000 test images. Unless

specified otherwise, we use a 20 layer ResNetv2 CIFAR vari-

ant [8] for both datasets. The base CIFAR variant contains

three groups of residual blocks with widths t16, 32, 64u re-

spectively. Wider variants use multiples of these sizes. All

networks are trained using SGD with momentum for 128k

updates, with an initial learning rate of 0.1 and a cosine

decay schedule [15] unless otherwise specified.

Small minibatches. In this section we study the effect of

minibatch size used to compute the normalization statistics.

For fair comparison all models need to be trained for the

same number of epochs. However, this leads to smaller

minibatch models getting more gradient updates. Moreover,

gradients from small minibatches have higher variance in

comparison to larger minibatches requiring an adjustment in

learning rate. To isolate the impact of small minibatches on

normalization from these confounding factors, we use the

same minibatch size (128 samples) for gradient updates and

vary the number of samples used for normalization (from 2

to 128) (refer to the “microbatch” setup in [10]).

Figures 2a and 2b compare our method (EN) with the

default EMA statistics used by standard BN [11] and batch

re-normalization (Renorm) [10]. For Renorm, we set rmax “
2.0 and dmax “ 1.0. For larger minibatch sizes (64 and 128),
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Figure 4: Comparison of a set of hand picked schedules for

α̂, β̂ as a function of batch size B. Although, the estimated

values using our method perform the best, α̂ “ β̂ “ 1{B2

appears to be a good rule of thumb.

we notice that all methods are comparable, but for smaller

minibatch sizes (2 and 4) using EN statistics leads to a lower

classification error compared to both BN and Renorm. Even

though Renorm is less sensitive to varying minibatch sizes,

it also lead to worse performance.

Interestingly, the performance of BN and EN does not

decrease monotonically with the decreasing minibatch size

used for normalization. Instead, it seems to improve before

becoming worse. Similar trends were reported by [16]. In

depth study of this is beyond the scope of this paper (refer

to [16] for an empirical study). One intuition is that smaller

minibatches introduce stochasticity that acts as a regularizer

before it starts to hurt performance.

Visualization of estimated α̂, β̂. Figure 3 visualizes the

estimated α̂, β̂ across different layers for various batch sizes.
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Figure 5: Performance of EN for deeper and wider network variants on CIFAR-100. EN consistently leads to lower

classification error compared to EMA statistics.

Larger value of α̂, β̂ for smaller batches confirms our insight

that statistics of the sample being normalized need to be

included and weighted in accordance with batchsize. Both

α̂, β̂ follow the trend of taking on smaller values for larger

batches indicating a decreasing influence of individual statis-

tics for larger batches in agreement with eqs. (3) and (4).

Simple approximation for α̂, β̂. Figure 4 compares a set

of hand picked schedules for α̂, β̂ as a function of batch

size B. Although, the estimated values using our method

perform the best, α̂ “ β̂ “ 1{B2 appears to be a good rule

of thumb. Note that this is counter intuitive to the more

natural seeming α̂ “ β̂ “ 1{B. We also validate this on

ImageNet in Table 1.

Deeper and wider networks. Figure 5 compares EN and

EMA in deeper (20, 56, 110, and 254 layers) and wider (1,

2, 4, and 8 ˆ the original width) ResNetv2 models, with

normalization minibatch size of 4 and 8 on CIFAR-100. EN

consistently leads to lower classification error compared to

using EMA statistics indicating its general applicability.

4.2. Image Classification on ImageNet

We report results on the ImageNet classification

dataset [3] with 1000 classes. We train on „1.28M training

images and evaluate on 50k validation images. All methods

in this section use a 50 layer ResNetv2 [8] network architec-

ture. We resize all images to 229ˆ229 and use training time

data augmentation from [23].

As is standard practice [7, 8], we use synchronous SGD

across 8 GPUs to train all models in this section. We compute

the BN and EN statistics per GPU, whereas gradients are

averaged across all GPUs. Therefore, the effective minibatch

size for gradient computation (SGD ‘batchsize’) is 8ˆ the

per GPU normalization minibatch size (‘samples/GPU’).

This is the standard synchronized multi-GPU training setup

in popular libraries, such as PyTorch and Tensorflow.

We study normalization minibatch sizes (samples/GPU)

of 2, 4, 8, 16, and 32, leading to an effective SGD batchsize

(N ) of 16, 32, 64, 128, and 256 respectively. All models

are trained for 60 epochs with an initial learning rate of

0.1ˆN{256 and a cosine decay schedule. Other implemen-

tation details (such as initialization) follows [8]. We report

results on two image classification metrics: ‘Prec@1’ and

‘Recall@5’. Prec@1 measures the classification accuracy

of the top-1 prediction, and Recall@5 measures the recall

accuracy for top-5 predictions.

We evaluate using EN and EMA statistics for inference

time normalization and report the results in Table 1. We ob-

serve that using EN statistics consistently perform better than

EMA statistics across all minibatch sizes. For larger mini-

batches, where EMA statistics provide an accurate approxi-

mation, the difference in performance is marginal. However,

for small minibatches EN statistics have a significant impact.

For example, for 2 samples/GPU, Prec@1 metric improves

by more than 8 points and Recall@5 metric improves by

6.27 points. Also note that the performance gap between

small and large minibatch size is much lower with EN. For

example, reducing samples/GPU from 32 to 4, Prec@1 for

EMA drops from 75.98 to 71.40 (-4.58 points), whereas for

EN, it only drops by 2.7 points.

Next, in Table 1 we also compare our method with two

recent normalization methods namely Group normaliza-

tion [25] and Batch renormalization [10] that circumvent

minibatch dependence. Note that these methods change the

model or the training method itself. EN performs similar

to or better than alternatives that normalize across batch

(EMA and Renorm), indicating that it properly accounts

for individual sample contributions. For large batch sizes

EN outperforms other methods while for small batch sizes

Group normalization tends to perform better. However, the

gain from retraining using GroupNorm is reduced from 10%

to 3.75% (for batchsize 2), and EN does not suffer the side
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Table 1: ImageNet classification results for ResNet-50 [8]

using EMA and EN statistics for different normalization

minibatch sizes (samples/GPU). We show the classification

accuracy for top-1 prediction (Prec@1) and the recall for

top-5 prediction (Recall@5). ∆ represents improvement due

to EN over EMA. EN consistently performs better than EMA

across all minibatch sizes, and provides significant gains for

small minibatches. See section 4.2 for details.

samples/GPU Ñ 32 16 8 4 2

P
re

c@
1

Renorm 76.04 75.78 74.21 73.33 70.87

Groupnorm 75.87 75.73 75.75 75.61 74.78

EMA 75.98 75.26 73.68 71.40 64.80

EN [ours] 76.20 75.89 74.87 73.49 70.98

∆ +0.22 +0.63 +1.19 +2.09 +6.18

α “ β “ 1{B2 [ours] 76.28 75.77 74.52 73.17 70.12

EN-Offline [ours] 76.18 75.85 74.92 73.48 71.03

R
ec

al
l@

5

Renorm 92.81 92.65 92.18 91.68 90.03

Groupnorm 92.59 92.31 92.28 92.10 91.81

EMA 92.88 92.61 92.17 90.70 86.13

EN [ours] 92.97 92.78 92.38 91.75 90.18

∆ +0.09 +0.17 +0.21 +1.05 +4.05

α “ β “ 1{B2 [ours] 92.96 92.81 92.17 91.46 89.51

EN-Offline [ours] 92.93 92.79 92.30 91.81 90.25

effect of reduced performance for large batch sizes.

Table 1 also reports the performance using the suggested

rule-of-thumb (α “ β “ 1{B2) as well as offline estimation.

Rule-of-thumb significantly improves over EMA but under-

performs EN. Nevertheless, it is an attractive and easier

alternative to estimation at the cost of performance. Offline

estimation performs similar to online estimation as expected.

4.3. Object Detection on COCO

Finally, we evaluate our method on the task of object

detection, and demonstrate consistent improvements when

using EN statistics as opposed to EMA. Object detection

frameworks are typically trained with high resolution inputs,

and hence use small SGD minibatch sizes. As a result object

detection is a good benchmark to evaluate the differences

between EN and EMA.

Experimental setup. All experiments in this section use

the COCO dataset [14] with 80 object classes. We train

using the trainval35k set [4] with „75k images and evaluate

on a held out minival set [4] with 5k images. We report

the standard COCO evaluation metrics for mean average

prevision with varying IoU thresholds (AP, AP50, AP75)

(see [14] for details).

We use the Faster R-CNN (FRCN) [9, 19] object detec-

tion framework, built with a 50 layer ResNetv1 [7] (ResNet-

50). The FRCN system has three components: 1) backbone

feature extractor (base network), which operates on high

resolution images (we resize images to 600ˆ600 for all

experiments), 2) region proposal network (RPN), which pro-

poses regions of interest (ROIs), and 3) region classification

network (RCN), which classifies regions proposed by RPN

using cropped features from the base network. All but the

last residual blocks from ResNet-50 are used as the base net-

work and the last residual block is used in the RCN network.

Refer to [9, 19, 21] for architecture details.

We study the SGD minibatch sizes (images/GPU or N ) of

2, 4, and 8. As is standard practice [9], we use minibatch size

of 300 and 64N ROIs for the RPN and RCN respectively.

Note that this results in different normalization minibatches

for different BN layers in the network (N for base network

and 64N for RCN). All models are trained for 64 epochs (in

terms of images and not ROIs) with an initial learning rate

of 0.015ˆN{8 and a cosine decay schedule. All methods

use asynchronous SGD with 11 parallel GPU workers. We

use the publicly released code from [9].

We investigate two different training paradigms: training

from a random initialization and transfer learning (or fine-

tuning). The random initialization setup is similar to the

experiments reported on image classification in Sections 4.1

and 4.2. The transfer learning setup is more common in

practice because it generally leads to higher performance.

Next, we discuss the trade-offs and training flexibility in

each paradigm and report results in Table 2 (blocks (a)-(d)).

Random initialization. We study the impact of EN by train-

ing a ResNet-50 Faster R-CNN model with all parameters

initialized randomly. The results for using both EMA and

EN statistics are reported Table 2(a). We observe that when

using 4 and 8 images/minibatch, both methods are on-par;

but when training with 2 images/minibatch, we see consis-

tent and significant gains of more than 1.5 points on all AP

metrics. Note that in this setup, the SGD and normalization

minibatch sizes for the base network are same; unlike the

ImageNet setup, where we average gradients across 8 GPUs

resulting in SGD minibatch size being 8ˆ the normalization

minibatch size.

Transfer learning. The standard paradigm of training ob-

ject detection models (like Faster R-CNN) is to use transfer

learning or fine-tuning [4, 5, 9, 19]. In this setup, param-

eters from a model trained on ImageNet classification are

transferred to the detection model, which is then trained on

object detection. We use the model checkpoint from [7] as

is standard practice. The transfer learning paradigm allows

us to study the impact of EN statistics compared to EMA in

a variety of settings.

First, we investigate which method is able to better es-

timate BN statistics in the absence of a prior. For this, we

use the ImageNet trained model to initialize the network

parameters (except BN parameters), but we use initial values

of BN parameters from [11]; and both sets of parameters
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Table 2: Object detection results on COCO using Faster R-CNN [19] with ResNet50 [7]. We report EMA and EN

performance for different minibatch sizes (images/batch). EN performs better across all AP metrics and all minibatch sizes,

specially for 2 images/minibatch, where we see significant gains. Different blocks (a)-(d) are described in Section 4.3. (∆ ą 1

point are shown in bold)

Network Weights BN EMA Stats AP AP50 AP75

Init Train? Init Train? images/batch Ñ 8 4 2 8 4 2 8 4 2

(a) Random X Random X

EMA 25.2 25.6 22.0 40.9 41.2 36.1 26.7 27.5 22.4

EN [ours] 25.2 25.8 23.5 41.0 41.3 38.1 26.8 27.6 25.0

∆ 0.0 +0.1 +1.5 +0.1 +0.1 +2.0 +0.1 +0.1 +2.6

(b) ImageNet X Random X

EMA 30.4 29.9 27.6 48.4 47.2 43.5 32.8 31.9 29.6

EN [ours] 30.7 30.5 29.6 48.5 47.9 46.5 33.0 32.8 31.3

∆ +0.2 +0.6 +2.0 +0.1 +0.7 +3.1 +0.2 +0.9 +1.7

(c) ImageNet X ImageNet ˆ

EMA 27.5 28.8 28.2 45.1 47.3 46.6 28.9 30.5 30.5

EN [ours] 30.2 30.3 30.5 48.2 48.6 48.7 32.2 32.1 32.7

∆ +2.7 +1.5 +2.3 +3.1 +1.3 +2.1 +3.3 +1.6 +2.2

(d) ImageNet X ImageNet X

EMA 31.7 30.1 24.8 50.6 47.6 40.0 33.9 32.2 26.1

EN [ours] 31.9 31.6 30.2 50.7 49.6 46.9 34.1 34.0 31.0

∆ +0.2 +1.5 +5.4 +0.2 +2.1 +7.0 +0.2 +1.8 +4.9

are trained simultaneously. We report the results for EN and

EMA in Table 2(b). We notice that EN is consistently better

than EMA across all minibatch sizes and AP metrics. In fact,

as opposed to random initialization, we see gains for both

2 and 4 images/minibatch, with the improvements for the

smaller minibatch being much higher.

Next, we study the standard setup [9, 19] of initializing

both, the network and the BN EMA parameters, using the

ImageNet model. Since standard BN performs poorly with

smaller minibatches [7, 10, 25], the BN parameters are not

updated during training in this setup. The results for this

setup are reported in Table 2(c). Notice that EN performs

significantly better than EMA across all minibatch sizes and

AP metrics. EN allows adjustment of statistics by using

the learned features (as opposed to ‘stale’ features from

initialization). Since this is the standard training paradigm

used by almost all detection systems, these consistent and

significant improvements are doubly important.

Finally, to demonstrate the effectiveness of EN in adjust-

ing statistics, we initialize both network and BN parameters

from ImageNet, and fine-tune both for object detection. In

practice, this setup performs poorly because BN is unable

to train for small minibatches, and is generally not used

(for example, [25] ignore this variant because of significant

drop in performance). We also notice this in Table 2(c) and

(d), where the EMA performance for 2 images/minibatch

drops by 3.4 AP, 6.6 AP50, and 4.4 AP75. Because of these

drastic drops in performance, methods do not fine-tune BN

parameters. Compare this to using the proposed EN statis-

tics, which improves over EMA by 5.4 AP, 7.0 AP50, and 4.9

AP75. Therefore, using EN allows us to train BN parameters

for smaller minibatches yielding significant improvements.

In this section, we showed that for the object detection

task, which is generally trained with small minibatches, us-

ing EN statistics performs markedly better across all training

setups. In Table 2, notice that we get a healthy performance

improvement for 2 images/minibatch across training setups

(ranging from +1.5 points to +7 points). In the standard

paradigm (Table 2(c)), we improve for all minibatch sizes.

Moreover, when training BN parameters for small mini-

batches, (Table 2(c) and (d)), we improve both 2 and 4

images/minibatch.

5. Conclusion

Our goal in this work was to gain a better understanding

of the problem with BN for small minibatches. We found that

for models trained with small minibatches, normalization

using EMA statistics during evaluation provides inaccurate

approximation for normalization using minibatch statistics

during training. This leads to a discrepancy between training

and evaluation and is the main reason of performance degra-

dation of BN for small batch sizes. We proposed EvalNorm,

which provides a corrected normalization term for use at

evaluation. EN is fully compatible with the existing pre-

trained models using BN and yields large gains for models

trained with smaller batches.
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