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Abstract

Deep neural networks (DNNs) provide state-of-the-art

results for a multitude of applications, but the approaches

using DNNs for multimodal audiovisual applications do not

consider predictive uncertainty associated with individual

modalities. Bayesian deep learning methods provide prin-

cipled confidence and quantify predictive uncertainty. Our

contribution in this work is to propose an uncertainty aware

multimodal Bayesian fusion framework for activity recogni-

tion. We demonstrate a novel approach that combines deter-

ministic and variational layers to scale Bayesian DNNs to

deeper architectures. Our experiments using in- and out-of-

distribution samples selected from a subset of Moments-in-

Time (MiT) dataset show a more reliable confidence mea-

sure as compared to the non-Bayesian baseline and the

Monte Carlo dropout (MC dropout) approximate Bayesian

inference. We also demonstrate the uncertainty estimates

obtained from the proposed framework can identify out-

of-distribution data on the UCF101 and MiT datasets. In

the multimodal setting, the proposed framework improved

precision-recall AUC by 10.2% on the subset of MiT dataset

as compared to non-Bayesian baseline.

1. Introduction

Vision and audio are complementary inputs and fusing

these modalities can greatly benefit an activity recognition

application. Multimodal audiovisual activity recognition

using deep neural network (DNN) architectures are not suc-

cessful in modeling the inherent ambiguity in the correla-

tion between two modalities. One of the modalities (e.g.,

sneezing in audio, writing in vision) can be more certain

about the activity class than the other modality. It is impor-

tant to model reliable uncertainty estimates for the individ-

ual modalities to benefit from multimodal fusion.

DNNs trained on large datasets [23, 1, 30] have been suc-

cessful in solving many perception tasks with state-of-the-
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Figure 1: Uncertainty-aware audiovisual activity recognition

art results. However, DNNs are trained to obtain the maxi-

mum likelihood estimates and disregard uncertainty around

the model parameters that eventually can lead to predictive

uncertainty. Deep learning models may fail in the case of

noisy or out-of-distribution data, leading to overconfident

decisions that could be erroneous as softmax probability

does not capture overall model confidence. Instead, it rep-

resents relative probability that an input is from a particular

class compared to the other classes.

Probabilistic Bayesian models provide principled ways

to gain insight about data and capture reliable uncertainty

estimates in predictions. Bayesian deep learning [32, 12]

has allowed bridging DNNs and probabilistic Bayesian

theory to leverage the strengths of both methodologies.

Bayesian deep learning framework with Monte Carlo (MC)

dropout approximate inference [13] is used in visual scene

understanding applications including camera relocalization

[25], semantic segmentation [24] and depth regression [26].

Activity recognition is an active area of research with

multiple approaches depending on the application domain

and the types of sensors [28]. Human activity recognition

using wearable sensors such as accelerometer/gyroscopes

and heart-rate monitors is used to recognize everyday hu-

man activities that include walking, running, and swim-

ming. Human pose-based activity recognition [37, 40]

methods aggregate motion and appearance information
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along tracks of human body parts to recognize human ac-

tivity. Multimodal methods which combine optical flow

or depth information along with RGB data [41, 39] are

shown to provide state-of-the-art results for generic (not

just human) activity recognition tasks. Methods which

combine semantic level information [53] such as pose, ob-

ject/scene context and other attributes including linguis-

tic descriptors have been proposed to detect group activi-

ties.

In this work, we focus on audiovisual activity recogni-

tion and use Bayesian DNN with stochastic variational in-

ference (VI) to reliably estimate uncertainty associated with

the individual modalities for multimodal fusion (as shown

in Figure 1).

Our main contributions in this work include:

1. A multimodal fusion framework based on predictive

uncertainty estimates applied to activity recognition:

To the best of our knowledge, this is the first work on

multimodal fusion based on uncertainty estimates us-

ing Bayesian deep learning with variational inference.

2. A scalable variational inference with hybrid Bayesian

DNN architecture by combining deterministic and

variational layers.

3. Identifying out-of-distribution data for audiovisual

activity recognition using uncertainty estimates:

We demonstrate the uncertainty estimates obtained

from the proposed architecture can identify out-of-

distribution data in Moments-in-Time (MiT) and UCF-

101 action recognition datasets.

The rest of the document is divided into the following

sections. The background on Bayesian DNNs and audio-

visual activity recognition are presented in Section 2. In

Section 3, the proposed Bayesian multimodal DNN archi-

tecture is presented. The results are presented in Section 4,

followed by conclusions in Section 5.

2. Background

2.1. Bayesian deep neural networks

Bayesian DNNs provide a probabilistic interpretation

of deep learning models by placing distributions over the

model parameters (shown in Figure 2). Bayesian inference

can be applied to estimate the predictive distribution by

propagating over the model likelihood while marginalizing

over the learned posterior parameter distribution. Bayesian

DNNs also help in regularization by introducing distribu-

tion over network parameters, capturing the posterior un-

certainty around the neural network parameters. This allows

transferring inherent DNN uncertainty from the parameter

space to the predictive uncertainty.

Figure 2: Bayesian neural network

Given training dataset D = {x, y} with inputs x =
x1, ..., xN and their corresponding outputs y = y1, ..., yN ,

in parametric Bayesian setting we would like to infer a dis-

tribution over parameters w as a function y = fw(x) that

represents the DNN model. With the posterior for model pa-

rameters inferred during Bayesian neural network training,

we can predict the output for a new data point by propagat-

ing over the model likelihood p(y|x,w) while drawing sam-

ples from the learned parameter posterior p(w|D). Equa-

tion 1 shows the posterior distribution of model parameters

obtained from model likelihood.

p(w|D) =
p(y|x,w)p(w)

p(y|x)
(1)

Computing the posterior distribution p(w|D) is of-

ten intractable, some of the previously proposed tech-

niques to achieve an analytically tractable inference in-

clude: (i) Markov Chain Monte Carlo (MCMC) sampling

based probabilistic inference [32, 47] (ii) variational infer-

ence techniques to infer the tractable approximate poste-

rior distribution around model parameters [17, 36, 7] and

(iii) Monte Carlo dropout approximate inference [13].

Variational inference [22, 6] is an active area of research

in Bayesian deep learning, which uses gradient based opti-

mization. This technique approximates a complex probabil-

ity distribution p(w|D) with a simpler distribution qθ(w),
parameterized by variational parameters θ while minimiz-

ing the Kullback-Leibler (KL) divergence [5]. Minimizing

the KL divergence is equivalent to maximizing the log evi-

dence lower bound [5, 13].

L :=

∫
qθ(w) log p(y|x,w) dw

−KL[qθ(w)||p(w)]

(2)

Predictive distribution is obtained through multiple

stochastic forward passes through the network during the

prediction phase while sampling from the posterior distri-

bution of network parameters through Monte Carlo estima-

tors. Equation 3 shows the predictive distribution of the
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output y∗ given new input x∗:

p(y∗|x∗, D) =

∫
p(y∗|x∗, w) qθ(w)dw

p(y∗|x∗, D) ≈
1

T

T∑
i=1

p(y∗|x∗, wi) , wi ∼ qθ(w)

(3)

where, T is number of Monte Carlo samples.

In [12, 26], modeling aleatoric and epistemic uncertainty

is described. We evaluate the epistemic uncertainty using

Bayesian active learning by disagreement (BALD) [21] for

the activity recognition task. BALD quantifies mutual infor-

mation between parameter posterior distribution and predic-

tive distribution, as shown in Equation 4.

BALD := H(y∗|x∗, D)− Ep(w|D)[H(y∗|x∗, w)] (4)

where, H(y∗|x∗, D) is the predictive entropy which cap-

tures a combination of aleatoric and epistemic uncertainty

given by:

H(y∗|x∗, D) = −
K−1∑
i=0

piµ log piµ (5)

piµ is predictive mean probability of ith class from T

Monte Carlo samples and K is the total number of output

classes.

2.2. Audiovisual Activity Recognition

Vision and audio are the ubiquitous sensor inputs which

are complementary in nature and have different represen-

tations. Audiovisual methods apply joint modeling of the

audio and vision inputs [33, 2] to achieve higher accuracies

for complex tasks such as activity recognition.

Multimodal models are proposed for audiovisual anal-

ysis tasks such as emotion recognition [42], audiovisual

speech recognition [33], speech localization [14, 34], cross-

modal retrieval [4]. The audiovisual speech recognition

(AVSR) task is shown to benefit from multimodal training

of the joint models. In [33], a deep autoencoder model for

cross-modality feature learning is proposed, where better

features for one modality can be learned if multiple modali-

ties are present at training time. A deep audio-visual speech

recognition model [2] using self-attention encoder archi-

tecture is proposed to recognize speech from talking faces

using vision and audio inputs. Recent work on sound lo-

calization and separation [14, 34] has shown the benefits

of a joint audiovisual representation for cross-modal self-

supervised learning using only audio-visual correspondence

as the objective function. These audiovisual methods ap-

ply joint modeling of the audio and vision inputs during the

training phase for better generalizability of the models, but

then use single modality during the inference phase. None

of the methods listed here provide a quantifiable means to

determine the relative importance of each modality.

Vision-based activity recognition techniques apply a

combination of spatiotemporal models [45, 3, 51] to cap-

ture pixel-level information and temporal dynamics of the

scene. In recent years, visual activity recognition models

often use ConvNets-based models for spatial feature extrac-

tion. The image-based models [19, 43] are pre-trained on

ImageNet dataset to represent the spatial features. The tem-

poral dynamics for activity recognition [46, 52] is typically

modeled either by using a separate temporal sequence mod-

eling such as variants of RNNs [10, 49] or by applying 3D

ConvNets [9], which extend 2D ConvNets to the temporal

dimension. Bayesian neural network is used for visual ac-

tivity recognition [27] to capture uncertainty estimates.

Following the successes of ConvNets on vision tasks,

they are shown to provide state-of-the-art results for audio

classification as well. Many of the top performing meth-

ods from recent audio classification challenges [29, 35] use

DNN architectures [38, 11, 50] with convolutional layers.

In [20], a model similar to the VGG architecture (VGGish

model) from the vision domain was trained using log-Mel

spectrogram features on the Audio Set [15] dataset. Au-

dio Set contains over one million Youtube video samples

labeled with a vocabulary of acoustic events.

In this work, we focus on audiovisual activity recogni-

tion using Bayesian DNNs on the trimmed video samples.

The 3D-ConvNet (C3D) architecture [44] is shown to pro-

vide generic spatiotemporal representation for multiple vi-

sion tasks. We use a variant of 3D-ConvNet ResNet-101

C3D [18] architecture for the visual representation. We use

VGGish architecture [20] for audio representation, which is

shown to provide generic features for audio classification

tasks.

3. Bayesian Multimodal DNN Architecture

We present a Bayesian multimodal fusion framework

based on uncertainty estimates for audiovisual activity

recognition. The block diagram of the proposed audiovisual

activity recognition using Bayesian variational inference is

shown in Figure 3. We use the ResNet-101 C3D and VG-

Gish architectures for visual and audio modalities, respec-

tively. We replace the final fully connected layer for both

vision and audio DNN models with three fully connected

variational layers followed by the categorical distribution.

The weights in fully connected variational layers are

modeled through mean-field Gaussian distribution, and the

network is trained using Bayesian variational inference

based on KL divergence [36, 7]. In order to learn the poste-

rior distribution of model parameters w, we train Bayesian

DNN with variational inference method. The objective is to

optimize log evidence lower bound (ELBO) (Equation 2) as

the cost function. The model parameters of the fully con-
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Figure 3: Bayesian audiovisual activity recognition: ResNet-101 C3D and VGGish DNN architectures are used to represent

vision and audio information, respectively. The final layer of the DNN is replaced with three fully connected variational

layers followed by categorical distribution. The Bayesian inference is applied to the variational layers through Monte Carlo

sampling on the posterior of model parameters, which provides the predictive distribution.

nected variational layers are parametrized by mean µ and

variance σ2, i.e. qθ(w) = N (w|µ, σ2). These parameters

in the variational layers are optimized by minimizing the

negative ELBO loss (Lv) [5]:

Lv = −Eqθ(w)[log p(y|x,w)] +KL[qθ(w)||p(w)] (6)

µi+1 ← µi − α∆µL
v
i σi+1 ← σi − α∆σL

v
i

where, i is the training step, α is the learning rate, ∆µL
v

and ∆σL
v are gradients of the loss function computed w.r.t

µ and σ, respectively. We use Flipout [48], which is an effi-

cient method that decorrelates the gradients within a mini-

batch by implicitly sampling pseudo-independent weight

perturbations for each input.

The parameters in deterministic layers are optimized us-

ing cross-entropy loss (Ld) [16] given by:

Ld = −
∑
c

yc log ŷc (7)

where, yc and ŷc are true and predicted label distributions,

respectively. The model parameters for variational and de-

terministic DNN layers are obtained by applying stochastic

gradient descent optimizer [8] to the loss functions given

in Equation 6 and 7, respectively. During prediction stage

we perform multiple Monte Carlo forward passes on the

final variational layers by sampling the parameters from

learned posteriors to measure uncertainty estimates using

Equation 4 & 5.

Figure 4 shows accuracy vs uncertainty confusion ma-

trix (proposed in [31] for semantic segmentation), which

Figure 4: Accuracy vs Uncertainty confusion matrix

includes number of accurate and certain (nac), inaccurate

and uncertain (niu), accurate and uncertain (nau), inaccu-

rate and certain(nic) predictions. Equation 8 provides an

accuracy vs uncertainty (AvU ) metric obtained from the

confusion matrix values.

AvU =
nac + niu

nac + nau + nic + niu

(8)

A reliable model will provide higher AvU score. An un-

certainty threshold value that maximizes AvU metric from

individual modalities is the optimal threshold, which is used

for multimodal fusion (shown in Figure 5). We perform av-

erage pooling of the audio-vision predictive distributions if

the uncertainty measures are below the optimal threshold

values, else we rely on the single modality that has lower

uncertainty measure.

For comparison with the non-Bayesian baseline, we

maintain the same model depth as the Bayesian DNN model

and use three deterministic fully connected final layers for

the non-Bayesian DNN model. The dropout is used after ev-
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Figure 5: Accuracy vs Uncertainty plots for vision and au-

dio modality. The peak AvU values represent optimal un-

certainty threshold values.

ery fully connected layer to avoid over-fitting of the model.

In the rest of the document, we refer the non-Bayesian DNN

model as simply the DNN model. In the following section,

we present the results from our experiments showing the ef-

fectiveness of Bayesian DNN over conventional DNN mod-

els.

4. Results

We analyze the model performance on the Moments-in-

Time (MiT) [30] dataset. The MiT dataset consists of 339

classes, and each video clip is 3 secs (˜90 frames) in length.

In this work, we considered a subset of 54 classes as in-

distribution and another 54 classes as out of distribution

samples. The selected dataset for both the categories in-

clude audio information. In order to check whether DNNs

can provide a reliable confidence measure, the subset of 54

classes for each category are selected after subjective eval-

uation to confirm the activities fall into two distinct distri-

bution of classes. This will allow the comparison of confi-

dence measures between DNN and Bayesian DNN models

for in- and out-of-distribution classes, and the uncertainty

estimates for the Bayesian DNN models (as the DNN model

does not provide uncertainty estimates).

The ResNet-101 C3D DNN model is initialized with pre-

trained weights for the Kinetics dataset [23]. We optimize

the model for MiT dataset with transfer learning by training

the final fourteen layers. The VGGish model is initialized

with pretrained weights for the Audio set [15] dataset. We

optimize the model for MiT dataset with transfer learning

by training the final five layers. We used stochastic gradi-

ent descent (SGD) optimizer with an initial learning rate of

0.0001 and momentum factor of 0.9 along with rate decay

when the loss is plateaued.

We trained the ResNet101-C3D vision and VGGish

audio architectures using the in-distribution MiT dataset,

which includes ˜150K training and ˜5.3K validation sam-

ples. We select individual vision and audio paths from the

model shown in Figure 3 to obtain single modality results.

In the case of Bayesian DNN stochastic VI model, we per-

form multiple stochastic forward passes on the final three

fully connected variational layers with Monte Carlo sam-

pling on the weight posterior distributions. In our experi-

ments, 40 forward passes provide reliable estimates above

which the final results are not affected. Bayesian DNN

model predictive mean is obtained by averaging the confi-

dence estimates from the Monte Carlo sampling predictive

distributions.

Bayesian active learning by disagreement (BALD) and

predictive entropy uncertainty estimates for Bayesian DNN

model are obtained using Equation 4 and 5. Figure 5 shows

the accuracy vs uncertainty (AvU ) metric plots for audio

and vision modalities. An optimal threshold for uncertainty

measure that will maximize the AvU score is computed.

For the audiovisual Bayesian DNN results, we perform av-

erage pooling of the audio-vision predictive distributions if

the uncertainty measures are below the optimal threshold

values (Uth visual and Uth audio), else we fall back to the

single modality with lower uncertainty measure. In the case

of audiovisual DNN model, average pooling of the softmax

confidence values from the two modalities is used.

We compare the proposed stochastic VI Bayesian DNN

with the baseline DNN model. We also compare with

well-known Monte Carlo (MC) dropout [13] approximate

Bayesian inference method. For MC dropout, we perform

40 stochastic forward passes with dropout probabilities of

0.5 (same dropout probability is used in the training phase).

4.1. Uncertainty and confidence measures

Bayesian DNN models capture uncertainty estimates as-

sociated with individual modalities that can be used for mul-

timodal fusion. We compare BALD uncertainty measure

(details are in Section 2) using in- and out-of-distribution

classes from the subset of MiT dataset. Out-of-distribution

samples are data points which fall far off from the training

data distribution. The DNN models provide softmax proba-

bility as the measure of confidence in the results, but do not

provide an explicit measure of model uncertainty.

The density histograms for the DNN confidence mea-

sure and Bayesian DNN uncertainty measure are plotted in

Figure 6. The density histogram is a histogram with area

normalized to one. The confidence measure density his-

togram plots for DNN model (Figure 6 (a)) indicate higher

confidence for both in- and out-of-distribution classes. A

peak is observed near higher confidence values for out-of-

distribution samples indicating incorrect confidence predic-

tions. The uncertainty estimates obtained from the Bayesian

DNN models (Figure 6 (b) and (c)) indicate higher uncer-

tainty for the out-of-distribution samples and lower uncer-
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(a) DNN

confidence measure

(b) Bayesian DNN (MC Dropout)

uncertainty measure

(c) Bayesian DNN (Stochastic VI)

uncertainty measure

Figure 6: Density histograms obtained from in- and out-of-distribution samples for the subset of MiT dataset. (a) DNN confidence

measure, (b) Bayesian DNN ()MC Dropout) uncertainty measure and (c) Bayesian DNN (Stochastic VI) uncertainty measure. DNN model

indicates high confidence for both the categories(peaked to the right or higher values). Bayesian DNN model uncertainty estimates indicate

higher uncertainty for out-of-distribution samples as compared to the in-distribution samples. [The density histogram is a histogram with

area normalized to one. Plots are overlaid with kernel density curves for better readability.]

(a) DNN model (b) Bayesian DNN (MC Dropout) model (c) Bayesian DNN (Stochastic VI) model

Figure 7: Density histogram of confidence measures for subset of MiT dataset in-distribution true (correct) and false (incorrect) predic-

tions: A distribution skewed towards right (near 1.0 on x-axis) indicates the model has higher confidence in predictions than the distribution

skewed towards left. DNN model indicates high confidence for both true and false predictions. Bayesian DNN model shows lower confi-

dence for false predictions while maintaining higher confidence values for the true predictions. [The density histogram is a histogram with

area normalized to one. Plots are overlaid with kernel density curves for better readability.]

tainty values for the in-distribution samples. A peak is ob-

served near higher uncertainty values for out-of-distribution

samples indicating reliable predictions.

We compare the confidence measure obtained from the

DNN and Bayesian DNN models. The mean of the categor-

ical predictive distribution obtained from Monte Carlo sam-

pling provides the confidence measure for Bayesian DNNs.

The confidence measure for the conventional DNN is the

softmax probabilities used for the predictions.

The density histograms for the confidence measure are

plotted in Figure 7. The height (y-axis) of density histogram

indicates the distribution of confidence measure. A distri-

bution skewed towards the right (near 1.0 on x-axis) indi-

cates the model has higher confidence in the predictions
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and the distributions skewed towards left indicate lower

confidence. For true (correct) predictions all three models

show confidence measure density histograms peaked near

1.0, indicating reliable predictions. In the case of false

(incorrect) predictions, the DNN model still shows confi-

dence measure density histograms peaked near 1.0. On the

contrary, Bayesian DNN models show confidence measure

density histograms skewed towards lower values indicat-

ing more reliable predictions. The proposed stochastic VI

model shows a more pronounced peak towards lower values

for false predictions indicating better predictive confidence

measure than the MC dropout model.

4.2. Model performance comparison

The classification accuracy for MiT in-distribution sam-

ples is presented in Table 1. Bayesian DNN stochastic VI

model consistently provides higher accuracies for individ-

ual and combined audio-vision modalities. Bayesian DNN

stochastic VI audiovisual model provides an improvement

of 9.2% top1 and 3.2% top5 accuracies over the Bayesian

DNN visual model. Bayesian DNN stochastic VI model

(audiovisual) provides an improvement of 2.8% top1 and

Figure 8: Precision-Recall (top) and ROC (bottom) plots

micro-averaged over all the MiT in-distribution classes.

Model Top1 (%) Top5 (%)

Vision

DNN 52.65 79.79

Bayesian DNN (MC Dropout) 52.88 80.10

Bayesian DNN (Stochastic VI) 53.3 81.20

Audio

DNN 34.13 61.68

Bayesian DNN (MC Dropout) 32.46 60.97

Bayesian DNN (Stochastic VI) 35.80 63.40

Audiovisual

DNN 56.61 79.39

Bayesian DNN (MC-Dropout) 55.04 80.34

Bayesian DNN (Stochastic VI) 58.2 83.8

Table 1: Comparison of accuracies for DNN, Bayesian

DNN MC Dropout and Stochastic Variational Inference

(Stochastic VI) models applied to subset of MiT dataset (in-

distribution classes).

5.6% top5 accuracies over the baseline DNN model (au-

diovisual). The accuracies for Bayesian DNN MC dropout

model are lower than the proposed Bayesian stochastic VI

model.

Figure 8 shows the comparison of precision-recall and

ROC plots using the confidence measures for DNN and

Bayesian DNN stochastic VI models. The proposed model

consistently provides higher precision-recall and ROC AUC

for individual and combined audio-vision modalities. Fig-

ure 9 shows Bayesian stochastic VI audiovisual model pro-

vides precision-recall AUC improvement of 10.2% over the

DNN and 3.8% over the MC Dropout audiovisual models.

We also compared the uncertainty estimates obtained

from the proposed Bayesian DNN stochastic VI model us-

ing two separate datasets. We compared the UCF101 vi-

sual activity recognition dataset, which has 101 activity

classes, as in-distribution samples and MiT dataset (vision

input) as the out-of-distribution samples. The training of

the UCF101 dataset for vision input is done similar to the

details provided in Section 3. The DNN (Top1: 87.5%

and Top5: 97.35%) and Bayesian DNN (Top1: 88.6% and

Top5: 98.25%) models provide comparable accuracy val-

ues to other results obtained for UCF101 using ResNet-101

C3D model [18]. The comparison of uncertainty measures

for in-distribution and out-of-distribution samples obtained

from Bayesian DNN are shown in Figure 10. Both BALD

and predictive entropy (details are in Section 2) uncertainty

measures indicate a clear separation of uncertainty scores

for in- and out-of-distribution samples.

These results confirm that the proposed Bayesian DNN

stochastic VI model provides reliable confidence measure

6307



Figure 9: Precision-recall (top) and ROC (bottom) AUC plots

for audiovisual models micro-averaged over all the MiT in-

distribution classes.

than the conventional DNN for the audiovisual activity

recognition and can identify out-of-distribution samples.

5. Conclusions

Effective multimodal activity recognition requires the

underlying system to intelligently decide the relative im-

portance of each modality. Bayesian inference provides a

systematic way to quantify uncertainty in the deep learn-

ing model predictions. Uncertainty estimates obtained from

Bayesian DNNs can identify inherent ambiguity in individ-

ual modalities, which in turn can benefit multimodal fusion.

In this work, we proposed a novel uncertainty-aware multi-

modal fusion method using Bayesian DNN architecture that

combines deterministic and variational layers. We evalu-

ate the proposed approach on audiovisual activity recogni-

tion using Moments-in-Time dataset. The results indicate

Bayesian DNN can provide more reliable confidence mea-

sure compared to the conventional DNNs. The uncertainty

estimates obtained from the proposed method have the po-

tential to identify out-of-distribution data. The proposed

method is scalable to deeper architectures and can be ex-

tended to other real-world multimodal applications.

Figure 10: Density histogram of uncertainty measures (BALD

and predictive entropy) obtained from Bayesian DNN stochas-

tic VI model. In-distribution samples are from the UCF101 ac-

tivity recognition dataset and out-of-distribution are from the MiT

dataset. The uncertainty measures demonstrate clear separation of

in- and out-of-distribution uncertainty distributions. [The density

histogram has area normalized to one. Plots are overlaid with ker-

nel density curves for better readability.]
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