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Abstract

Text present in images are not merely strings, they pro-

vide useful cues about the image. Despite their utility in

better image understanding, scene texts are not used in tra-

ditional visual question answering (VQA) models. In this

work, we present a VQA model which can read scene texts

and perform reasoning on a knowledge graph to arrive at

an accurate answer. Our proposed model has three mutu-

ally interacting modules: (i) proposal module to get word

and visual content proposals from the image, (ii) fusion

module to fuse these proposals, question and knowledge

base to mine relevant facts, and represent these facts as

multi-relational graph, (iii) reasoning module to perform a

novel gated graph neural network based reasoning on this

graph.

The performance of our knowledge-enabled VQA model

is evaluated on our newly introduced dataset, viz. text-

KVQA. To the best of our knowledge, this is the first dataset

which identifies the need for bridging text recognition with

knowledge graph based reasoning. Through extensive ex-

periments, we show that our proposed method outperforms

traditional VQA as well as question-answering over knowl-

edge base-based methods on text-KVQA.

1. Introduction

“The more that you read, the more things you will

know.”

Dr. Seuss (in ‘I Can Read With My Eyes Shut!’)

Texts appearing in images open the door to the world of

knowledge and help gain a deeper and holistic understand-

ing of the visual content. However, traditional visual ques-

tion answering models do not leverage it. In this work, we

introduce a novel task of knowledge-enabled visual ques-

tion answering by reading text in images.

∗Anand Mishra was associated with the Indian Institute of Science,

Bangalore when this work was carried out.

Word proposals [16]: Subway, open

Visual content proposals [55]: fast food restaurant, shop

front

Q. Which restaurant is this?

A. Subway

Q. Can I get a sandwich here?

A. Yes

Q. Is this a French brand?

A. No

Figure 1. VQA model which only relies on visual cues may not

be necessarily sufficient to answer many natural questions, for ex-

ample, Which restaurant is this? for the given image. On the

other hand, the text “subway” appearing on image and rich knowl-

edge graph containing information like Subway is a restaurant,

are indispensable cues for visual question answering. We present

a VQA model that seamlessly integrates visual content (shown in

cyan), recognized word (shown in orange), a question and knowl-

edge facts to answer questions often asked in a real-world setting.

[Best viewed in color].

Visual question answering (VQA) has emerged as an im-

portant problem spanning vision and language. Tradition-

ally, VQA models [5, 20, 59] restrict themselves to analyze

visual cues alone. It may not necessarily be sufficient, espe-

cially when the question asked demands deeper knowledge

beyond the immediate visual content of the scene. For in-

stance, consider an image shown in Figure 1, and a question

Which restaurant is this?, visual cues are not enough to sug-

gest the name of the restaurant. However, the fact that this
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image contains a word Subway and external knowledge that

“Subway is a restaurant” provides an indispensable cue, and

allows us to answer this question correctly. Further, with the

access to rich open-source knowledge graphs such as Wiki-

data [44], we could ask a series of natural questions, such

as, Can I get a Sandwich here?, Is this a French brand?, and

so on, which are not possible to ask in traditional VQA [5]

as well as knowledge-enabled VQA models [47, 48].

The need for development of VQA models that can read

texts has been identified in a few very recent works [8, 32,

42]. However, the accompanying datasets are not backed

up by rich world knowledge, and hence limited to ques-

tions which can be answered by visual and textual cues

alone. Additionally, many questions in these datasets, such

as, What is the street name that starts with a color?, What

is the word that comes after golden? may pose computer

vision challenges, but such questions are neither natural nor

often asked in a real-world setting. This motivated us to

come up with a novel task and accompanying dataset where

access to world knowledge plays a crucial role in question

answering, in addition to the ability to read scene texts. Our

newly introduced dataset is much larger in scale as com-

pared to the three aforementioned works [8, 32, 42] and

more importantly, backed up by web-scale knowledge facts

harvested from various sources, e.g., Wikidata [44], IMDb

[1], a book catalogue [13]. Our dataset contains images

of scene, movie posters, cover pages of books along with

a series of natural and engaging questions, which may of-

ten be asked by people in real-world scenario. Our dataset

named as text-KVQA, with associated knowledge bases

can be downloaded from our project website: https:

//textkvqa.github.io/.

Our approach: Scene text recognition is graduating from

research labs to academic demos as well as limited indus-

trial applications ([31, 34, 45, 10, 49, 19, 7, 40, 9, 16]).

However, only relying on scene text recognition method

while developing a VQA model may not suffice. Hence,

we propose to integrate multiple cues, i.e., visual contents,

recognized words, question and knowledge facts, and per-

form a reasoning on a multi-relational graph using a novel

gated graph neural network [27] formulation.

Contributions of this paper: (i) We draw attention to an

important problem of visual question answering by read-

ing text appearing in images, connecting it to knowledge

graph and performing appropriate reasoning to arrive at an

accurate answer. To this end, we introduce a large-scale

dataset, namely text-KVQA. To the best of our knowl-

edge, text-KVQA is the first dataset which identifies the

need for bridging text recognition and knowledge graph

based reasoning for VQA task. (ii) We present a VQA

model which seamlessly integrates visual content, recog-

nized words, question asked and knowledge facts, and per-

forms reasoning on multi-relational graph using a novel

GGNN formulation. (Section 4) (iii) Rigorous experiments

and ablation studies are performed on the text-KVQA to

validate effectiveness of our proposed approach. (Section 5)

2. Related work

Visual Question Answering: VQA has gained huge inter-

est in recent years. The traditional VQA methods can be

grouped into following three broad categories: (i) joint em-

bedding methods, (ii) attention mechanism, and (iii) com-

positional models. Learning image and language embed-

dings in a common space has been common practice in the

vision and language communities. This has been leveraged

in some of the earlier works in VQA such as [6, 11, 14, 15,

25, 29, 35, 41, 51, 52, 56, 60]. These methods typically

use Bidirectional Long Short Term Memory and Convolu-

tional Neural Networks for representing question and image

respectively, and learn a joint model to predict the answer.

More recently, VQA models also leveraged attention mech-

anism to improve further [24, 29, 11, 29, 36, 41, 51]. There

has been growing interest in understanding compositional

linguistic structure of the questions for VQA tasks. Meth-

ods, such as dynamic memory networks [26] and neural

module networks [4] fall in this category. However, these

methods are still mostly restricted to visual reasoning alone.

VQA over knowledge graph: Visual question answering

over knowledge graphs is a recent trend in the VQA lit-

erature [48, 47, 37, 33, 46]. In these works, memory net-

works [50] and their variants have become the de facto base-

lines. However, as noted in [54], memory network treats

knowledge graph as a flattened table of facts, making it hard

to exploit the structural information in the graph and thus, is

relatively weak on reasoning. To overcome this limitation,

more recently graph representation learning has emerged as

a natural choice to perform reasoning over large knowledge

graphs [30, 53]. This motivated us to utilize the capability

of graph representation learning in the form of gated graph

neural networks (GGNN) [27]. Further, GGNN also allows

us to integrate the visual and textual cues seamlessly.

Scene text localization and recognition: We have wit-

nessed a significant boost in scene text localization and

recognition performance over past years. Like many other

areas in computer vision, deep neural nets have heavily in-

fluenced scene text localization research. Researchers have

started approaching text localization along the lines of ob-

ject localization tasks. Many works in text localization such

as EAST [57], SSTD [17], TextBox++ [28] are influenced

by seminal works in object localization. Once the text is

localized, the next problem is to recognize the correspond-

ing words. The modern methods [19, 7, 38, 16, 9] utilize

the availability of large annotated datasets and deep CNN

architecture to address this problem very effectively.

Combining visual and textual cues: Researchers have

also shown interest in combining visual and textual cues,
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(a)

Q. Which mobile store

is this?

A. Airtel

SF: Airtel is a

telecommunication

industry.

(b)

Q. Can I fill petrol in

my car here?

A. Yes

SF: HP is a petrolium

industry.

(c)

Q. Does this

showroom sell car?

A. Yes

SF: Hyundai produces

car.

(d)

Q. Is this an American

brand?

A. No

SF: Adidas is brand of

Germany.

(e)

Q. In which language

this book is written?

A. Spanish

SF: Medicina

Prehispanica De

Mexico is written in

Spanish.

(f)

Q. Who is the director

of this movie?

A. Joe Johnston

SF: Jumanji is directed

by Joe Johnston

Figure 2. Sample images, question-ground truth answer pairs and a relevant supporting fact from our newly introduced text-KVQA dataset.

Please note that supporting fact is not explicitly provided during training and inference of our method. Rather it is mined from the large-

scale knowledge bases. Please refer to supplementary material for more examples.

e.g., improving scene text recognition using scene con-

text [58], improving image classification using scene

text [23], etc. Very recent works [8, 32, 42] highlight the

need to combine visual and textual cues for visual question

answering. However, despite early progress in knowledge-

enabled VQA models and noticeable progress in the scene

text recognition literature, the important and much needed

task of combining these two research directions has not

been explored so far. Our work aims to be the first attempt

towards filling this gap.

3. Dataset

The traditional VQA models lack ability to read text in

the images. Very recently, towards developing VQA mod-

els that can read, three datasets [8, 32, 42] have been intro-

duced. However, these datasets do not allow knowledge-

enabled questions to be asked. We identify the need for

knowledge-enabled VQA model that can read and reason

in knowledge, vision and text space. Towards this goal, a

novel large-scale dataset namely, text-KVQA that contains

1.3 million question-answer pairs, 257K images and asso-

ciated web-scale knowledge bases has been introduced in

this work. We provide a table comparing text-KVQA with

related datasets in the literature in the supplementary mate-

rial.

The images of business brands, movie posters and book

covers were collected as part of our dataset. Among

these, movie posters and book cover images were obtained

from [2] and [18] respectively. Further, we explicitly har-

vested scene images of business brands. To this end, we

first prepare a list of 1000 business brands and use Google

image search to obtain approximately 50 images per brand

by applying filter to retrieve only licence free images. We

use postfix like ‘store’, ‘showroom’, ‘building’ intelligently

to maximize number of images containing relevant texts in

the top retrieval. Subsequently, we give this collection of

images to human annotators who remove all those images

which do not contain any text of brand names (e.g., interior

of a restaurant). These pruning stages end up retaining 500

brands and more than 10K scene images. The total num-

ber of images in our dataset including scenes of business

brands, movie posters and book covers are 257K. Based on

the content of images, we group our dataset into following

three categories: text-KVQA (scene), text-KVQA (movie)

and text-KVQA (book).

In order to allow knowledge-enabled questions to be

asked, we construct three domain-specific knowledge bases

for business brands, movies and books, namely, KB-

business, KB-movie and KB-book respectively. To con-

struct these three knowledge bases, we crawl open-source

world knowledge bases, e.g., Wikidata [3], IMDb [1] and

book catalogue provided by [18] around the anchor enti-

ties.1 Each knowledge fact is a triplet connecting two enti-

ties with a relation. An example of these triplets is: KFC,

started in, 1930.

We use knowledge facts and ground truth scene text

words to generate question-answer pairs of varying com-

plexity for each image. Our questions are of diverse nature,

such as factual questions (e.g., Which petrol pump is this?,

What does this store sell?, In which year this movie was re-

leased?) and binary questions (e.g., Can I get a sandwich

here?, Is this a Dutch brand?, Is this a romantic movie?).

Here, we would like to highlight that unlike other recently

introduced datasets, answers to the questions in our dataset

1We refer names of business brands and title of movies and books as

anchor entities.
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may not be directly answerable from visual and textual con-

tents alone. Further, to add natural linguistic complexity,

we paraphrase questions with the help of human annotators

and randomly choose either original or paraphrased ques-

tions for each image.

We split the dataset images into train, test and validation

sets by randomly dividing 80%, 10% and 10% of anchor

entities for train, test, and validation, respectively. We make

sure that these splits are disjoint, i.e., if an anchor entity

belongs to train set, then it can neither belong to validation

set nor to test set. It should be noted that this zero-shot

setting is close to the real-word scenario where it is highly

unlikely to have all anchor entities (e.g. business brands,

movie titles, etc.) seen during training. Figure 2 shows

some sample images, question- ground-truth answer pairs,

and supporting fact from knowledge base. Please note that

supporting fact is not explicitly provided during training and

inference of our method rather it is mined from the large-

scale knowledge bases.

Besides text detection and recognition in the wild set-

ting, the major challenges present in text-KVQA are large-

answer space, linguistic diversity and zero-shot setting. We

firmly believe that our dataset will be useful for text recog-

nition, VQA as well as QA on knowledge base communi-

ties.

4. Methodology

Our visual question answering model, which can read

and reason, works as follows. We begin by generating word

proposals and visual content proposals. These two modules

leverage the best performing scene text recognition and im-

age recognition methods. We, then, fuse these proposals,

questions and knowledge-base triplets (facts), and obtain

relevant facts. Subsequently, these relevant facts are used

to construct a multi-relational graph.

Given this multi-relational graph, we intend to perform

reasoning based on word proposals, visual concept pro-

posals and question. A natural choice for this is ‘gated

graph neural network’ (GGNN) [27] which is emerging as

a powerful tool to perform reasoning over graphs. Note that

GGNNs have been used in a variety of tasks including sym-

bolic QA [27] to more complex visual reasoning [30]. We

make appropriate changes to classical GGNN framework to

seamlessly integrate cues coming from image, question and

knowledge base to arrive at the intended answer. Figure 3

summarizes our proposed VQA scheme.

4.1. Proposal module

Given an image, first step of our knowledge-enabled

VQA pipeline is to obtain a set of words recognized in

it. Now, even the best performing scene text recognition

methods do not work well “in the wild” setting due to the

presence of occlusion, stylized fonts and different orienta-

tions of texts. Therefore, we take a different approach. In-

stead of just relying on exact text recognition, we perform

a search in the list of KG entities, and take all those words

as word proposals which are nearby to the recognized text

in the normalized edit distance space. At the end of this

step, we obtain a set W of n words and their respective

confidence scores computed using normalized edit distance

with KG entities. Each word in set W is represented us-

ing word2vec embeddings trained on Wikipedia [21], i.e.,

W = {w1,w2, . . .wn}. It should be noted that one or

more of these words are often an anchor entity (e.g., brand

name). In the experimental section, we evaluate four mod-

ern scene text recognition methods, and choose the best

among them to be used along with the subsequent modules.

Next, we obtain the visual content proposals. It should

be noted that OCRed texts in images can be noisy, and vi-

sual cues (e.g., scene) can boost overall performance. To

this end, we rely on Places [55] for scene recognition and

a fine-tuned VGG-16 model for representing visual con-

tents from movie posters and book covers. Finally, we

obtain a set of m visual content proposals V along with

their confidence scores. Each visual content proposal in

V is represented using word2vec embeddings trained on

Wikipedia [21], i.e., V = {v1,v2, . . .vm}.

4.2. Fusion module

Once word and visual content proposals are obtained, the

next step in our framework is to perform fusion of these

multimodal cues. The primary objectives of this fusion

module are two folds - (i) computational scalability, and

(ii) obtaining relevant facts from web-scale knowledge base

even in the case where word proposals are weak.

In this module, we have three cues: two coming from the

image, namely, word proposals W , visual content proposals

V ; and one coming from language, i.e., average word2vec

representation of words in question (q). We combine these

to find a set of relevant facts from our large-scale knowl-

edge base. Let us denote ith fact of our knowledge base as

fi = (hi, ri, ti) denoting word2vec representations of head

entity, relation and tail entity respectively. One example of

our knowledge fact is Subway (head), is brand of (relation),

United States of America (tail).

Given a set of word proposals W , visual content pro-

posals V and question q, we compute fusion score for ith

knowledge fact as follows.

F (hi, ri, ti) = max
j,k

αwswj
〈wj , (hi, ri, ti)〉

+ αvsvk
〈vk, (hi, ri, ti)〉

+ αq〈q, (hi, ri, ti)〉.

(1)

Here, swj
and svk denote confidence scores of jth word
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Figure 3. Proposed knowledge-enabled VQA model that can read and reason. For details please refer to Section 4.

proposal and kth visual content proposal in the image, re-

spectively. Further, 〈x, (hi, ri, ti)〉 = x.hi + x.ri + x.ti.

The parameters αw, αv and αq are determined on a valida-

tion set with a constraint to maximize recall of relevant fact

retrieval in top-K.

Now, by using fusion score for each knowledge fact, we

retrieve top-K knowledge facts for each question and image

pair, and construct a multi-relational graph.

4.3. GGNN formulation and reasoning

We obtain a multi-relational graph G from the above

module. Now, our task is to perform reasoning on this graph

to arrive at an accurate answer. We choose gated graph neu-

ral network (GGNN) [27] for this task. GGNN is a manifes-

tation of graph neural networks for the sequential outputs.

It uses gated recurrent units, and unroll the recurrence for

a fixed number of steps and use backpropagation through

time in order to compute the gradients. Our GGNN formu-

lation works as follows.

Given a graph with N nodes, a task specific embedding

of nodes xu for each node u, word proposals W , visual con-

tent proposals V , and an answer candidate ei, our goal is to

produce graph-level embedding OG for a graph classifica-

tion task. It should be noted that here graph classification

task is to determine if a candidate answer ei is a ground

truth answer or not. In order to obtain candidate answer,

given a question, we first predict the answer-type. Predict-

ing answer types has shown beneficial impact in VQA [22].

At coarser-level, answers in text-KVQA are either an en-

tity in knowledge graph, e.g., Subway, Car showroom or

obtained using reasoning over graph, e.g., Yes, No. Fur-

ther, knowledge graph provides finer type of entities (e.g.,

brand name, year, country). We use these finer entity types

along with yes-no and question-answer pairs in the train-

ing set for learning to predict an answer type for a given

question. To this end, we train a simple multi-layer per-

ceptron by representing each question using bi-directional

long-short term memory (BLSTM), and posing answer pre-

diction as multi-class classification problem. Once answer-

type is predicted, we trivially generate a small set of c can-

didate answers C = {e1, e2, e3, ..., ec} in one-hop of the

anchor entity. Note that here ei can either be yes-no or an

anchor or non-anchor entity in knowledge graph.

Given above in hand, we define a scoring function such

that maximum of which corresponds to answer (a∗).

a∗ = argmax
ei∈C

S(OG, ei). (2)

Here, OG is a graph embedding obtained using GGNN

explained in the subsequent paragraphs, and ei is word2vec

embedding of candidate answer ei. It should be noted that

scoring function is a binary classifier whose task is to de-

termine whether a candidate answer ei is correct answer or

not. We train S using binary cross entropy loss on training

set.

Graph-level embedding: Given a graph G =
(vertices: U , typed edges: E), question q, word proposals

W , visual content proposals V and a candidate answer ei,

we obtain graph-level embedding. To this end, we first de-

fine initial node embedding for a node u as follows.

xu =































[nu, 0, 1, cu]; if node u is a word proposal,

[nu, 1, 0, cu]; if node u is an answer candidate,

[nu, 1, 0, cu]; if node u has highest embedding

similarity with the question,

[nu, 0, 0, cu]; Otherwise.

(3)

Here nu is a word2vec embedding for node u. If node u

does not represent a word or visual content obtained using

image (e.g., United States of America), the value cu is set to
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0, otherwise the value cu is the confidence score for word or

visual content proposals obtained from the image according

to what node u represents. For example: if node u repre-

sents ‘Subway’ then cu is the confidence score of recogniz-

ing text ‘Subway’ in the image.

Suppose h
(t)
u is a hidden state representation for node u

at the GGNN time stamp t. We begin at t = 0, and initialize

hidden states as xu. If needed, we do appropriate padding.

Further, we use our graph structured encoding (i.e., adja-

cency matrix) A to retrieve the hidden states of adjacent

nodes based on the relation types between them. The hid-

den states are then updated by a gated update module as

follows.

h(0)
u = [xT

u,0]
T
; a(t)u = AT

u [h
(t−1) T
1 . . .h

(t−1) T

N ]
T

+ b,

(4)

ztu = σ(Uz
1 a

(t)
u +Uz

2 h
(t−1)
u ), (5)

rtu = σ(Ur
1 a

(t)
u +Ur

2 h
(t−1)
u ), (6)

h̃(t)
u = tanh(U1 a

(t)
u +U2 (r

t
u ⊙ h(t−1)

u )), (7)

h(t)
u = (1− ztu)⊙ h(t−1)

u + ztu ⊙ h̃(t)
u . (8)

After T timesteps, we obtain the final hidden states.

Here, Au, U1 and U2 are the adjacency matrix of the graph

for node u, and learned parameters respectively. Operator

⊙ denotes element-wise multiplication. From above, graph-

level embedding (OG) is computed as follows.

OG = tanh(Σu∈U σ(fθ(h
(T )
u ,xu))⊙ tanh(fφ(h

(T )
u ,xu)))

(9)

where, σ() acts as an attention mechanism that decides

relevant nodes for question-answering task. fθ and fφ are

neural networks which take concatenation of hidden state

and initial node embedding as input, and return real valued

vector as output. Graph embedding OG and an answer can-

didate is fed to a scoring function S to obtain a score for an

answer candidate ei. This scoring function is essentially a

multi-layer perceptron trained on a training set to determine

whether candidate answer ei is correct answer or not.

5. Experiments and Results

In this section, we perform rigorous experimental anal-

ysis and show ablation studies to validate the effectiveness

of our proposed model.

Evaluation of proposal module: Given an image, we first

detect and recognize the texts appearing in it. We use com-

binations of four modern scene text detection and recogni-

tion methods as shown in Table 1. Once these methods pro-

vide recognized texts, we perform normalized edit distance

(NED) based corrections using a list of candidate entities

in our knowledge base to enhance entity recall. In Table 1,

we report entity recall on all the three categories of text-

KVQA without correction as well as with correction using

Word Recognition: {GALP}
Word Proposals:{GALP, GAP}
Visual Content Proposal: {clothing

store, department store, gift shop}
Q. Can I get clothes here?

A (text only):. No

A (full model):Yes
Figure 4. Integration of visual content proposals help our full

model to recover from noisy word recognition.

NED = 0.5. Poor show of these state-of-the-art meth-

ods indicates the challenges associated with text detection

and recognition in our dataset. We choose to use TextSpot-

ter [16] and PixelLink [12]+CRNN [39] outputs in the next

stage of our VQA module, owing to their relatively better

performance. For the sake of simplicity, we refer to these

methods as photoOCR-1 and photoOCR-2 respectively.

Two broad categories of visual contents can be observed

throughout our dataset - (i) natural scene content for the

images in text-KVQA (scene) subset of the dataset and

(ii) artificially composed visual contents on movie posters

and covers of books. We use Places [55] and a VGG-16

finetuned model for recognizing these visual contents for

categories-(i) and (ii), respectively. Since category names

in our dataset are not exactly the same in Places, we could

not perform quantitative analysis on visual content evalu-

ation of places. However, we evaluate the visual content

classification module towards genre classification on movie

posters and book covers and achieve 25% and 27% top-1

accuracy, and 58% and 59% top-5 accuracy, respectively.

Evaluation of fusion scheme: Once the word and visual

content proposals have been extracted, they along with the

question are fused with facts from knowledge bases, i.e.,

KB-business, KB-movie and KB-book, to obtain the top-

100 relevant facts. For the subsequent module (i.e., VQA

using GGNN reasoning) higher recall of supporting fact

is expected at this stage. To evaluate the contribution of

each of these modalities, we perform ablation study as fol-

lows. (i) W : Only word proposals are fused with knowl-

edge facts, i.e. (αw = 1, αv = 0, αq = 0). (ii) V : Only

visual content proposals are fused with knowledge facts, i.e.

(αw = 0, αv = 1, αq = 0) (iii) q: Only question is fused

with knowledge facts, i.e. (αw = 0, αv = 0, αq = 1) (iv)

W + V + q: optimal combination of word proposal, visual

proposals and the question are fused with knowledge facts,

i.e. (αw = 0.7, αv = 0.2, αq = 0.1). The values of hyper-

parameters αw, αw and αq are determined on a validation

set.

Table 2 shows the individual fact recall@top-100 (i.e.,

percentage of supporting facts contained in top-100 relevant

facts) results for above four variants. We observe that word

proposals are the most helpful in obtaining higher recall of

supporting facts which is further boosted by optimally com-
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Method
text-KVQA (scene) text-KVQA (book) text-KVQA (movie)

Original NED=0.5 Original NED=0.5 Original NED=0.5

CTPN [43] + CRNN [39] 0.16 0.38 0.15 0.27 0.22 0.37

EAST [57] + CRNN [39] 0.36 0.60 0.43 0.66 0.24 0.42

Text Spotter [16] 0.38 0.58 0.53 0.70 0.35 0.48

PixelLink [12] + CRNN [39] 0.43 0.64 0.38 0.56 0.14 0.27

Table 1. We report recall statistics without edit distance correction (original) as well as recall after normalized edit distance (NED=0.5)

correction for state-of-the-art scene text detection and recognition methods. We refer methods in row-3 and row-4 as PhotoOCR-1 and

PhotoOCR-2 respectively from here on.

(a)

Words: {Ferrari}
Visuals: {auto

showroom, garage}
Q. What is this?

A. Auto showroom.

SF: Ferrari is an auto

showroom.

(b)

Words: {KFC}
Visuals: {fastfood

restaurant, food court}
Q. Is this an American

brand?

A. Yes.

SF: KFC is a brand of

USA.

(Observation:

Identifies American as

USA.)

(c)

Words: {Amul, Aral}
Visuals: {gas station,

highway}
Q. Can I fill fuel in my

car?

A. Yes

SF: Aral produces gas.

(Observation: Amul

is a restaurant, but

visual proposal helps

here.)

(d)

Words: {Saxon

Geometry}
Visuals: {Travel,

Maths}
Q. Who published of

this book?

A. Saxon publishers

SF: Saxon Geometry is

published by Saxon

publishers.

(e)

Words: {bligh, CVS}
Visuals: {motel,

pharmacy}
Q. What is this?

A. Pharmacy

SF: CVS is pharmacy.

(Observation: Both

word and visual

proposal mislead

here.)

(f)

Words: {Carried

Away}
Visuals: {Drama,

Thriller}
Q. In which year this

movie was released?

A. 1996

SF: Carried Away was

released in 1996.

Figure 5. A set of qualitative results obtained using proposed method. Answer in red indicate failure cases. [Best viewed in color].

Fusions Fact recall (in %)

W (photoOCR1) 55.8

W (photoOCR2) 59.9

V 20.8

q 5.3

W (photoOCR1)+V+q 58.9

W (photoOCR2)+V+q 60.7

Table 2. Relevant fact recall (in %) at top-100 retrieval for the text-

KVQA (scene) dataset based on different combination of word

proposals (W), visual content proposals (V) and question (q).

bining it with visual proposals and question.

Evaluation of GGNN reasoning: We evaluate GGNN

reasoning by reporting visual question answering accuracy

on text-KVQA. The quantitative results obtained by our

method are shown in Table 3. We use three ways of ob-

taining word proposals: (i) using photoOCR-1, (ii) using

photoOCR-2, and (iii) ideal text recognition (oracle) setting.

We compare variants of our methods with the following tra-

ditional and KB-based VQA models.

(i) Traditional VQA models: These methods rely on vi-

sual cues alone and are not designed to read texts in im-

ages. We have chosen - (a) BoW + CNN (b) BLSTM

(language Only), (c) BLSTM + CNN, (d) Hierarchical Co-

Attention [29], and (e) Bilinear Attention Network [24] as

traditional VQA baselines to compare. Among the above

five baselines, first three are basic VQA models used in

early works [5]. Method-(d) reasons jointly about the visual

and question attention, and Method-(e) builds two separate

attention distribution for both the images and the questions,

and then uses bilinear attention to predict the answers.

(ii) QA over KB based method: The task of question an-

swering over knowledge bases has gained attention in the

NLP community over the past few years, and many ap-

proaches have been proposed. One of the well-established

approaches among these is memory network [50]. There-

fore, we evaluate performance of memory network base-

line on text-KVQA by replacing our GGNN module with

memory units, while keeping the remaining modules of our

proposed framework identical. To this end, we represent

relevant facts obtained after our fusion module as memory

units and train the memory network. The hyper-parameters

of this network are chosen using a validation set.

We observe that the traditional VQA methods perform

poorly on all the three categories of our dataset. This poor

show indicates the importance of reading text for VQA task

which these methods are not capable of. Secondly, these are
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Method text-KVQA (scene) text-KVQA (book) text-KVQA (movie)

Traditional VQA methods

BoW + CNN 11.5 8.7 7.0

BLSTM (language Only) 17.0 12.4 11.3

BLSTM + CNN [5] 19.8 17.3 15.7

HiCoAttenVQA [29] 22.2 20.2 18.4

BAN [24] 23.5 22.3 20.3

QA over KB based method

Memory network [50](with photoOCR-1) 49.0 57.2 42.0

Memory network [50](with photoOCR-2) 52.6 47.8 22.2

Our variants

Vision only 21.8 19.8 18.2

Text only (with photoOCR-1) 48.9 55.0 41.4

Text only (with photoOCR-2) 52.2 48.6 20.5

Full model (with photoOCR-1) 52.2 62.7 45.2

Full model (with photoOCR-2) 54.5 49.8 23.0

Oracle (ideal text recognition) 80.1 71.3 76.2
Table 3. Comparison of variants of our proposed framework with traditional VQA methods and a QA over KB method [50] (in %). Methods

PhotoOCR-1 and PhotoOCR-2 use TextSpotter [16] and PixelLink [12] + CRNN [39] respectively for obtaining word proposals.

fully-supervised models, and do not cope well with the chal-

lenges arising due to zero-shot nature of the text-KVQA.

Our proposed knowledge-enabled VQA model which is ca-

pable of reading text in images significantly outperforms

these baselines methods. Moreover, our GNNN-based full

model also achieves improved VQA performance over the

memory network based KB-QA baseline. As mentioned

earlier, memory network treats KG as a flattened table of

facts. Therefore, it is hard to exploit the structural infor-

mation present in the graph which weakens the reasoning

performance.

The superior performance of our method can be at-

tributed to the seamless integration of visual and text

recognition cues and powerful reasoning over graph using

GGNN. In order to study the effect of different modali-

ties towards the overall performance of the proposed frame-

work, we perform an ablation study. In Table 3 we report

results of variants of our method with text only, vision only

and full model which seamlessly integrates visual content

and word proposals. Our text only and vision only meth-

ods use word proposals and visual content proposals re-

spectively, along with GGNN reasoning. As expected, since

questions in our dataset are often connected to the text ap-

pearing in images, the vision only variant fails to perform

well, especially in comparison to the text only baselines.

However, the utility of the visual content proposals in the

overall VQA performance can not be underestimated. This

is primarily because even the best text recognition meth-

ods are not perfect. Adding visual content proposals to the

framework provides a way to rectify errors due to noisy

text recognition, and add robustness. This can also be un-

derstood via an example in Figure 4. Due to noisy word

recognition, the text-only model has led to incorrect answer,

whereas, the full model (visual content + text) is able to cor-

rectly answer the question. Therefore, our final model is de-

signed to integrate both these modalities and subsequently

perform reasoning over graph using GGNN, which helps it

achieve improved performance in comparison to these abla-

tions and baselines.

Figure 5 shows a set of example results obtained by the

proposed method. We observe that our method recovers

well even from weak word proposals utilizing visual cues,

e.g., Figure 5 (c). However, if both text and visual recogni-

tion mislead the method, it fails to generate correct answer,

e.g., Figure 5 (e). Please refer to the supplementary material

for more qualitative results and their detailed analysis.

6. Summary and future work

In this work, we have taken the first step towards

knowledge-enabled VQA model that can read and reason.

We approached this problem by seamlessly integrating vi-

sual cues, textual cues and rich knowledge bases, and per-

formed reasoning using a novel GGNN formulation. Our

approach significantly outperformed traditional VQA mod-

els as they are not designed to read text in images as well

as a QA over KB-based method. Also, as part of our

work, we have introduced a large-scale challenging dataset,

namely, text-KVQA containing a series of natural and en-

gaging questions about images. The current method and

dataset, however, are limited to questions which can be an-

swerable from one-hop reasoning on the knowledge graph.

As future research, we would like to develop models that

perform multi-hop and more complex reasoning on knowl-

edge graphs, as well as pose the VQA task in our dataset as

visual dialogue.
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malet, and Pascale Sébillot. Combining multi-scale

character recognition and linguistic knowledge for

natural scene text OCR. In DAS, 2012. 2

[14] Akira Fukui, Dong Huk Park, Daylen Yang,

Anna Rohrbach, Trevor Darrell, and Marcus

Rohrbach. Multimodal compact bilinear pooling

for visual question answering and visual grounding.

arXiv:1606.01847, 2016. 2

[15] Haoyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang,

Lei Wang, and Wei Xu. Are you talking to a machine?

dataset and methods for multilingual image question

answering. In NIPS, 2015. 2

[16] Ankush Gupta, Andrea Vedaldi, and Andrew Zisser-

man. Synthetic data for text localisation in natural im-

ages. In CVPR, 2016. 1, 2, 6, 7, 8

[17] Pan He, Weilin Huang, Tong He, Qile Zhu, Yu Qiao,

and Xiaolin Li. Single shot text detector with regional

attention. In ICCV, 2017. 2

[18] Brian Kenji Iwana, Syed Tahseen Raza Rizvi, Sheraz

Ahmed, Andreas Dengel, and Seiichi Uchida. Judging

a book by its cover. arXiv preprint arXiv:1610.09204,

2016. 3

[19] Max Jaderberg, Andrea Vedaldi, and Andrew Zisser-

man. Deep Features for Text Spotting. In ECCV, 2014.

2

[20] Justin Johnson, Bharath Hariharan, Laurens van der

Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross

Girshick. CLEVR: A diagnostic dataset for compo-

sitional language and elementary visual reasoning. In

CVPR, 2017. 1

[21] Armand Joulin, Edouard Grave, Piotr Bojanowski,

and Tomas Mikolov. Bag of tricks for efficient text

classification. In EACL, April 2017. 4

[22] Kushal Kafle and Christopher Kanan. Answer-type

prediction for visual question answering. In CVPR,

2016. 5

[23] Sezer Karaoglu, Ran Tao, Theo Gevers, and

Arnold WM Smeulders. Words matter: Scene text for

image classification and retrieval. IEEE transactions

on multimedia, 19(5):1063–1076, 2017. 3

[24] Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang.

Bilinear attention networks. In NeurIPS, 2018. 2, 7, 8

[25] Jin-Hwa Kim, Sang-Woo Lee, Dong-Hyun Kwak,

Min-Oh Heo, Jeonghee Kim, Jung-Woo Ha, and

Byoung-Tak Zhang. Multimodal residual learning for

visual QA. NeurIPS, 2016. 2

[26] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mo-

hit Iyyer, James Bradbury, Ishaan Gulrajani, Victor

Zhong, Romain Paulus, and Richard Socher. Ask me

anything: Dynamic memory networks for natural lan-

guage processing. In ICML, 2016. 2

[27] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and

Richard S. Zemel. Gated graph sequence neural net-

works. CoRR, abs/1511.05493, 2015. 2, 4, 5

[28] Minghui Liao, Baoguang Shi, and Xiang Bai.

Textboxes++: A single-shot oriented scene text detec-

tor. IEEE Trans. Image Processing, 27(8):3676–3690,

2018. 2

4610



[29] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi

Parikh. Hierarchical question-image co-attention for

visual question answering, 2015. 2, 7, 8

[30] Kenneth Marino, Ruslan Salakhutdinov, and Abhinav

Gupta. The more you know: Using knowledge graphs

for image classification. In CVPR, 2017. 2, 4

[31] Anand Mishra, Karteek Alahari, and C. V. Jawa-

har. Top-Down and Bottom-Up Cues for Scene Text

Recognition. In CVPR, 2012. 2

[32] Anand Mishra, Shashank Shekhar, Ajeet Kumar

Singh, and Anirban Chakraborty. OCR-VQA: Visual

question answering by reading text in images. In IC-

DAR, 2019. 2, 3

[33] Medhini Narasimhan, Svetlana Lazebnik, and Alexan-

der G. Schwing. Out of the box: Reasoning with graph

convolution nets for factual visual question answering.

NeurIPS, 2018. 2

[34] Lukas Neumann and Jiri Matas. Real-time scene text

localization and recognition. In CVPR, 2012. 2

[35] Mengye Ren, Ryan Kiros, and Richard S. Zemel. Ex-

ploring models and data for image question answer-

ing. In NeurIPS, 2015. 2

[36] Idan Schwartz, Alexander G. Schwing, and Tamir

Hazan. High-order attention models for visual ques-

tion answering. NeurIPS, 2017. 2

[37] Sanket Shah, Anand Mishra, Naganand Yadati, and

Partha Pratim Talukdar. KVQA: Knowledge-aware vi-

sual question answering. In AAAI, 2019. 2

[38] Baoguang Shi, Xiang Bai, and Cong Yao. An end-

to-end trainable neural network for image-based se-

quence recognition and its application to scene text

recognition. IEEE Trans. Pattern Anal. Mach. Intell.,

39(11):2298–2304, 2017. 2

[39] Baoguang Shi, Xiang Bai, and Cong Yao. An end-

to-end trainable neural network for image-based se-

quence recognition and its application to scene text

recognition. IEEE Trans. Pattern Anal. Mach. Intell.,

39(11):2298–2304, 2017. 6, 7, 8

[40] Cunzhao Shi, Chunheng Wang, Baihua Xiao, Yang

Zhang, Song Gao, and Zhong Zhang. Scene Text

Recognition Using Part-Based Tree-Structured Char-

acter Detection. In CVPR, 2013. 2

[41] Kevin J. Shih, Saurabh Singh, and Derek Hoeim.

Where to look: Focus regions for visual question an-

swering. In CVPR, 2016. 2

[42] Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu

Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and

Marcus Rohrbach. Towards VQA models that can

read. In CVPR, 2019. 2, 3

[43] Zhi Tian, Weilin Huang, Tong He, Pan He, and Yu

Qiao. Detecting text in natural image with connec-

tionist text proposal network. In ECCV, 2016. 7

[44] Denny Vrandecic and Markus Krötzsch. Wikidata:
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