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Abstract

Cross-modal hashing encodes the multimedia data in-

to a common binary hash space in which the correlation-

s among the samples from different modalities can be ef-

fectively measured. Deep cross-modal hashing further im-

proves the retrieval performance as the deep neural net-

works can generate more semantic relevant features and

hash codes. In this paper, we study the unsupervised

deep cross-modal hash coding and propose Deep Joint-

Semantics Reconstructing Hashing (DJSRH), which has the

following two main advantages. First, to learn binary codes

that preserve the neighborhood structure of the original da-

ta, DJSRH constructs a novel joint-semantics affinity matrix

which elaborately integrates the original neighborhood in-

formation from different modalities and accordingly is ca-

pable to capture the latent intrinsic semantic affinity for the

input multi-modal instances. Second, DJSRH later trains

the networks to generate binary codes that maximally re-

construct above joint-semantics relations via the proposed

reconstructing framework, which is more competent for the

batch-wise training as it reconstructs the specific similar-

ity value unlike the common Laplacian constraint mere-

ly preserving the similarity order. Extensive experiments

demonstrate the significant improvement by DJSRH in var-

ious cross-modal retrieval tasks.

1. Introduction

Cross-modal retrieval is a classic scenario which aims to

search the semantic relevant samples from different modal-

ities, e.g., using a text description to retrieve the relevant

images. Owing to the explosive increase of the multimedia

data, hashing based cross-modal methods which encode the

correlative samples with similar binary features are gaining

importance due to the high efficiency of the binary vectors

in storage and the mutual Hamming distance computation.
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Although the fundamental idea is applicable to any com-

bination of content modalities, we focus on the image-text

cross-modal retrieval in this paper which has been a com-

pelling research topic in the computer vision community

recently [24, 8, 18, 2, 36].

Since the heterogeneity (a.k.a. the modality gap) con-

fines the direct measurement of the similarity among the

samples from different modalities, cross-modal hashing

proposes to embed the original data into a common bina-

ry hash space, in which the correlations across different

modalities can be effectively and efficiently measured with

their Hamming distance. Specifically, traditional cross-

modal hashing can be grouped into the supervised and unsu-

pervised categories. Unsupervised methods [16, 25, 6, 37]

only utilize the co-occurrence information of the input

image-text pair to maximize their correlation in the com-

mon hash space. The supervised ones [20, 1, 34, 30, 12]

can further exploit the semantic labels to learn more consis-

tent hash codes for the semantic relevant cross-modal data,

which significantly mitigate the modality gap and achieve

superior retrieval performance.

Deep cross-modal hashing makes a further develop-

ment with the remarkable competence of the deep neu-

ral networks to generate more semantic relevant features

[15, 33] which facilitates to learn more consistent hash

codes subsequently. However, compared with the super-

vised deep cross-modal hashing which has been widely s-

tudied [3, 14, 24, 8, 18, 2, 36], the unsupervised field that

our paper focuses on lacks sufficient explorations. Among

the related research, UDCMH [31] is one of the latest unsu-

pervised deep cross-modal hashing methods that integrates

the graph Laplacian constraint term into the network train-

ing. It explicitly constrains the hash codes to preserve the

neighborhood structure of the original data and consequent-

ly achieves the state-of-the-art retrieval results.

Although the related work achieves breakthrough, there

are still two main problems worthy of attention. First, most

previous methods including UDCMH preserve the original

neighborhood relations from different modalities respec-

tively, while the similarity information from different views
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Figure 1. The pipeline of DJSRH, showing with three multi-modal instances ok=⌈Ik,Tk⌋ as input. Best viewed in color.

are generally complementary to each other and fusing them

in advance can bring more precise neighborhood descrip-

tion. Second, the common Laplacian constraint, whose o-

riginal form is
∑

ij wij‖Bi −Bj‖2 with wij indicating the

original similarity between sample i and j while Bi and

Bj are the to-be-learned binary codes, preserves the orig-

inal neighborhood structure in a weighted constraint man-

ner. It merely preserves the similarity order according to the

magnitude of wij which is extremely sensitive to the sam-

ple composition in each random sampling training batch.

E.g., suppose picking a batch of samples that are dissimilar

to each other, and although the similarity weight w among

them are all small, the Bi and Bj that corresponding to the

largest wij will still be constrained to have too similar or

even the same hash codes since their wij is the relatively

largest one in current batch, whereas it is improper from

the holistic adjacent structure. Thus, the relevant methods

need to first learn the whole training samples’ binary codes

B simultaneously, using the complete affinity matrix to en-

sure the accuracy, and subsequently train the deep network

to map the original data to the learned B in a belated batch-

wise manner. Obviously, it not only brings extreme time

and space complexities in the first step since employing the

complete affinity matrix, but also restrains the interaction

between the deep network learning and hash coding part

which has been demonstrated to play an essential role in the

performance of deep hashing network [17, 19].

In light of these issues, we propose a better unsupervised

cross-modal hashing method termed Deep Joint-Semantics

Reconstructing Hashing (DJSRH), which has the following

main contributions:

• To the best of our knowledge, DJSRH is the first

work in deep cross-modal hashing to propose a joint-

semantics affinity matrix for the input multi-modal

instances, which elaborately integrates the original

neighborhood relations from different modalities and

accordingly is capable to capture the latent intrinsic se-

mantic affinity among the instances.

• Later DJSRH trains the deep networks to generate

binary codes that maximally reconstruct above joint-

semantics relations via the proposed reconstructing

framework. On the one hand, it adds a linear trans-

formation for the original similarity range to regulate a

superior quantization area. On the other hand, it impel-

s to reconstruct the specific similarity value instead of

merely preserving the similarity order, which is more

competent for the batch-wise training than the Lapla-

cian constraint manner.

• Extensive experiments exhibit the significant improve-

ment by DJSRH in unsupervised cross-modal retrieval

and detailed demonstrations for the effectiveness of

each component are also provided.

The pipeline of DJSRH is shown in Figure 1, and the

rest of this paper is organized as follows. Section 2 briefly

introduces the related methods while Section 3 presents our

proposed algorithm in detail. Comprehensive experiments

on cross-modal retrieval are given in Section 4 and Section

5 makes a summary of this paper.

2. Related Work

In this section, we briefly review some representative

unsupervised cross-modal hashing methods which can be

roughly categorized into the shallow and the deep schemes

according to whether they use the deep networks.
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As the earlier shallow approaches, both Cross-View

Hashing (CVH) [16] and Inter-Media Hashing (IMH) [25]

can be regarded as extending Spectral Hashing [29] to

the multi-modal scenario. Collective Matrix Factorization

Hashing (CMFH) [6] learns unified hash codes via the col-

lective matrix factorization with a latent factor model for

different modalities data. Latent Semantic Sparse Hashing

(LSSH) [37] respectively utilizes the sparse coding and the

matrix factorization to extract the latent features for images

and texts, which later are mapped to a common space and

quantized to the unified binary codes.

However, above shallow methods cannot explore the

complex nonlinear correlations across different modali-

ties, while the deep schemes [31, 10, 35, 11] have shown

their superior ability to bridge the modality gap with the

high nonlinearity of deep neural networks. Concretely,

[28, 26, 11] employ the autoencoder framework to explore

the cross-modal reconstruction, generating the unified la-

tent binary codes for the heterogeneous data. [10, 35] train

the networks using the adversarial learning [9, 27], which

try to capture the feature distribution of different modali-

ties and narrow their modality gap in a minimax game man-

ner. UDCMH [31] combines the matrix factorization and

the Laplacian constraint into the network training, explicit-

ly constraining the hash codes to preserve the neighborhood

structure of the original data and consequently achieving the

state-of-the-art retrieval results. Although these methods

make great progress, there is still much room to improve

in this area.

3. Joint-Semantics Reconstructing Hashing

We first introduce some definitions that would be used

later. As our method focus on the batch-wise training, the

variables will be expressed in the batch manner. Specif-

ically, we use m to denote the batch size and O =
{o1,o2, ...,om} to represent the m instances in each batch,

with each instance is described by a co-occurred image-text

pair ok = ⌈Ik,Tk⌋ in our concerned problem. For each

random sampling training batch {ok = ⌈Ik,Tk⌋}mk=1
, we

use FI ∈ R
m×pI and FT ∈ R

m×pT to denote the orig-

inal given features from the dataset for Ik and Tk, while

BI ∈ {−1,+1}m×d and BT ∈ {−1,+1}m×d are the gen-

erated binary codes by our ImgNet for Ik and TxtNet for

Tk. d denotes the encoding length.

Moreover, after normalizing FI,FT to F̂I, F̂T which has

unit ℓ2-norm each row, we can calculate the cosine simi-

larity matrices SI = F̂IF̂
⊤
I ∈ [−1,+1]m×m and ST =

F̂TF̂
⊤
T ∈ [−1,+1]m×m to describe the original neighbor-

hood structure for the input images and texts respectively.

Besides, as is shown in Figure 1, we can regard the generat-

ed binary codes BI and BT as the feature vectors which can

only take the vertices of a hypercube. From this perspective,

the adjacent vertices correspond to the similar hash codes,

that is, the Hamming distance between two binary codes can

be indicated by their angular distance. Thus, to describe the

neighborhood structure in the Hamming space, we calcu-

late the pairwise cosine similarity matrix cos(BI,BT) ∈
[−1,+1]m×m with each element calculating the mutual co-

sine relation between the hash codes of Image i and Text

j: cos(BI,BT)ij =
BIiB

⊤

Tj

‖BIi‖2‖BTj‖2
∈ [−1,+1]. BIi indi-

cates the i-th row in BI and BTj indicates the j-th row in

BT. Such a cosine matrix reflects the angular relations a-

mong the generated binary codes, which are equivalent to

their Hamming distance relations as discussed above.

3.1. Constructing JointSemantics Matrix

As demonstrated in [31, 23], learning binary codes that

preserve the neighborhood structure of the original data

is an effective improvement for the unsupervised train-

ing of deep hashing network. To be specific, for cross-

modal retrieval task, given the batch-wise input instances

{ok = ⌈Ik,Tk⌋}mk=1
with FI and FT, we can calculate the

cosine similarity matrices SI ∈ [−1,+1]m×m on FI and

ST ∈ [−1,+1]m×m on FT to describe the original affinity

structure in different modalities, and subsequently employ

both these two similarity matrices to guide the hash codes

learning for Ik and Tk. Particularly, how to involve SI and

ST in the training process occupies an important position

to the algorithm performance. Most previous shallow or

deep cross-modal hashing methods simply preserve these t-

wo affinity matrices in a separated manner, which has the

following common formulation:

min
B

βTr(B⊤
LIB) + (1− β)Tr(B⊤

LTB),

s.t. B ∈ {−1,+1}m×d,
(1)

where LI = diag(SI1)−SI and LT = diag(ST1)−ST are

the graph Laplacian matrices. β ∈ [0, 1] is the trade-off pa-

rameter that regulates the importance of the neighborhood

information from different modalities.

For above Equation (1), on the one hand, the Laplacian

constraint manner is unsuitable to the batch-wise network

training which we will elaborate in next section. On the

other hand, it uses two terms to individually preserve the

neighborhood structure SI and ST under a co-training pat-

tern, which is suboptimal since the similarity matrices from

different views are generally complementary to each oth-

er and carefully integrating them in advance can generally

obtain a more accurate neighborhood description.

Therefore, we propose a joint-semantics affinity matrix

S = C(SI,ST) ∈ [−1,+1]m×m to integrate the neighbor-

hood information in SI and ST, with each Sij ∈ [−1,+1]
indicates the captured latent semantic similarity between

the input instances oi and oj . To introduce the combina-

tion function C, we first merge SI and ST with a weighted
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summation manner as follows:

S̃ = βSI + (1− β)ST, β ∈ [0, 1]. (2)

Next, we regard each row in S̃ ∈ [−1,+1]m×m as a

new feature for each instance which records the similarity

relations between this instance with others, and then cal-

culate the S̃S̃
⊤ to achieve a high order neighborhood de-

scription based on the principle that two semantic relevan-

t instances should share the same similarity relations with

other instances. That is, the result of the dot product be-

tween their respective row in S̃ should take a large value.

Therefore, we finally employ:

S = C(SI,ST)

= (1− η) S̃+ η
S̃S̃

⊤

m

= (1− η) [ βSI + (1− β)ST ] +
η

m
[ β2

SIS
⊤
I +

(3)

β(1− β)SIS
⊤
T + β(1− β)STS

⊤
I + (1− β)2STS

⊤
T ]

to combine the original neighborhood information SI and

ST from different modalities. Dividing the batch size m is

for normalizing S̃S̃
⊤

m
∈ [−1,+1]m×m and η is the trade-off

parameter to adjust the importance of the high order neigh-

borhood description.

Compared with the individual co-training manner (1), E-

quation (3) combines the affinity information across differ-

ent modalities in a more explicit and advanced manner. The

joint matrix S ∈ [−1,+1]m×m refines the affinity relations

from different views (SI, ST and the high order neighbor-

hood description S̃S̃
⊤) which makes it highly competent to

capture the latent intrinsic semantic affinity among the input

instances. As a result, we can later learn semantic relevant

binary codes for different modalities data with above joint-

semantics matrix S as the self-supervised signal. It great-

ly helps to learn consistent representations and accordingly

improves the retrieval performance.

By the way, it is interesting to notice that our proposed

combination function, S = (1 − η) S̃ + η S̃S̃
⊤

m
, conforms

to the definition of the diffusion processes [7]. The pro-

posed combination can be seen as taking only one diffusion

step for the affinity matrix S̃ with following update scheme:

Wt+1 = ηWtT + (1 − η)Y, where W0 =Y = S̃ is the

initial affinity matrix, T= S̃
⊤

m
is the transition matrix, and t

indicates the t-th step. That is, we merge the original neigh-

borhood matrices SI and ST to S̃ and then take a diffusion

step on S̃ with above update scheme to form our eventual

S = W1. Therefore, [7] provides the other perspective to

demonstrate the efficacy of our proposed combination pat-

tern (3). It is desirable to explore the performance when

taking more steps or using other diffusion schemes intro-

duced in [7], and we leave them as our future work.
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Figure 2. Adding µ to regulate the quantization area for S.

3.2. Reconstructing with Binary Codes

In the last subsection, we have constructed the joint-

semantics affinity matrix S to excavate the latent semantic

relations for the batch-wise input instances. Now we can

learn semantic relevant binary codes via minimizing the re-

construction error between the desired neighborhood matrix

S and the to-be-learned hash codes structure cos(BI,BT)
1

with the following formulation:

min
BI,BT

‖ µS− cos(BI,BT) ‖2F,

s.t. S = C(SI,ST) ∈ [−1,+1]m×m.
(4)

There are two highlights in the proposed reconstructing

framework (4). The first one is adding the hyper-parameter

µ which makes our reconstruction more flexible, while the

second is reconstructing the specific similarity value which

is more compatible with the batch-wise training than the

Laplacian constraint pattern.

We analyze the effect of µ at first. Here we take the

case of 2-bits hash coding to illustrate the insight. In this

2-bits situation, the hash codes can only take the positions

of (+1,+1), (+1,−1), (−1,+1) and (−1,−1) while their

mutual cosine similarity can only take ‘−1’, ‘ 0 ’ and ‘+1’

relations. As we desire to maximally reconstruct the joint-

semantics structure S ∈ [−1,+1]m×m with these 2-bits

hash codes, the original similarity range [0.5, 1] in S will

be assigned to ‘+1’ relation in the Hamming space, i.e., the

corresponding image-text pairs will be impelled to take the

same binary codes. Similarly, (−0.5, 0.5) will be assigned

to ‘ 0 ’ and [−1,−0.5] to ‘−1’. However, above quanti-

zation process is too stiff to learn reasonable hash codes.

E.g., a semantic relevant image-text pair is totally possible

to take 0.4 similarity value in the captured S whereas it will

1cos(BI,BT) ∈ [−1,+1]m×m reflects the current hash codes neigh-

borhood structure in the Hamming space as discussed in the beginning of

Section 3.
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be toughly quantized to the closest ‘ 0 ’ instead of the better

‘+1’ to share the same binary codes. Regarding this defi-

ciency, as is shown in Figure 2, we add a hyper-parameter

µ to realize a linear transformation for the original simi-

larity matrix S which adjusts the corresponding similarity

range for the limited relations in the Hamming space. Tak-

ing relation ‘+1’ as example, µ > 1 means extending the

original range [0.5, 1], enabling more image-text pairs to be

quantized with ‘+1’ relation and accordingly in possession

of the same hash codes, while µ < 1 means shrinking the

‘+1’ range inversely. Thus, the parameter µ in the proposed

framework (4) helps to regulate a superior quantization area

for S which highly improves the flexibility of our recon-

struction.

Next, we analyze the superiority of framework (4) in

the batch-wise training. Based on the discussion in In-

troduction, the widely used Laplacian constraint scheme

Tr(B⊤
LB) =

∑
i,j Sij‖Bi −Bj‖2 merely constrains the

binary codes to preserve the original similarity order in a

weighted constraint manner, i.e., if S12 > S13 then B1

should be more similar to B2 than B3, while such relative

order will be extremely sensitive to the sample composition

in each random sampling training batch. For example, sup-

pose S12 = 0.2,S13 = 0.1,S23 = 0.1 in current batch

with three samples, then B1 should be more similar to B2

than B3 whereas the specific similarity degree is not de-

fined and it is probable that B1 and B2 will be constrained

to take excessively similar or even the same hash codes s-

ince S12 is the relatively largest one in current batch, which

is obviously improper from the holistic adjacent structure as

S12 6= 1. Thereby, the relevant methods have to learn bi-

nary codes for the whole training samples simultaneously,

using the complete n× n affinity matrix to ensure the algo-

rithm precision which inevitably brings the high time and

space complexities in the training stage. In contrast, the pro-

posed reconstructing framework (4) maximally reconstructs

the specific similarity value in S instead of their similarity

order. It is insensitive to the composition of each random

sampling training batch and accordingly be more competent

for the batch-wise input manner, qualifying our coding net-

works for the desired end-to-end batch-wise training. Com-

pared with the previous Laplacian methods, framework (4)

not only dramatically reduces the algorithm complexity but

also help to achieve better coding performance due to the in-

creasing interaction between the deep network learning and

hash coding part in each batch.

Therefore, we employ framework (4) as the basic pattern

to compose our overall training objective. To be concrete,

besides the component in framework (4) acting as the inter-

modal reconstruction with BI and BT, we also supplement

the intra-modal reconstruction since considering both intra-

and inter-view in the cross-modal network training has been

demonstrated for effectively improving the retrieval perfor-

Algorithm 1 Deep Joint-Semantics Reconstructing Hashing

Input:

Training set {ok=⌈Ik,Tk⌋}nk=1
and their correspond-

ing original features FI and FT; ImgNet GθI and

TxtNet GθT with θI and θT denoting the deep network

parameters; batch size m;

Output:

Hashing coding function ϕI(x) = sgn(GθI(x)) for im-

age input and ϕT(x) = sgn(GθT(x)) for text input;

1: Initialize epoch t = 0;

2: repeat

3: t = t+ 1; α =
√
t ;

4: for ⌊ n
m
⌋ iterations do

5: Randomly sample a batch of instances from train-

ing set {ok = ⌈Ik,Tk⌋}mk=1
;

6: Calculate the normalized F̂I, F̂T and integrate the

cosine matrices SI = F̂IF̂
⊤
I , ST = F̂TF̂

⊤
T to the

joint-semantics affinity S with Equation (3);

7: Forward propagate HI = GθI(I), HT = GθT(T);

8: Hash coding with activation function (7) BI =
tanh(αHI),BT = tanh(αHT);

9: Calculate the objective function (5), back propa-

gate the gradients with the chain rule and update

the whole parameters;

10: end for

11: until convergence

mance [21, 25, 32]. Thus the final training objective of the

proposed DJSRH is:

min
BI,BT

‖µS− cos(BI,BT)‖2F + λ1‖µS− cos(BI,BI)‖2F

+λ2‖µS− cos(BT,BT)‖2F,

s.t. S = C(SI,ST) ∈ [−1,+1]m×m,

BI,BT ∈ {−1,+1}m×d,
(5)

where λ1 and λ2 are the trade-off parameters to balance the

inter-modal and intra-modal reconstruction. C is the pro-

posed combination function (3) to integrate SI and ST.

3.3. Optimization

The major difficulty to optimize the objective function

(5) lies in the discrete constraint imposed on the binary code

BI and BT. For deep hashing network, if we denote the

output of the last hidden layer (without activation function)

as H ∈ R
m×d (represents both HI in ImgNet and HT in

TxtNet), we can generate the strict binary hash codes by:

B = sgn(H) ∈ {−1,+1}m×d, (6)

where sgn(·) is the sign function that outputs +1 for positive

input and -1 otherwise on each element.
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However in the backward propagation, the gradient of

the sign function is zero for all nonzero input, which will

ruinously block the gradients back to the front layers. To

handle this vanishing gradients problem, we follow [4, 11]

to adopt a scaled tanh function:

B = tanh(αH) ∈ [−1,+1]m×d, α ∈ R
+ (7)

with increasing α during the training stage, to replace the

encoding function (6). It is motivated by a key observation

that limα→∞ tanh(αx) = sgn(x), as is shown in the right

part of Figure 1. Accordingly, the tightening tanh function

generates a sequence of smoothed optimization problems

which with increasing α can converge to the original in-

tractable binary coding problem (5).

The overall procedure of our proposed DJSRH is sum-

marized in Algorithm 1.

4. Experiments

The source codes are available at: https://github.

com/zzs1994/DJSRH.

4.1. Datasets

Wiki [22] consists of 2,866 multimedia documents in 10

categories from Wikipedia. Each document serves as an in-

stance containing one image and text with at least 70 words.

A hand-crafted 128-dimensional SIFT feature vector is al-

so provided for each image, while each text is accompanied

with a 10-dimensional topic vector generated by the Latent

Dirichlet Allocation (LDA) model.

NUS-WIDE [5] contains 269,648 multi-modal in-

stances, each of which consists of an image and the asso-

ciated textual tags. Following previous methods, the top 10

most frequent labels from the original 81 classes are select-

ed and the corresponding 186,577 annotated instances are

preserved. A 500-dimensional BoW SIFT feature is pro-

vided for each image while an index vector of the most fre-

quent 1,000 textual tags (a.k.a the tag occurrence feature) is

sorted out for each text.

MIRFlickr [13] composes of 25,000 instances annotat-

ed with 24 provided labels, with each instance containing

an image and the associated textual tags. SIFT descriptor is

provided for each image and tag occurrence feature is sorted

out for each text.

4.2. Evaluation Criterion

Wiki is officially split into the database and the query

set with 2,173 and 693 instances respectively. As for MIR-

Flickr and NUS-WIDE, following [31, 6] 2,000 instances

are randomly picked out as the query while the rest as the

database. Besides, the whole database of Wiki will serve

as its training set due to its small size, while for the larger

MIRFlickr and NUS-WIDE 5,000 instances are randomly

sampled from the database for training. Later in the evalu-

ation step, the trained hash coding function will be applied

on each instance in the database and the query set to obtain

their final binary representations.

We adopt the two common retrieval metrics: mean Aver-

age Precision (mAP) and precision@top-R curve to evalu-

ate the performance of the proposed DJSRH and baselines.

Any two data points are considered to be the ground-truth

neighbors if they share at least one common label.

4.3. Implementation Details

As the hand-crafted SIFT features are insufficient to cap-

ture the abstract semantic relations of images, we follow

the previous work to extract the deep features from CN-

N (pretrained on ImageNet) to replace the SIFT descrip-

tors. Specifically, we extract the 4,096-dimensional features

from the fc7 layer (after ReLU) of AlexNet [15] as the o-

riginal image features FI ∈ R
m×4096 for the batch-input

images {Ik}mk=1
, while for texts {Tk}mk=1

we just adopt the

original LDA topic vectors or the tag occurrence features

as their FT. Notably we need to preprocess the SI with

SI ← 2SI−1 and the same for the ST since that the cur-

rent FI,FT are all taking nonnegative numbers and their

generated SI,ST ∈ [0, 1]m×m will inevitably lead to some

unchangeable hash bits as the smallest similarity is 0 right

now. Transforming them back to [−1, 1]m×m beforehand

can prevent this issue.

For fair comparisons, we follow [31] to adopt AlexNet

and Multilayer Perceptron (MLP) as the backbone of our

ImgNet and TxtNet respectively. We replace the classifi-

er layer fc8 of AlexNet with a new fc of d hidden units to

generate the continuous HI ∈ R
m×d, and then obtain BI

through the coding formula (7) for training and formula (6)

for test. For text modality, as the original text descriptions

are diverse and difficult to handle, we follow the previous

schemes to directly adopt the topic vectors or the tag oc-

currence features as the input to MLP, i.e., FT serves as T

to feed in the TxtNet. The first fc layer in our MLP has

4096 units with the ReLU as their activation function. The

second fc has d units to produce HT ∈ R
m×d which subse-

quently generates the BT through formula (7) for training

and formula (6) for test.

Additionally, we fix the batch size as 32 and employ the

SGD optimizer with 0.9 momentum and 0.0005 weight de-

cay. We cross-validate the hyper-parameters and finally take

η=0.4, µ=1.5 for all three datasets, β=0.6, λ1=λ2=0.1
for NUS-WIDE, β = 0.9, λ1 = λ2 = 0.1 for MIRFlickr

and β = 0.3, λ1 = λ2 = 0.3 for Wiki. Moreover, the learn-

ing rates are set to 0.001 for the ImgNet and 0.01 for the

TxtNet when running on NUS-WIDE and MIRFlickr. As

for Wiki which contains much fewer instances, we fix the

convolutional layers of the ImgNet with the pretrained pa-

rameters and only update the fully connected layers, setting
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Task Method
Wiki MIRFlickr NUS-WIDE

16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

I → T

CVH 0.179 0.162 0.153 0.149 0.606 0.599 0.596 0.598 0.372 0.362 0.406 0.390

IMH 0.201 0.203 0.204 0.195 0.612 0.601 0.592 0.579 0.470 0.473 0.476 0.459

CMFH 0.251 0.253 0.259 0.263 0.621 0.624 0.625 0.627 0.455 0.459 0.465 0.467

LSSH 0.197 0.208 0.199 0.195 0.584 0.599 0.602 0.614 0.481 0.489 0.507 0.507

DBRC 0.253 0.265 0.269 0.288 0.617 0.619 0.620 0.621 0.424 0.459 0.447 0.447

UDCMH 0.309 0.318 0.329 0.346 0.689 0.698 0.714 0.717 0.511 0.519 0.524 0.558

DJSRH 0.388 0.403 0.412 0.421 0.810 0.843 0.862 0.876 0.724 0.773 0.798 0.817

T → I

CVH 0.252 0.235 0.171 0.154 0.591 0.583 0.576 0.576 0.401 0.384 0.442 0.432

IMH 0.467 0.478 0.453 0.456 0.603 0.595 0.589 0.580 0.478 0.483 0.472 0.462

CMFH 0.595 0.601 0.616 0.622 0.642 0.662 0.676 0.685 0.529 0.577 0.614 0.645

LSSH 0.569 0.593 0.593 0.595 0.637 0.659 0.659 0.672 0.577 0.617 0.642 0.663

DBRC 0.574 0.588 0.598 0.599 0.618 0.626 0.626 0.628 0.455 0.459 0.468 0.473

UDCMH 0.622 0.633 0.645 0.658 0.692 0.704 0.718 0.733 0.637 0.653 0.695 0.716

DJSRH 0.611 0.635 0.646 0.658 0.786 0.822 0.835 0.847 0.712 0.744 0.771 0.789

Table 1. The mAP@50 results on image query text (I → T ) and text query image (T → I) retrieval tasks at various encoding lengths and

datasets. The best performances are shown as Red while the suboptimal as Blue.
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Figure 3. The precision@top-R curves on different datasets at 128 encoding length.

0.01 learning rate for both the ImgNet and TxtNet.

4.4. Retrieval Performance

We compare our proposed DJSRH with several represen-

tative baselines including CVH [16], IMH [25], CMFH [6],

LSSH [37], DBRC [11] and UDCMH [31], in which the for-

mer four ones are shallow methods while DBRC, UDCMH

and ours are deep schemes.

We first compare the mAP results with the baselines and

we follow [31, 6] to set the retrieved points as 50 (i.e.,

mAP@50). The results are shown in Table 1. As can be

seen, the proposed DJSRH significantly outperforms the

state-of-the-art unsupervised cross-modal hashing method-

s at various encoding lengths and datasets. To be specif-

ic, compared to the shallow methods which have also used

the deep features as their image modality representation-

s, the deep network baselines achieve better results due to

they can back propagate the gradients to the front network

to learn more complex and competent hash coding func-

tion. DJSRH further improves the performance of the deep
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schemes with the help of the proposed joint-semantics affin-

ity matrix S and the hash coding framework (4). For a quan-

titative comparison, we achieve about 15% improvements

for I → T retrieval (image query text) and 10% improve-

ments for T → I (text query image) on both MIRFlickr and

NUS-WIDE, while the improvements on Wiki are relative

lower (about 8% increase for I → T but nearly standing

still for T → I). The main reason is that Wiki contains

much fewer instances than other two datasets, which dra-

matically limits the learning capability of the deep neural

networks as is known to all.

Moreover, Figure 3 shows the precision@top-R curves

among the compared methods, in which DJSRH still sig-

nificantly outperforms the state-of-the-art baselines on vari-

ous datasets which confirms the superiority of our proposed

scheme in unsupervised cross-modal retrieval.

4.5. Ablation Study

To further demonstrate the effectiveness of each part in

DJSRH, we design several variants to evaluate the perfor-

mance when adding the proposed components one by one.

Following the introduction order in Section 3, DJSRH-1

and DJSRH-2 are the basic variants which respectively em-

ploy ‖SI − cos(BI,BT)‖2F and ‖ST − cos(BI,BT)‖2F as

their training objective. DJSRH-3 is the variant that sim-

ply merges the affinity matrices from different modalities

with the weighted summation, S = βSI + (1 − β)ST,

and then utilizes ‖S − cos(BI,BT)‖2F as its training ob-

jective. DJSRH-4 is the variant based on DJSRH-3 which

further supplements the high order neighborhood informa-

tion to improve the joint affinity matrix, i.e., employing E-

quation (3) to generate S. To go a step further, DJSRH-

5 is the variant adding the regulation parameter µ, namely

‖µS−cos(BI,BT)‖2F. Then, adding the intra-modal recon-

struction terms (λ1=λ2=0.1) to DJSRH-5 finally compos-

es our proposed DJSRH.

We also set a variant DJSRH-6 in the end which employs

the constant tanh function (i.e., α = 1) as the last coding

function for the ImgNet and TxtNet, replacing the tighten-

ing tanh (7) adopted by DJSRH. The mAP@50 results of

all variants are shown in Table 2.

From the table we can observe that each of our pro-

posed components plays a certain role for our final result-

s. Specifically, compared with the performance of the vari-

ants DJSRH-1 and DJSRH-2, the incremental precision of

DJSRH-3 and DJSRH-4 demonstrate the effectiveness of

the proposed combination function (3). Both the modali-

ties mergence (DJSRH-3) and the high order neighborhood

information (DJSRH-4) help to refine the original similari-

ties SI and ST. They can better capture the latent seman-

tic relations, impelling to learn more consistent hash codes

and accordingly achieving higher retrieval results. Then, the

variant DJSRH-5 and DJSRH exhibit the effect of the reg-

Model Configuration
64bits 128bits

I → T T → I I → T T → I

DJSRH-1 S=SI 0.717 0.712 0.741 0.735

DJSRH-2 S=ST 0.702 0.606 0.734 0.581

DJSRH-3 βSI+(1−β)ST 0.724 0.720 0.747 0.738

DJSRH-4 +(η = 0.4) 0.790 0.745 0.803 0.757

DJSRH-5 +(µ = 1.5) 0.793 0.747 0.812 0.768

DJSRH +(λ1=λ2=0.1) 0.798 0.771 0.817 0.789

DJSRH-6 −(α = 1) 0.786 0.770 0.811 0.782

Table 2. The mAP@50 results on NUS-WIDE to evaluate the ef-

fectiveness of each component in DJSRH.

ulation parameter µ and the intra-modal reconstruction. D-

JSRH outperforms the variant DJSRH-6 demonstrating that

the tightening tanh can effectively reduce the quantization

error caused by the constant tanh as discussed in [4, 11].

Last but not least, we would like to highlight that the

variants DJSRH-1,2,3 have surpassed UDCMH (the state-

of-the-art previous method in Table 1) which exactly at-

tributes to the superiority of our hash coding framework (4).

It facilitates our deep hashing networks for the end-to-end

batch-wise training which largely increases the interaction

between the deep network learning and hash coding part

than the previous Laplacian constraint pattern.

5. Conclusion

In this paper, we propose Deep Joint-Semantics Recon-

structing Hashing (DJSRH) for large-scale unsupervised

cross-modal retrieval. DJSRH first explicitly integrates the

original neighborhood information from different modali-

ties into a joint-semantics affinity matrix, to excavate the la-

tent intrinsic semantic relations among the input instances.

Then it learns binary codes to maximally reconstruct above

joint-semantics structure via the proposed reconstructing

framework, which on the one hand adds a linear transfor-

mation for the original similarity range to regulate a better

quantization area, making our reconstruction more flexible.

On the other hand, it reconstructs the specific similarity val-

ue enabling DJSRH to be more competent for the end-to-

end batch-wise training than the common Laplacian con-

straint. Extensive experiments demonstrate the superiority

of our proposed method and the effectiveness of each com-

ponent is also carefully studied.
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