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Figure 1: FAX converts a single RGB image (a) into a scan (b, d) with albedo texture (c, e)

Abstract

Current methods for body shape estimation either lack

detail or require many images. They are usually architec-

turally complex and computationally expensive. We propose

FACSIMILE (FAX), a method that estimates a detailed body

from a single photo, lowering the bar for creating virtual

representations of humans. Our approach is easy to imple-

ment and fast to execute, making it easily deployable. FAX

uses an image-translation network which recovers geometry

at the original resolution of the image. Counterintuitively,

the main loss which drives FAX is on per-pixel surface nor-

mals instead of per-pixel depth, making it possible to esti-

mate detailed body geometry without any depth supervision.

We evaluate our approach both qualitatively and quantita-

tively, and compare with a state-of-the-art method.

1. Introduction

High resolution body capture has not seen widespread

adoption, despite a myriad of applications in medicine,

gaming, and shopping. Traditional methods for high-quality

body estimation require expensive capture systems which

are difficult to deploy [28, 8]. More affordable RGB-D sen-

sors like kinect have tried to overcome this problem [47, 6],

though those sensors are not as widespread as RGB cam-

eras. On the other hand, modern systems for single-photo

body estimation lack detail [10, 31, 2, 22, 7, 33]. Our work

is designed to help close the gap between an easily acquired

image and a rich, detailed, reposeable avatar.

Systems targetted to recover shape from single images

do a laudable job at recovering intermediate body represen-

tations. These include voxel-based reconstruction in [44],

the synthetic-view generation system in [31], or the cross-

modal neural nets in [10]. But inevitably, the fidelity of their

capture is limited by the granularity of their representation.

To address this lack of representational power, we apply

modern image-to-image translation techniques [19, 46] to

geometry estimation. More concretely, we would like to

estimate the depth corresponding to every foreground pixel

in the image. But this presents a new problem: the naive

estimation of depth via an image translation network creates

noisy, unusable surfaces (Figure 2). This teaches us that

when estimating depth with image-to-image translation, a

direct loss on depth fails to give us a plausible surface.

The solution to this problem can be traced all the way

back to Shape From Shading (SFS) literature by Horn [18],

in which surface normals play a critical role in defining the

relationship between a surface and its appearance. Work

focused in the reconstruction of the face region [35] has

shown that a loss on depth can benefit from an additional

loss on normals. We go beyond this insight showing that a
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Figure 2: Frontal meshes estimated using (pink) an L1 loss on depth and (green) an L1 loss on normals.

loss just on normals can be sufficient to reconstruct a high-

quality depth map up to scale, and that this applies for an

articulated, far from spherical object.

Because a single depthmap is still far from an entire

avatar, we extended the system to estimate front and back-

facing geometry and albedo. Similar to the concurrent work

in [31], we exploit the idea of obtaining two values per pixel

by training the network to hypothesize the back side of the

person (see Figure 3). Unlike [31], we do not restrict our-

selves to texture and also estimate the back depth and nor-

mals. While current detailed methods like [31, 2] typically

take several minutes to run, we compute an almost complete

scan containing geometry and texture in less than one sec-

ond. In this publication we assume a cooperative subject

and focus on a specific type of image that maximizes infor-

mation capture (frontal arms-down pose, minimal clothing),

although we believe the method could be applied to other

cases and will continue investigating them in future work.

We demonstrate three contributions. First, we compute

full scans from a single image, orders of magnitude faster

than current methods producing detailed scans. Although

other methods also reproduce garments, our method ex-

tracts significantly more detail. We encourage the reader

to review the scans in figures 1 and 7 and the supplemen-

tary material, paying special attention to subtle folds and

compression artifacts in the chest, waist or hips, not present

in any other methods. Second, we show how these scans

can be converted into detailed deformable avatars with little

additional time (less than 10 seconds), which can be valu-

able for applications like gaming, measurements from an

image, and virtual telepresence. Finally, we illustrate the ef-

ficacy of our method by comparing it quantitatively against

the state-of-the-art multi-image method [3] and performing

a qualititative and quantitative ablation study.

2. Related Work

Geometry estimation from a single-photo has been a

topic of research for at least 50 years. Classic methods like

shape from shading [17] take shading images and produce

the underlying geometry. Modern solutions to this problem

can be computationally efficient and intuitive [48, 4], but

the limitations of the light and distribution models applied

to the data make them brittle in the presence of input noise,

which is unavoidable in real data. Deep learning based

methods have achieved impressive results in reducing this

brittleness in outdoor depth reconstruction for autonomous

driving [13] and indoor geometry reconstruction [12, 43].

Single-photo body estimation methods typically bot-

tleneck through fixed intermediate representations, which

while enabling piecewise modeling, ultimately limit the

amount of achievable detail. Some methods bottleneck

through segmented images [21, 15, 38, 10, 33], others

through estimated keypoints positions [7, 26], and some

through both [44, 34, 14, 1]. All such methods permit too

much ambiguity to allow for dense surface reconstruction.

Recent methods [22] avoid this limitation by using encoder-

decoder representations directly on the image. They achieve

remarkable robustness to images in the wild, but struggle to

recover detailed shape and pose. Work on SURREAL [45]

estimates depth directly, but with coarse detail. The SiC-

loPe [31] system tolerates greater clothing variation than

our system, but its geometric detail is limited by the use of

intermediate silhouettes. To the credit of these works, all

but [10] were designed for capturing bodies “in the wild”

with tolerance for pose variation, whereas our goal is to cap-

ture a detailed avatar from a restricted pose.

Single-photo face estimation methods have produced

useful insights for body estimation. Early work by Blanz

and Vetter [5] was ground-breaking but suffered from lack

of detail and problems with robustness in the wild. Robust-

ness was addressed by data-driven models [9, 11, 20, 37,

40, 39, 41]; detail was addressed first by shape from shad-

ing [24, 27], and then by deep learning [36, 42, 35]. A

recent survey by Zollhoffer et al [49] has more specifics.

FAX specifically shares themes with [36, 42], in which the

image-to-image translation architecture from Isola et al [19]

is successfully applied to detailed face geometry estimation.

Our focus is on avatar geometry estimation from a single

color image. For a more general review of body estimation

from multiple images, readers are advised to review the ex-

cellent summaries of previous work provided in Alldieck et

al [2] and Bogo et al [8].
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Figure 3: Depth, surface normals and albedo are computed

for the body points closest and furthest from the camera

along the optic ray entailed by each pixel. Note the pres-

ence of pixels which remain unobserved and become holes

in the inferred scan (black contours in the image).

3. Method

Our goal is to estimate a detailed 3D scan from a single

RGB image. We treat this as an image-to-image translation

task, where we translate an image to depth and albedo val-

ues in image space. More specifically, we estimate those

outputs for both the front- and back-facing portions of the

body. The depth images form regular grids of vertices,

which can be trivially triangulated to create a 3D surface.

We describe our depth estimation architecture in more

detail in Section 3.2, but focus first on albedo estimation

in Section 3.1, since the training protocol closely resembles

the prior work of [46]. Finally, we explain how to obtain a

complete, reposable and reshapable avatar in Section 3.3.

3.1. Albedo estimation

Our architecture of choice is based on the image-to-

image translation work of [46]. We omit features specific to

semantic segmentation and image editing, as well as their

“enhancer” networks. Thus we define our generator using

their “global generator”, which is composed of a downsam-

pling section, followed by a number of residual [16] blocks,

and completed with an upsampling section that restores the

feature maps to the input resolution. We make one mi-

nor modification by replacing transposed convolutions with

upsample-convolutions to avoid checkerboard artifacts [32].

The loss in [46] is composed of three terms: an adver-

sarial loss, LGAN using a multi-scale PatchGAN [19] dis-

criminator with an LSGAN [30] objective; a feature match-

ing loss, LFM , which penalizes discrepancies between the

internal discriminator activations from the generated G vs.

real images y; and a perceptual loss, LV GG, which uses

a pre-trained VGG19 network, and similarly measures the

different VGG activations from real and generated images:

Lalb

(

x, yi
)

= LGAN

(

x, yi, Gi
)

+ λFMLFM

(

x, yi, Gi
)

+ λV GGLV GG

(

yi, Gi
)

(1)

where i indexes front and back. Every generated image

Gi(x) depends on the input image x, so we drop this de-

pendency from now on to simplify notation. Front and back

albedo use the same loss components, though employ sep-

arate discriminators for the front and back estimates, en-

abling them to specialize. The application of this network to

our problem of albedo estimation is straightforward. Given

synthetic training data (see Section 4.2) of images and the

corresponding front and back albedo, we estimate G with

six channels corresponding to the two albedo sets (center of

Figure 4). The total loss is the sum of losses applied to front

and back, Lalb

(

x, yf
)

+ Lalb

(

x, yb
)

.

3.2. Depth estimation

Motivation As previously explained, direct estimation of

depth is challenging due to various reasons. First, there

is an ambiguity between scale and distance to the camera

difficult to resolve even by humans. And second, this dis-

tance to the camera entails a much larger data variance than

shape details. Therefore, a loss on depth encourages the net-

work to solve the overall distance to the camera, which is a

very challenging and mostly irrelevant problem for our pur-

pose. Instead, we focus on inferring local surface geometry,

which is invariant to scale ambiguities.

In initial experiments we managed to estimate detailed

surface normals through the direct application of the image-

translation network described in Section 3.1. However, inte-

grating normals into robust depth efficiently is a challenging

problem at the core of shape from shading literature. While

integration of inferred normal images is challenging and ex-

pensive, its inverse operator is simple: the spatial deriva-

tive. Spatial derivatives can be implemented simply as a

fixed layer with a local difference filter. By placing such

layer directly behind the estimated normals (see δ layer in

Figure 4), we are implicitly forcing the previous result to

correspond to depth. Similar to the classic integration ap-

proach, this allows us to infer depth even in the absence of

depth ground truth data, but without the extra computational

cost incurred by explicit integration.

Losses In our depth architecture (see Figure 4), the output

is three channels and they represent the front and back depth

Gi
d where i denotes front or back, as well as a mask Gm

denoting where depth is valid. The front and back depth

are processed with a spatial differentiation network δ that

converts the depth into normals Gi
n = δ(Gi

d, Gm, f). This

spatial differentiation depends on the focal length f (con-

sidered fixed in train and test data) to correct perspective

distortion. Furthermore, the differentiation operator incor-

porates the mask Gm produced by the network, to ensure we

do not differentiate through boundaries. In the areas where

depth is not valid, a constant normal value is produced.

While albedo (or color in general) seems to clearly bene-
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Figure 4: Network architecture for geometry inference (left) and albedo inference (right) from an image a. They share the

architecture inspired by [46] in the first stage (blue and yellow, trained separately). In geometry, the network outputs three

channels (mask b, front and back depth e and d), while in albedo six channels are produced (RGB back g and RGB front h).

Depth channels are processed by fixed spatial differentiation layers δ which use the mask to limit its effect to the foreground

area, resulting in front and back normals (e and f). For compactness, we do not show the front and back albedo discriminators.

fit from adversarial losses, the same does not seem to be true

for recovering geometry. In our experience (similar to what

is described in [36]), the adversarial loss in Lalb introduces

noise when applied to the problem of depth and normal es-

timation, and reduces its robustness to unseen conditions.

For this reason, the depth Ld and normal Ln terms of our

geometry estimation objective

L
i
n (x, y) = LL1

(

y,Gi
n

)

+ λV GGLV GG

(

y,Gi
n

)

(2)

L
i
d (x, y) = LL1

(

y,Gi
d

)

(3)

replace the adversarial loss with an L1 loss. LV GG is not

applied to the depth representation as this would require a

normalization of the (unbounded) depth values that could

cause training instability. The total loss can potentially in-

clude this geometric loss applied to normals and/or depth,

as well as a binary cross entropy loss on the mask output

Lfull (x, y) = λd

(

L
f
d + L

b
d

)

+ λn

(

L
f
n + L

b
n

)

+ λmskLmsk (ym, Gm) (4)

In Section 4.5 and Table 2, we study the contributions of

these loss terms both qualitatively and quantitatively.

3.3. Estimating Dense Correspondence

The system described in the previous section produces

per-pixel depth values, which are inherently incomplete.

Moreover, since those values are created per pixel, they lack

any semantic meaning (where is the nose, elbow, etc). In

this section we adopt the mesh alignment process described

in [6] to infer the non-visible (black parts in Figure 3) parts

of the body geometry based on SMPL [29], a statistical

model of human shape and pose.

The alignment process deforms a set of free body ver-

tices (referred to as the mesh) so that they are close to the

pointcloud inferred in the previous section (referred to as

the scan), while also being likely according to the SMPL

body model. Similar to [6], we minimize a loss composed

of a weighted average of a scan-to-mesh distance term Es, a

face landmark term Eface, two pose and shape priors Epose

and Eshape, and a term that couples the inferred free ver-

tices with the model Ecpl. We provide some intuition about

the terms in the following paragraphs, although the details

can be obtained in the original publication.

Es penalizes the squared 3D distance between the scan

and closest points on the surface of the mesh. Eface penal-

izes the squared 3D distance between detected face land-

marks [23] on the image (in implicit correspondence with

the scan) and pre-defined landmark locations in SMPL. Ecpl

encourages the mesh, which can deform freely, to stay close

to the model implied by the optimized pose and shape pa-

rameters. Epose and Eshape regularize pose and shape of

the coupled model by penalizing the Mahalanobis distance

between those SMPL parameters and their Gaussian distri-

butions inferred from the CMU and SMPL datasets [7].

As it is common in single view and non-calibrated multi-

view shape estimation, our results cannot recover the sub-

jects scale accurately. Since SMPL cannot fit scan at arbi-

trary scales, we first scale the scan to a fixed height before

optimizing the mesh, then apply the inverse scale to the op-

timized mesh, returning it to the original reference frame.

When training our depth estimator, the loss on depth acts

as a global constraint, enforcing that the front and back
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Figure 5: Each row shows two instances of synthetic data (one male, one female). For each example, left to right: RGB,

front and back albedo, front and back depth, front and back normals, and segmentation. Note that these examples do not

really belong to our training set, since the textures come only from test subjects who signed a special consent form.

scans be estimated at consistent scales. When this loss

is omitted during training (see Section 4.5), the front and

back scale are not necessarily coherent, and thus their rela-

tive scale must be optimized during mesh alignment. This

can be accomplished by introducing a single additional free

scale variable that is applied to the back vertices and opti-

mized along with the mesh. When describing our experi-

ments, we refer to this option as opt back.

4. Experiments

4.1. Training and evaluation details

For albedo estimation, we train on random crops of size

512 × 512 to comply with memory limitations. The multi-

scale discriminators process images at 1×, 1

2
×, and 1

4
× res-

olutions. Losses are weighted as in [46]. For depth estima-

tion, we train on 720 × 960 images, and work with a focal

length of 720 pixels. We do not assume a fixed distance to

the camera. Both albedo and depth estimation networks are

trained for 180k steps with a batch size of one, and input

images are augmented with gaussian blur, gaussian noise,

hue, saturation, brightness, and contrast. The training pro-

cess takes approximately 48 hours with a V100 Tesla GPU.

Evaluation is performed on 720× 960 images. A single

forward pass of either network takes about 100 millisec-

onds, while aligning SMPL to the scan takes 7 seconds.

4.2. Datasets

We train exclusively on synthetic datasets (Figure 5), and

test on real images collected “in-lab” — i.e., in a well-lit, in-

door environment, where images are captured by lab tech-

nicians, and subjects wear tight-fitting clothing and stand in

an “A”-pose (see Figure 7).

We render 40,000 synthetic image tuples (1% held out

each for validation and testing). The bodies have a base

low-frequency geometry synthesized with SMPL, and high-

frequency displacements captured in-lab. The SMPL shape

parameters are sampled from the CAESAR dataset and

poses are sampled from a mix of (a) CAESAR poses and

(b) a set of in-lab scan poses with arms varying from A-

pose to relaxed. Textures and displacement maps, derived

from 3D photogrammetry scans of people captured in-lab,

are randomly sampled and applied to the base bodies, which

increases the diversity of the input and output spaces.

The camera is fixed with zero rotation at the origin,

and the body randomly translated and rotated to simulate

a distance of roughly 2 meters with a slight downward tilt

of the camera. Specifically, translation is sampled from

x ∼ [−0.5, 0.5], y ∼ [0.0, 0.4], z ∼ [−2.2,−1.5] in me-

ters and rotation as Euler angles in degrees from x ∼

[−9.0, 35], y ∼ [−7, 7], z ∼ [−2, 2], applied in yxz order.

Background images are drawn from OpenImages [25], ex-

cluding images containing people.

We use three light sources: an image-based environment

light (which uses the background image as a light source),

a point light, and a rectangular area light. For each render,

we randomly sample the intensity of all lights, the position

and color temperature of the point and area lights, the ori-

entation and size of the area light, and the specularity and

roughness of the shader on the body. All light sources cast

raytrace shadows, with the most visible generally coming

from the area and point lights.

4.3. Visual Evaluation

As a baseline, we consider direct estimation of frontal

depth with an L1 loss function. Figure 2 shows meshes es-

timated from natural test images, comparing models trained

with an L1 loss on depth vs. an L1 loss on normals. Results

with the depth-only loss appear unusable, while results with

the normals-only loss are smooth, robust, and capture an im-

pressive amount of detail. Thus, for detailed depth estima-

tion of human bodies, a direct loss on depth is insufficient,

whereas a loss on surface normals is sufficient to produce

robust and detailed depth estimates. However, since the loss
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Subject ID FAX (mm) FAX (mm) (opt pose) [3]

50002 9.46 6.56 5.13

50004 7.90 4.19 4.36

50009 5.23 3.86 3.72

50020 6.60 3.85 3.32

50021 4.76 3.27 4.45

50022 5.08 3.50 5.71

50025 5.03 3.02 4.84

50026 7.83 4.87 4.56

50027 8.21 4.34 3.89

Table 1: Bi-directional mesh-to-mesh error on subjects

from D-FAUST dataset using our baseline method. For each

subject we report average error across multiple instances

rendered with random environment configurations, using

the methodology described in Section 4.2.

on normals only constrains the output locally, the geometry

will not be true to scale. A loss on depth, while not cru-

cial for the quality of the geometry, encourages the output

toward a space of plausible human scales.

One advantage of FAX is its ability to extract subtle

shape detail from a single image. Recovered shapes are

intricate and personal, as observed in the waist, hips and

chest of almost every example in Figure 7. This is hard to

achieve by methods based on convex-hull [31], voxels [44]

or SMPL shape parameters [22]. Even methods optimizing

explicitly the shape to fit the image contour, like [3], fail

to recover this level of detail because the underlying opti-

mization has to find a compromise between the data and the

underlying (overly smooth) model. Detail obtained from

FAX is mostly visible in the contours, but the side renders

show that this detail is reconstructed in a coherent manner

across the body shape, recreating bust and stomach shape

that is coherent with the silhouette and image shading.

Visual discontinuities such as shadows and tattoos are

a challenge. Classic shape-from-shading methods are no-

torious for introducing ridge artifacts at misleading visual

boundaries. As shown in Figure 7 (row 3, on right), our

methods produce clean geometry in the presence of tattoos.

And in Figure 6, our method exhibits invariance to sharp

shadows. We credit this invariance almost entirely to the

diversity in our training dataset; before introducing sharp

shadows in our training (Figure 5: row 3 on left), ridge arti-

facts around shadows were common in our test output.

Spatial scan holes are an additional challenge. Like

many high-quality scanner setups, our raw estimated scan

does not capture all geometry, noticeably visible as the seam

between front and rear-facing depth maps. This problem

is one motivation for fitting an avatar: beyond providing

reposability, it provides hole closure and scan completion.

Figures 1 and 7 illustrates our scans, their seams, and the

avatars that provide hole closure.

Our front albedo estimation network is resilient to soft

shadows. To see this, consider the RGB input and frontal

textured scan in Figure 7, which is iluminated with the same

light as the grey scans. In particular, observe the removal of

skin highlights in row 4 right, and much more even skin

tone in legs and torso in most of them, e.g. row 7 right.

Removing sharp casted shadows is extremely challenging,

but reasonable results are achieved in row 1, 2 and 5 right.

Our back albedo estimator exhibits pleasing front/back

consistency, including skin tone and garment continuity.

Some bra straps (e.g. row 7 left in 7) show a continuous

but physically implausible configuration, while garments in

skin-tone colors (row 3 left in 7) blend into the skin texture.

Improvements to training data should address this.

4.4. Quantitative evaluation on Dynamic FAUST

We compare our system quantitatively with [3], which is

one of the state of the art systems in estimating shape from

multiple images. Following [3], we generate synthetic ren-

ders from the subjects in Dynamic FAUST, estimate their

shape, and evaluate it against the synthetic data. Unlike [3],

we only require one image for each subject. We should also

note that since our system works with RGB images, the au-

thors of [8] kindly provided us with one natural texture for

each subject in their dataset.

We follow the procedure described in [3] to compute the

errors in Table 1. First, we estimate the scan and align-

ment as described in Sections 3.2 and 3.3. Using SMPL,

we unpose the alignment and scale it to make it as tall as

the groundtruth shape. Using this fixed shape, we optimize

translation and scale to minimize the average bidirectional

distance between vertices in each mesh and the surface of

the other mesh, initializing the translation and pose from

groundtruth. We repeat this procedure over N synthetic im-

ages per subject to obtain more reliable estimations of the

error. This average bidirectional distance is reported in the

left column from Table 1. This procedure is comparable

to the full method reported in [3]. Our errors are larger

than in [3], which can be attributed to two factors. First, we

have access to a single image while [3] used hundreds of

them. Second, applying the groundtruth pose from the scan

can be suboptimal, since SMPL conflates pose and shape to

some extent. To decouple this problem, we also optimized

the pose together with scale and translation (keeping shape

fixed at all times), which is shown in the middle column

of Table 1. Note however that we believe this result is not

directly comparable to [3].

4.5. Ablation Study

Here we study factors that contribute to our method per-

formance. We first consider the individual contribution of

our loss terms. We next vary the number of residual blocks

in the network, which affects network depth. Similarly,
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Figure 6: Visual comparison of the ablation experiments (a) Baseline, (b) without LL1

(

y,Gi
n

)

term, and (c) 2 scales.

Blur # Res. Error Error Error Error

Label Li

n Li

d aug. blocks # scales (opt back) (opt pose) (opt back, pose)

Baseline ✓ ✓ ✓ 9 4 6.89 6.66 3.77 3.65

5 res blocks ✓ ✓ ✓ 5 4 6.76 6.63 3.62 3.60

No blur aug. ✓ ✓ 9 4 6.99 6.97 3.83 3.85

2 scales ✓ ✓ ✓ 9 2 8.21 7.88 4.50 4.34

No depth ✓ ✓ 9 4 - 8.57 - 3.87

No normals ✓ ✓ 9 4 9.02 9.04 5.28 5.36

No VGG ✓ ✓ ✓ 9 4 7.80 6.69 4.18 3.60

Table 2: Ablation study on our depth estimator, using mesh distance for evaluation. See Section 4.5 for more details.

we change how many downsampling operations (scales) are

performed. These operations involve learned convolutions,

and thus add capacity and depth to the network. Finally,

we test the role of blur data augmentation performed on our

synthetic training data. We run this experiment on images

from 87 subjects (see Figure 6 for four subject examples).

Results of the ablation study are summarized in Table 2.

For compatibility with [3], we perform all comparisons with

estimated alignments instead of scans, using the procedure

described in Section 4.4, reporting average bi-directional

point-to-mesh distances. However, fitting a model to our

scan regularizes problems in less robust variants of our

pipeline (e.g., “No blur aug.”) and the imperfections in the

unposing process may introduce subtle and potentially mis-

leading inaccuracies, thus the tradeoffs in model variants

will not necessarily be well represented by this metric.

Columns labeled with opt pose relate to pose optimized

to minimize distance, similar to the previous section. We

also consider the independent optimization of front and

back scale (as described in Section 3.3, labeled as opt back),

since experiments with no depth show differences in scale

in the front and back that render quantitative evaluation use-

less without such independent optimization.

Most noticeable is the importance of normals in this loss.

Removing normal terms (both L1 and VGG) is more detri-

mental than removing the depth term, which is consistent

with the intuition provided in Figure 2. Removing depth

or normal terms incurs a negative effect compared with the

baseline. Reducing downsampling makes the network shal-

lower, allowing it to keep more detail (see Table 2) but also

noise, incurring a big accuracy penalty. Although blur aug-

mentation has a small numerical impact, we observe that it

creates spikes and holes, making it unusable for the rapid

creation of a textured scan. Lastly, omitting the VGG loss

on normals causes a minor loss in accuracy.

We add an extra configuration in Figure 6: removing the

L1 loss on normals but keeping VGG results in an over-

smoothed scan with more shading artifacts. Finally, while

it’s surprising that reducing the number of residual blocks

improves accuracy, we consider the difference negligible.

5. Conclusions

FAX estimates full body geometry and albedo from a

single RGB image at a level of detail previously unseen.

This quality depends critically on two main factors. First,

we do not indirect our output through representations like

voxels, convex hulls or body models, which allow us to re-

cover detail at the original pixel definition with an image-

translation network, orders of magnitude faster than com-

peting methods. Second, our geometry estimation depends

critically on the role of surface normals, and we show how

even surface normals alone can produce plausible bodies in

the absence of depth information. We evaluate our system

using two datasets, perform an ablation study, and exten-

sively illustrate the visual performance of our system.

For future work, we believe improving our training data

can overcome many restrictions of the current method, like

the frontal pose or minimal clothing. We would like to elim-

inate the seams in scan geometry and texture in a rapid,

data-driven manner. Finally, we believe incorporating an

additional view can help reduce the inherent ambiguity

present in the shapes estimated from a single view.
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Figure 7: Two columns with RGB image, scan with and without texture and alignment. Pay close attention to variation in

shape, pose and ethnicity, as well as the fidelity of detail in hips, waist and chest, specially in the silhouette region. Note that

most test subjects in this figure are wearing similar clothes to the garments present in the synthetic training data.
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