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Abstract

There is growing interest in strategies that can help us

understand or interpret neural networks – that is, not merely

provide a prediction, but also offer additional context ex-

plaining why and how. While many current methods of-

fer tools to perform this analysis for a given (trained) net-

work post-hoc, recent results (especially on capsule net-

works) suggest that when classes map to a few high level

“concepts” in the preceding layers of the network, the

behavior of the network is easier to interpret or explain.

Such training may be accomplished via dynamic/EM rout-

ing where the network “routes” for individual classes (or

subsets of images) are dynamic and involve few nodes even

if the full network may not be sparse. In this paper, we

show how a simple modification of the SGD scheme can

help provide dynamic/EM routing type behavior in convo-

lutional neural networks. Through extensive experiments,

we evaluate the effect of this idea for interpretability where

we obtain promising results, while also showing that no

compromise in attainable accuracy is involved. Further,

we show that the minor modification is seemingly ad-hoc,

the new algorithm can be analyzed by an approximate

method which provably matches known rates for SGD. Code

is available at: https://github.com/sunyiyou/

dynamic-k-activation.

1. Introduction

Machine learning and computer vision methods are now

becoming closely interwined with our lives. There is con-

sensus that this trend will clearly continue, but the need for

human comprehension (i.e., interpretability) of what/why

a model predicts will become a pressing issue – and po-

tentially a key constraint that may limit broader adoption

across in a number of different disciplines. Clearly, if a hu-

man can comprehend the model, then its utility increases

[12, 10, 29, 16, 34]. But perhaps in other settings, this

∗Worked was performed while SNR was a dissertator at UW-Madison.

need is also driven by regulatory requirements, robustness

or societal issues. Why did the system suggest that a person

be selected for secondary screening at the airport? Why is

a biopsy being requested based on a radiographic image?

Why is the autonomous vehicle inadvertently deciding to

change lanes when there is no apparent obstruction? Mod-

els that are easy to comprehend broadly fall under the um-

brella of interpretable models [8], and recent work shows

that apart from use in vision tasks such as visual question

answering [2], interpretability also facilitates the develop-

ment of fair/causal models [8].

At a high level, interpreting and understanding deep

models in vision can be roughly partitioned into one or more

of three broad categories. The first line of work seeks to

generate iconic examples of what the network has learned.

This idea relates to finding the pre-image of a trained model.

Deep image priors [31], an inverse network [17] and Plug

and play networks [21] are some examples of this line of

work. But instead of interpreting the network as a whole,

one may also seek attribution: in other words, what parts

of an image are salient for a network and/or for individual

examples. This can be approached by generating informa-

tive heatmaps such as CAM [36] and grad-CAM [27], or

through back-propagation conditioned on the final predic-

tion [29] and layer-wise relevance propagation [3]. Network

Dissection [4] and variants can be used to quantify the in-

terpretability of hidden units through segmentation, helping

us identify what may be thought of as causal features. This

work is also loosely related to the idea behind the third cat-

egory of methods based on semantic identification which

assumes that concepts (or neurons) activate only on a sub-

set of images. This behavior induces equivalence classes in

the image set. For example, the Net2Vec paper [9] seeks to

associate concepts between concepts and filters in a given

architecture.

Interpretability, explainability, post-hoc analysis:

Most techniques that focus on interpretability approach the

problem in a post hoc manner. This means that inter-

pretability analysis is carried out on an already trained net-

work. Recently, [24] investigated some of the pros/cons of
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Figure 1: A simple illustration of the mechanism of dynamic connection layer. The route between nodes are dynamically chosen based on

the input. Dynamic Connection Layer can be plugged into a fully connected layer or a convolution layer. Here we present a ResNet-liked

structure whose final fc layer is replaced by a the Dynamic Connection Layer.

such an approach and concluded that while such approaches

are very useful to better interpret or debug the model’s be-

havior, the explanation emerging from various techniques

may be incomplete and inaccurate. Instead, what is sug-

gested is to build a model that is, by design, interpretable.

Consistent with this sentiment, [40, 18] argues for using

additive models whereas [1] shows that it is possible to

compute a task embedding that is interpretable (also see

[30, 15]. The authors in [35] seek to increase the inter-

pretability of internal filters by incorporating the filter loss.

Prototype network [6] proposes training a layer with proto-

types for classification. Outside of vision, [7] suggests that

interpretable models can be used for credit risk assessment.

EM routing: The general idea of semantic identifica-

tion described above is also loosely related to the use of

EM routing presented in a set of papers introducing capsule

networks [25, 13]. Capsules can be thought of as richer (or

more powerful) nodes within the network, and EM routing

seeks to statistically associate classes with a small number

of capsules. It is able to do so by utilizing only a small

support of capsules using dynamic routing. In other words,

the route can be considered “dynamic” – at the level of

classes or even individual examples. While different, it is

intuitively related to how, in an ideal setting, concepts cre-

ate (non-exclusive) equivalence classes in the image cor-

pus. However, rather than post-hoc analysis of a trained

network, EM routing seeks to perform this at training time.

It makes sense because in this case, hypothetically, the net-

works learns in a way that is more consistent with how one

may understand images. A potential limitation of EM rout-

ing is that it is computationally demanding.

Intuition behind this work: EM routing with capsule

networks performs well – capsules are rich representations

and EM routing is an effective training scheme. In some

cases, such a setup may even be more interpretable. This

raises the following question: are there some simple modi-

fications that can encourage EM routing type behavior in

convolutional neural networks? If we could achieve this

goal for standard CNN architectures, it is reasonable to ex-

pect that they may extend to capsule networks as well (al-

though we do not study this extension here). Some recent

work provides evidence [39] that evaluating units based on

an ablation-based measure is related to the network’s classi-

fication at the individual class level – in fact, there are 5-10

units which dominate the classification score. If a small

set of individual units are relevant for classes, perhaps “dy-

namic” or EM style routing imposed at training time, will

help. What is not known is whether, such a scheme if avail-

able, (1) will hurt accuracy (2) will be practical (3) and have

any positive impact on interpretability. We provide promis-

ing answers to all three questions in this paper.

Contributions: This paper provides a simple modifi-

cation to the SGD algorithm, motivated by numerous em-

pirical observations reported in the literature already, which

when adopted yields an EM routing type behavior in CNNs.

Interestingly, the modification leads to no significant re-

duction in accuracy and more interpretable results. Fur-

ther, we find that the modification (5-6 lines of code) gives

slightly faster runtime (convergence). Interestingly, we can

also theoretically analyze the convergence and other math-
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Figure 2: Comparison of weights estimated by standard connec-

tions versus dynamic connections. A toy network shows the dif-

ferent connections. A wider connection line represents a larger

weight value. Dotted line represents a negative weight. We also

visualize the weight for each class in function representation and

find that the weight vector trained by standard NN can be hard

to understand while the weight trained by dynamic connection is

closer to the actual semantic representation.

ematical properties of this procedure.

Nomenclature: The reader will shortly see that our

modification will involve adaptively thresholding the activa-

tions or the gradients based on certain criteria. But to make

it easier to refer to and because of the dynamic routing type

behavior it encourages, we will simply call our adaptive ac-

tivation thresholding scheme as Dynamic-K activation,

where K represents a vital thresholding parameter in the

algorithm. The use of this algorithm will consequently lead

to what we call a Dynamic Connection or Dynamic Layer.

Analogously, a “Dynamic NN” is the network obtained us-

ing this adaptive activation thresholding or Dynamic-K ac-

tivation scheme.

2. Preliminaries of EM/Dynamic Routing

First, we briefly review the high-level idea behind EM

Routing [13] and discuss the relationship with our proposal.

While the overall procedure is involved, we will present a

simplified version of EM routing here, see Alg. 1.

Basic idea: Assume that the feature inputs are X =
{Xi}

M
i=1, the parameters are W ⊆ R

O×M , and the feature

outputs are Y = {Yc}
O
c=1. Either Xi or Yc can be thought

of as a single scalar value (e.g., unit in a Fc layer) or a vector

(e.g., in capsule networks) or a matrix (e.g., feature map in

Conv layer). For simplicity, Xi or Yc will be a scalar here.

Basically, we can assume that the activation from an upper-

layer’s unit is calculated by estimating by the “mean” or av-

erage of the units’ clusters in a lower-layer (Fig. 3 (a)). In

EM routing, the upper-level units’ activation only depends

on (or driven by) a few lower-level units which are inside

the range or support of the estimated covariance matrix. It

may be argued that this has implications for interpretability

due to sparsity. Let us briefly see why this is the case.

Consider a toy example shown in Fig. 2. The weight

representation of a sparse connection (‘dynamic’ or vari-

able w.r.t. samples or classes) on the right is easy to under-

stand. On the contrary, by the nature of cross-entropy loss

in the standard setting, the weight for the laptop and TV

are encouraged to repel each other, which may lead to some

confusion as to why the screen is negatively associated with

a laptop. While a dynamic or EM routing scheme may not

guarantee immunity to this behavior, one will empirically

see a behavior more consistent with Fig. 2 (right).

Algorithm 1: A simplified EM/Dynamic routing

scheme with routing variables R ⊆ R
O×M .

1 for t = 1, 2, 3 do

2 for c = 1, 2, ..., O do

3 Yc =
∑

M

i=1
Rc

i
W c

i
Xi∑

i
Rc

i

.

4 Update Rc
i by a complicated distance

function with modified kernel.
5 end

6 end

Limitations of EM/Dynamic routing: A limitation of

the original EM/dynamic routing algorithm is its sizable

computational footprint, which becomes challenging on

large-scale datasets. We will shortly see a minor modifi-

cation that can provide significant benefits.

3. Separating Sparsity from Interpretability

Sparsity vis-à-vis Interpretability. Consider a classifi-

cation task in vision. Here, there is agreement that mod-

els which use fewer (high level) features for predictions

are naturally, more interpretable. So, if we assume that

we have a good representation learner or feature extractor

– let us say, provided by an oracle, then, models that are

sparse may be more interpretable. It is important to note

that in general, feature extractors cannot be assumed to be

given. On the other hand, if we wanted to train the entire

network together with the sparsity constraint, there are two

known drawbacks. First, optimizing such models turns out

to be much more demanding than a version without such

constraints, especially in the large scale settings due to the

optimization landscape [23]. lAnd second, when one per-

forms end-to-end training (feature extraction with sparsity

constraint), we often see a quantifiable loss in predictive

accuracy[28], which is unacceptable in various scenarios.

Motivating a simpler alternative: Encouraging spar-

sity in a direct manner as described above is difficult. To

see this conceptually, let W : F → S be an operator where

F ⊆ R
p and S ⊆ R

q are the features and label (or output)

spaces respectively. Then we may define,

W is α-sparse := ∃α, ∀x ∈ F, ‖wi ⊙ x‖0 ≤ α. (1)
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Figure 3: The difference between EM-Routing and Dynamic-K activation Algorithm. In (a), the blue shaded region corresponds to points

that are within unit radius distance from a Guassian Distribution centered at µ as suggested by the EM-routing method. The red shaded

region is the selection ball for the units selected by the Dynamic-K activation Method. The top left image shows the distribution of input

units from the lower-layer(X could be a scalar value, in the plot, we show a single feature point X as a 7x7 feature map). The depth of the

color represents the activation intensity of unit (Xi). Given an upper layer class unit c ∈ {cat, dog, pig}, the deeper color in other three

images represents a larger value of Xi ·W
c

i , where W c is the weight vector of class n. In (b), we visualize how the units from lower layer

are selected by Dynamic-K activation algorithm and sent to the next layer.

We can interpret F as the space of equivalence class of im-

ages that is often used in the context of semantic identifi-

cation. Choosing F = R
p in (1) is equivalent to imposing

hard sparsity constraints, which has been extensively used

in practice [14]. In general, to preserve the accuracy of a

model, F needs to be the support of the joint distribution

of high level features and output classes. Fortunately, re-

sults in [24] show that it is possible to train interpretable

models that are also very accurate. Hence, it is safe to hy-

pothesize that although it may be intractable to characterize

the optimal F , the size of the optimal F may be small. For

example, for a particular class, say dog, only few high level

concepts/features in F (tail, nose etc.) are relevant [25].

Main idea: Our key idea is that since deep networks

are trained using a first order method in most cases, inter-

pretability may be ensured directly by a very simple modi-

fication to the training algorithm, that satisfies the following

condition,

Requirement. An update is interpretable if only the subset

of parameters that are responsible for the prediction of the

class for a given example are updated.

The above requirement can be imposed by changing only

a few lines of code in the optimization routine, and sum-

marized in Alg. 2. It encourages interpretability simply by

using activations to choose the parameters to update. Mech-

anistically, what the algorithm does and how it relates to EM

routing is shown in Figure 3.

Algorithm 2: Dynamic-K activation with dy-

namic parameter K and routing variables, R ⊆
{0, 1}O×M .

1 for c = 1, 2, ..., O do

2 Yc = maxRc

∑M
i=1 R

c
iW

c
i Xi, s.t. ||Rc||1 ≤ K.

3 end

Fig. 3 (b) shows how easy it is to assess what the pro-

cedure does. It offers dynamic routing type behavior but

does not need the two-phase EM scheme, which is known

to be the primary runtime bottleneck. Interestingly, the ben-

efits can be leveraged even with standard CNNs, without the

full-blown capsule formulation.

Remark 1: Notice that the major difference with EM

Routing is that we enforce that the column sum
∑M

i=1 R
c
i

adds up to no more than K instead of 1. We assume that

each neuron can be more interpretable if responsible for

multiple related predictions. As an illustration, for the ex-

44941



ample in Fig. 2, ‘Laptop’ = ‘Keyboard’ + ‘screen’ and ‘TV’

= ‘Telecontrol’ + ‘screen’, where a ‘screen’ neuron may be

responsible for both ‘TV’ and ‘Laptop’. There are more ex-

amples available in [38] that suggest that allowing a neuron

to map to more than one prediction is not a bad idea. Even

in capsule networks, single routing (route to only one higher

unit) is not always preferred in large-scale classification.

Remark 2: We should also observe that even though we

combine units into groups as described above, it is different

from the Group-ℓ1 regularization method [26]. While [26]

binds units to some specific groups (“concepts”), in con-

trast, we encourage one-to-one correspondences between

units and concepts so that any number of units can be com-

bined to form a new concept, as needed.

Intuition: The procedure described above, despite its

simplicity, is more than just a implementation trick. From

the theoretical standpoint, it turns out that our adaptive acti-

vation thresholding or Dynamic-K activation algorithm is

(approximately) equivalent to a variant of SGD with in-

teresting optimization and statistical guarantees. While it

is not essential for implementation purposes, the update

scheme can be interpreted in a rigorous manner, summa-

rized in Algorithm 3. Essentially, as seen from Step 5 of Al-

gorithm 3, the coordinates are first ranked or chosen based

on the (local) curvature of the loss function measured using

the Lipschitz constant along that coordinate. The parameter

s ∈ (0, 1] controls the sparsity of the updates: a large value

of s encourages interpretable updates. In fact, Dynamic-

K activation algorithm is exactly equivalent to Algorithm 3

for sufficiently large s. To avoid confusion, we remind the

reader that this algorithm is explicitly written down only to

facilitate mathematical analysis. In other words, Alg. 2 is

“reinterpreted” as Alg. 3 so that it can be analyzed in terms

of its local optimality and convergence rate.

The following theorem shows that Algorithm 3 and SGD

provably converge at the same rate.

Theorem 1. Let the loss function f be a smooth function

with respect to W . Then, the iterates Wt generated by Al-

gorithm 3 converges to a local minimizer at O(1/t).

Proof. (Sketch.) The proof follows the standard techniques

involved in analysis of first order methods [22, 32, 5]. That

is, we bound the expectation of the norm of the gradient

Wt using the smoothness of the function and per iteration

decrease of the loss. See appendix for full proof.

Implementation: The only expensive step in Alg. 3 is to

estimate Lij’s, which can be intractable in the worst case.

Luckily, the following Lemma shows that when we use a

feed forward network with the cross entropy loss function,

Lij’s turn out to be bounded by activations.

Lemma 2. For a feed forward network with cross entropy

loss function and any parameter j on the final classification

layer, an estimate of Lij can be locally obtained from the

activations, during back propagation.

Proof. (Sketch.) Our proof proceeds in two steps. In the

first step, we show a key technical lemma in which we

bound the change in prediction for a small perturbation of

parameters in the final layer. This step crucially relies on

the structure of gradients obtained in the final layer which

turns out to be satisfied by standard classification loss func-

tions. The second step is essentially an inductive step over

the hidden layers, and a standard calculation via arguments

based on Section 2 in [20].

Practicality: Although Lemma 2 indicates that it is easy

to estimate the Lipschitz constants, it is not clear if such an

upper bound is always useful in practice. But it is satisfy-

ing that our minor adjustment can be nicely analyzed, and

we can derive insights about its behavior. We will now pro-

vide extensive set of experimental results that show that we

can obtain interpretable models using our algorithm, with

minimal/no compromise in accuracy.

4. Experiments

SGD remains the defacto optimization method to train

machine learning models in computer vision. Our theoreti-

cal analysis, in essence, suggests that only a simple modifi-

cation to SGD is needed. At a high level, the goal of our ex-

periments is to evaluate whether dynamic connection based

routing such as ours can, in fact, make the model more in-

terpretable while preserving the overall accuracy. We per-

formed two sets of experiments to test the performance of

Algorithm 3: Interpretable SGD: Block Coordi-

nate SGD with Lipschitz Sampling

1 INPUT: Dataset Z = {(xi, yi)}
n
i=1, loss function f ,

trainable parameters Wj , j = 1, ..., O ×M ;

minibatch size B, sparsity level s, learning rate η,

and block size β.

2 for t = 1, 2, ..., T do

3 Estimate the Lipschitz constant Lij of the

gradient along the j-th coordinate of W using

(xi, yi).

4 Set Li =
∑O×M

j=1 Lij .

5 Interpretable Gradient from each sample

g̃i ∈ R
O×M : g̃ij = piqjgij where

gij = ∇f(xi, yi), pi, and qj are Bernoulli

random variables with biases B/n and

β (Lij/Li)
1/(1−s)

, respectively.

6 Interpretable Update: W ←W − η 1
B

∑n
i=1 g̃i

7 end

8 OUTPUT: Parameters W .
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our Dynamic-K activation algorithm. The first set of ex-

periments intend to analyze the accuracy loss while using

our algorithm for training. The second set of experiments

are intended to analyze the interpretability of the models

obtained using our algorithm. To measure the interpretabil-

ity quantitively, we utilize proxies for the interpretablity of

a network given in [19]: (A) Sparsity. In Fig. 4 and 5, we

evaluate this property directly; (B) Simulatability. A hu-

man is able to simulate or work through its decision-making

process. We show these results in Fig. 6-7 where dynamic

routing plays a role. (C) Modularity. The meaningful

portion (units) of its prediction making process can be in-

terpreted independently. The 1-1 correspondence between

units and independent concepts can be measured using [4],

and we will show quantitative results in Fig. 5(c,d).

Experimental Setup. We used a variant of ResNet ar-

chitecture in all our experiments. Since deeper convolution

layers represent more explainable information [4], we only

replaced the final fully-Connected layer with a dynamic

connection layer to keep the presentation of our experimen-

tal results succinct. But our algorithm is applicable to the

internal layers as well. These extended experimental results

are in the appendix, and consistent with our main message.

We adopt the following naming convention throughout

this section: (i) “Res18-d[K]a” denotes the ResNet18 [11]

structure where the last layer uses Dynamic-K activation

routing method; (ii) “Res18” denotes the original ResNet18

[11]; and (iii) “Res18-L1” denotes the original ResNet18

trained with ℓ1 regularization on the last layer.

4.1. Performance on CIFAR10

Here, we evaluate if dynamic connections can lead to

sparsity while ensuring high accuracy, simultaneously. We

set the weight decay parameter to 0.0005 and the momen-

tum parameter to 0.9. We trained our models on a single

Train

Test

Training and Testing Accuracy Curve of 
Different ResNet18s on Cifar10

Epochs

A
c
c
u
ra

c
y
(%

)

Res18-d1a

Res18-d5a

Res18-L1

Res18

Weight Visualization of 
Final Layer

Low

High

(a) (b)

Figure 4: In (a), we compare the train and test accuracy curve

over 200 epochs of dynamic CNN (Res18-d1a, Res18-d5a) and

standard CNN (Res18, Res18-L1) trained on Cifar10. In (b), for

all models, we visualize the final fully connected layer’s weight

(512× 10) to compare the sparsity.

Model
Places365

Cifar
Top1 Top5

Res18(baseline) 53.69 83.78 95.10

Res18-d1a 27.83 57.56 95.02

Res18-d5a 53.60 84.15 95.12

Res18-d10a 53.64 84.06 95.22

Res18-d25a 53.87 84.25 95.04

Res18-d50a 53.58 84.91 95.06

Res18-d100a 53.81 83.92 95.12

Res50(baseline) 54.74 85.08 95.62

Res50-d25a 55.00 85.07 95.58

Table 1: Accuracy for different ResNets on Places365 and Cifar10.

GPU with a mini-batch size of 256 to compute gradients

and trained for 200 epochs. We employ the standard learn-

ing rate practice using 0.1 at the beginning, and reducing

it by a factor every 70 epochs. We use data augmentation

transformations in [11].

Baseline. We use Res18-L1 as our baseline: this is

the standard residual network with sparsity regularization.

Fig. 4(a) shows our experimental results. We can clearly

see that models trained by dynamic connections (Res18-

d1a, Res18-d5a) converge at a similar speed as the stan-

dard network (Res18). Note that the accuracy of the mod-

els obtained using our algorithm and the baseline are nearly

the same. Interestingly, the final layer obtained using our

Dynamic-K activation algorithm is much sparser than the

baseline, as in Fig. 4(b): (Res18-d1a > Res18-d5a ≫
Res18-L1 > Res18). Sparsity is, of course, a coarse way

to estimate interpretability, in a small dataset like Cifar10.

Still, we can conclude that Dynamic-K activation algorithm

can be used to obtain models that are more interpretable

than when using explicit sparsity terms in these settings.

Takeaway. Dynamic-K activation algorithm can boost

interpretability without sacrificing the accuracy of the

model obtained and training time.

4.2. Performance on Places365

Now we test our algorithm on the much larger dataset–

Places365 [37]. The authors in [37] note that it is much

easier to interpret units in models trained on Places365

dataset, as well as to evaluate interpretability schemes in

general. On this dataset, we may simply use the NetDis-

section method [4]. The dataset contains 365 classes and

each class includes ∼5k training images and 1k testing im-

ages. For this experiment, we used a weight decay of 0.0001
keeping all the other hyperparameters the same as before.

From the accuracy perspective, we compare the follow-

ing models: Res18-d[K]a with K in {1, 5, 10, 25, 50, 100}
and standard Res18, Res50-d25a and Res50. Table 1 shows

the results of our experiment. We find that the valida-

tion accuracy on Places365 is even better than the original
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−3 is considered as sparse connection.) The sparsity of connection in standard ResNet18 is also shown by red line in graph. In (c), we

present the change of average NetDissect Scores over 512 units in layer4 of all test models during training. The standard Res18’s score is

also reported (red line). To see the distribution of NetDissect Scores of layer4’s units in all dynamic models include Res18, we sort the unit

by scores and choose top 100 units as shown in (d).

ResNet18 when K is 25 and 50, similar to the accuracy

curve shown in Fig. 5(a). Clearly, the accuracy loss is neg-

ligible compared to the original model.

Now, let us focus on the sparsity levels of the models

as training proceeds with different settings for the hyper-

parameter K. We see in Figure 5(b), that if K ≥ 100, the

connection in the dynamic layer starts becoming denser, al-

though still much sparser than Res18. Specifically, Res18-

d5a can achieve within 0.1% best Top1 accuracy with 99%
sparsity accuracy (within 0.4% of the best Top5 accuracy).

Interpreting results. We analyzed single units’ inter-

pretability using the NetDissection method as mentioned

earlier [4]. In Fig. 5(c) and (d), we see that smaller val-

ues for K give larger IoU scores, which means that units

are more interpretable. In essence, our algorithm encour-

ages the preceding layers to be more “concept-specific”.

Takeaways. There are two important takeaways from

our large scale experiment: (i) Dynamic-K activation al-

gorithm increases the interpretability of units; and (ii) the

accuracy can be preserved at no additional cost.

4.3. Interpretabiliity

In the second set of experiments, we used two ways

to analyze interpretability of models obtained using the

Dynamic-K activation algorithm. First, we use concept

composability where concept patterns that are important for

predictions are analyzed. Secondly, we use the technique of

instance explanation which allows us to visualize parts of

the network that are important for a prediction.

Concept Composability. Here, our goal is to gain in-

sight about what is learned by a model trained for each

class. This is done by a direct examination of the hidden

units and their corresponding concepts. We show illustra-

tive examples in Figure 6. In these examples, every unit

in the final convolutional layer is analyzed by NetDissect

algorithm and labeled by the closest concept. Then, by sim-

ply inspecting the weights, we can characterize the deci-

sion boundaries of each class. For example, we can see that

class “canal/nature” can be interpreted as a composition of

only 4 concepts viz., “water”, “dam”, “castle” and “sea”.

Hence, the magnitude of the weights in the final layer indi-

cate the importance of the concepts for predicting the class

of canal/nature. Quantitatively, our experiments show that

models obtained using our Dynamic-5 activation algorithm

are easily interpretable: more than 95% classes can be rep-

resented with at most 5 concepts.

Takeaway. Our Dynamic-K algorithm can be used to

obtain transparency of information flow in deep network

that is consistent with human level understanding.

Instance Explanation. Here, we analyze the explana-

tions provided for predictions at an instance level. To that

end, we compare the explanations for predictions provided

by models trained using Dynamic-K activation algorithm

and a baseline SGD.

We show in Fig. 7 that the explanations obtained from

the baseline model are spread across a wide range of unclear

concepts. The difficulty of interpreting such a model may be

mitigated by an external framework like [38], where we find

that the residual drops to 45%. We can obtain even better

models directly using dynamic connections where very few

concepts of units (fewer than 5) can explain about 98% of

the image with 2% inexplicable residual remaining.

Observe that the explanation by units in our Dynamic-

K activation algorithm is significantly more consistent and

accurate compared to the baseline approaches. For exam-

ple, a model obtained from Dynamic-K algorithm explains

a “stadium” using “stadium baseball” and “football field”

concepts whereas the baseline model uses concepts such as
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Figure 6: Visualize the connection from layer4 nodes to the final

class in Res18-d5a trained on Places365. The width of line rep-

resents the strength of connection (weight value). For example,

the top-3 units contributes to the Airplain Cabin class are unit237

(main concept “airplain cabin” with IoU score 0.22), unit483

(main concept “cockpit” with IoU score 0.19) and unit388 (main

concept “laundromat” with IoU score 0.19). The connection of

other units to this class is too weak to notice, thus not included.

The visualization of each unit shown below the text is the top ac-

tivated images and the corresponding regions[33].

“toilet”, “bakery shop” that are obviously irrelevant for pre-

dicting the class.

Takeaway. Models that provide high quality instance

level explanations can be obtained using Dynamic-K algo-

rithm with no additional cost.

5. Conclusion

This paper proposes a simple adaptive activation thresh-

olding or dynamic K routing rule based on choosing several

top activated lower-level units for a higher-level unit. The

idea is simple and inspired by the dynamic/EM routing al-

gorithm introduced in [25, 13]. But our simplified version

can be plugged into any current CNN network structures

and involves minimal changes to the optimization code. The

idea is easy to understand, works well, and we can rigor-

ously analyze its convergence properties. Our experiments

Figure 7: Visualize the decision explanation in Res18-d5a trained

on Places365. The heatmap indicates the region correspond-

ing to the units. Above each image, we show the contribution

score, unit ID, concept name on the 1
st, 2nd, 3rd lines respec-

tively. We see fewer than 5 concepts that are important for pre-

dictions while using Dynamic-K algorithm. To compute the con-

tribution score, first we compute the output score for class c as

Yc =
∑

n

i=1
W c

i Xi, (where n is the #-units in layer4, Xi is the

activation of unit i, W c

i is the weight value on the edge between

unit i and class c). Then, the contribution score of unit i to class c
is computed as W c

i Xi/Yc.

show that this scheme can help speed up convergence, en-

courage sparsity of the network and increase interpretabil-

ity, without sacrificing the overall accuracy.
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