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Season the steak with 
salt and pepper.

Carefully place the steak 
to the pan.

Flip the steak to the 
other side.

Now let it rest and enjoy 
the delicious steak.
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Figure 1: VideoBERT text-to-video generation and future forecasting. (Above) Given some recipe text divided into

sentences, y = y1:T , we generate a sequence of video tokens x = x1:T by computing x∗
t = argmaxk p(xt = k|y) using

VideoBERT. (Below) Given a video token, we show the top three future tokens forecasted by VideoBERT at different time

scales. In this case, VideoBERT predicts that a bowl of flour and cocoa powder may be baked in an oven, and may become a

brownie or cupcake. We visualize video tokens using the images from the training set closest to centroids in feature space.

Abstract

Self-supervised learning has become increasingly impor-

tant to leverage the abundance of unlabeled data avail-

able on platforms like YouTube. Whereas most existing

approaches learn low-level representations, we propose a

joint visual-linguistic model to learn high-level features

without any explicit supervision. In particular, inspired

by its recent success in language modeling, we build upon

the BERT model to learn bidirectional joint distributions

over sequences of visual and linguistic tokens, derived from

vector quantization of video data and off-the-shelf speech

recognition outputs, respectively. We use VideoBERT in nu-

merous tasks, including action classification and video cap-

tioning. We show that it can be applied directly to open-

vocabulary classification, and confirm that large amounts

of training data and cross-modal information are critical to

performance. Furthermore, we outperform the state-of-the-

art on video captioning, and quantitative results verify that

the model learns high-level semantic features.

1. Introduction

Deep learning can benefit a lot from labeled data [24],

but this is hard to acquire at scale. Consequently there has

been a lot of recent interest in “self supervised learning”,

where we train a model on various “proxy tasks”, which we

hope will result in the discovery of features or representa-

tions that can be used in downstream tasks. A wide variety

of such proxy tasks have been proposed in the image and

video domains. However, most of these methods focus on

low level features (e.g., textures) and short temporal scales

(e.g., motion patterns that last a second or less). We are in-

terested in discovering high-level semantic features which

correspond to actions and events that unfold over longer

time scales (e.g. minutes), since such representations would

be useful for various video understanding tasks.

In this paper, we exploit the key insight that human

language has evolved words to describe high-level objects

and events, and thus provides a natural source of “self”

supervision. In particular, we present a simple way to

model the relationship between the visual domain and the
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input text Cut the cabbage into 
pieces.

Put cabbage in the wok 
and stir fry.

Add soy sauce and ... 
then keep stir frying.

Put on a plate the dish is 
now ready to be served.

Figure 2: Additional text-to-video generation and future forecasting examples from VideoBERT, see Figure 1 for details.

linguistic domain by combining three off-the-shelf meth-

ods: an automatic speech recognition (ASR) system to con-

vert speech into text; vector quantization (VQ) applied to

low-level spatio-temporal visual features derived from pre-

trained video classfication models; and the recently pro-

posed BERT model [6] for learning joint distributions over

sequences of discrete tokens.

More precisely, our approach is to apply BERT to learn a

model of the form p(x, y), where x is a sequence of “visual

words”, and y is a sequence of spoken words. Given such

a joint model, we can easily tackle a variety of interesting

tasks. For example, we can perform text-to-video predic-

tion, which can be used to automatically illustrate a set of

instructions (such as a recipe), as shown in the top examples

of Figure 1 and 2. We can also perform the more traditional

video-to-text task of dense video captioning [10] as shown

in Figure 6. In Section 4.6, we show that our approach

to video captioning significantly outperforms the previous

state-of-the-art [39] on the YouCook II dataset [38].

We can also use our model in a “unimodal” fashion. For

example, the implied marginal distribution p(x) is a lan-

guage model for visual words, which we can use for long-

range forecasting. This is illustrated in the bottom examples

of Figure 1 and 2. Of course, there is uncertainty about the

future, but the model can generate plausible guesses at a

much higher level of abstraction than other deep generative

models for video, such as those based on VAEs or GANs

(see e.g., [4, 5, 13, 27]), which tend to predict small changes

to low level aspects of the scene, such as the location or pose

of a small number of objects.

In summary, our main contribution in this paper is a

simple way to learn high level video representations that

capture semantically meaningful and temporally long-range

structure. The remainder of this paper describes this con-

tribution in detail. In particular, Section 2 briefly reviews

related work; Section 3 describes how we adapt the recent

progress in natural language modeling to the video domain;

Section 4 presents results on activity recognition and video

captioning tasks; and Section 5 concludes.

2. Related Work

Supervised learning. Some of the most successful ap-

proaches for video representation learning have leveraged

large labeled datasets (e.g., [9, 19, 36, 7]) to train convolu-

tional neural networks for video classification. However, it

is very expensive to collect such labeled data, and the cor-

responding label vocabularies are often small and not ca-

pable of representing the nuances of many kinds of actions

(e.g., “sipping” is slightly different than “drinking” which

is slightly different than “gulping”). In addition, these ap-

proaches are designed for representing short video clips,

typically a few seconds long. The main difference to our

work is that we focus on the long-term evolution of events

in video, and we do not use manually provided labels.

Unsupervised learning. Recently, a variety of ap-

proaches for learning density models from video have been

proposed. Some use a single static stochastic variable,

which is then “decoded” into a sequence using an RNN,

either using a VAE-style loss [32, 35] or a GAN-style loss

[31, 17]. More recent work uses temporal stochastic vari-

ables, e.g., the SV2P model of [4] and the SVGLP model

of [5]. There are also various GAN-based approaches, such

as the SAVP approach of [13] and the MoCoGAN approach

of [27]. We differ from this work in that we use the BERT

model, without any explicit stochastic latent variables, ap-

plied to visual tokens derived from the video. Thus our

model is not a generative model of pixels, but it is a gen-

erative model of features derived from pixels, which is an

approach that has been used in other work (e.g., [30]).

Self-supervised learning. To avoid the difficulties of

learning a joint model p(x1:T ), it has become popular to

learn conditional models of the form p(xt+1:T |x1:t), where

we partition the signal into two or more blocks, such as gray
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scale and color, or previous frame and next frame (e.g.,

[18]), and try to predict one from the other (see e.g., [23]

for an overview). Our approach is similar, except we use

quantized visual words instead of pixels. Furthermore, al-

though we learn a set conditional distributions, our model is

a proper joint generative model, as explained in Section 3.

Cross-modal learning. The multi-modal nature of video

has also been an extensive source of supervision for learn-

ing video representations, which our paper builds on. Since

most videos contain synchronized audio and visual signals,

the two modalities can supervise each other to learn strong

self-supervised video representations [3, 20, 21]. In this

work, we use speech (provided by ASR) rather than low-

level sounds as a source of cross-modal supervision.

Natural language models. We build upon recent

progress in the NLP community, where large-scale lan-

guage models such as ELMO [22] and BERT [6] have

shown state-of-the-art results for various NLP tasks, both at

the word level (e.g., POS tagging) and sentence level (e.g.,

semantic classification). The BERT model is then extended

to pre-train on multi-lingual data [12]. Our paper builds on

the BERT model to capture structure in both the linguistic

and visual domains.

Image and video captioning. There has been much re-

cent work on image captioning (see e.g., [11, 8, 15]), which

is a model of the form p(y|x), where y is the manually pro-

vided caption and x is the image. There has also been some

work on video captioning, using either manually provided

temporal segmentation or estimated segmentations (see e.g.,

[10, 39]). We use our joint p(x, y) model and apply it to

video captioning, and achieve state-of-the-art results, as we

discuss in Section 4.6.

Instructional videos. Various papers (e.g., [16, 2, 10,

38, 39]) have trained models to analyse instructional videos,

such as cooking. We differ from this work in that we do not

use any manual labeling, and we learn a large-scale genera-

tive model of both words and (discretized) visual signals.

3. Models

In this section, we briefly summarize the BERT model,

and then describe how we extend it to jointly model video

and language data.

3.1. The BERT model

BERT [6] proposes to learn language representations by

using a “masked language model” training objective. In

more detail, let x = {x1, . . . , xL} be a set of discrete to-

kens, xl ∈ X . We can define a joint probability distribution

over this set as follows:

p(x|θ) =
1

Z(θ)

L
∏

l=1

φl(x|θ) ∝ exp

(

L
∑

l=1

log φl(x|θ)

)

where φl(x) is the l’th potential function, with parameters

θ, and Z is the partition function.

The above model is permutation invariant. In order to

capture order information, we can “tag” each word with its

position in the sentence. The BERT model learns an embed-

ding for each of the word tokens, as well as for these tags,

and then sums the embedding vectors to get a continuous

representation for each token. The log potential (energy)

functions for each location are defined by

log φl(x|θ) = xT

l fθ(x\l)

where xl is a one-hot vector for the l’th token (and its tag),

and

x\l = (x1, . . . , xl−1,MASK, xl+1, . . . , xL)

The function f(x\l) is a multi-layer bidirectional trans-

former model [28] that takes an L × D1 tensor, contain-

ing the D1-dimensional embedding vectors corresponding

to x\l, and returns an L × D2 tensor, where D2 is the size

of the output of each transformer node. See [6] for details.

The model is trained to approximately maximize the pseudo

log-likelihood

L(θ) = Ex∼D

L
∑

l=1

log p(xl|x\l; θ)

In practice, we can stochastically optimize the logloss

(computed from the softmax predicted by the f function)

by sampling locations as well as training sentences.

BERT can be extended to model two sentences by con-

catenating them together. However, we are often not only

interested in simply modeling the extended sequence, but

rather relationships between the two sentences (e.g., is this a

pair of consecutive or randomly selected sentences). BERT

accomplishes this by prepending every sequence with a spe-

cial classification token, [CLS], and by joining sentences

with a special separator token, [SEP]. The final hidden state

corresponding to the [CLS] token is used as the aggregate

sequence representation from which we predict a label for

classification tasks, or which may otherwise be ignored. In

addition to differentiating sentences with the [SEP] token,

BERT also optionally tags each token by the sentence it

comes from. The corresponding joint model can be written

as p(x, y, c), where x is the first sentence, y is the second,

and c = {0, 1} is a label indicating whether the sentences

were separate or consecutive in the source document.

For consistency with the original paper, we also add a

[SEP] token to the end of the sequence, even though it

is not strictly needed. So, a typical masked-out training

sentence pair may look like this: [CLS] let’s make

a traditional [MASK] cuisine [SEP] orange

chicken with [MASK] sauce [SEP]. The corre-

sponding class label in this case would be c = 1, indicating

that x and y are consecutive.
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Figure 3: Illustration of VideoBERT in the context of a video and text masked token prediction, or cloze, task. This task also

allows for training with text-only and video-only data, and VideoBERT can furthermore be trained using a linguistic-visual

alignment classification objective (not shown here, see text for details).

3.2. The VideoBERT model

To extend BERT to video, in such a way that we may

still leverage pretrained language models and scalable im-

plementations for inference and learning, we decided to

make minimal changes, and transform the raw visual data

into a discrete sequence of tokens. To this end, we propose

to generate a sequence of “visual words” by applying hi-

erarchical vector quantization to features derived from the

video using a pretrained model. See Section 4.2 for details.

Besides its simplicity, this approach encourages the model

to focus on high level semantics and longer-range temporal

dynamics in the video. This is in contrast to most existing

self-supervised approaches to video representation learning,

which learn low-level properties such as local textures and

motions, as discussed in Section 2.

We can combine the linguistic sentence (derived from the

video using ASR) with the visual sentence to generate data

such as this: [CLS] orange chicken with [MASK]

sauce [>] v01 [MASK] v08 v72 [SEP], where v01

and v08 are visual tokens, and [>] is a special token we in-

troduce to combine text and video sentences. See Figure 3

for an illustration.

While this cloze task extends naturally to sequences of

linguistic and visual tokens, applying a next sentence pre-

diction task, as used by BERT, is less straightforward. We

propose a linguistic-visual alignment task, where we use the

final hidden state of the [CLS] token to predict whether the

linguistic sentence is temporally aligned with the visual sen-

tence. Note that this is a noisy indicator of semantic relat-

edness, since even in instructional videos, the speaker may

be referring to something that is not visually present.

To combat this, we first randomly concatenate neighbor-

ing sentences into a single long sentence, to allow the model

to learn semantic correspondence even if the two are not

well aligned temporally. Second, since the pace of state

transitions for even the same action can vary greatly be-

tween different videos, we randomly pick a subsampling

rate of 1 to 5 steps for the video tokens. This not only helps

the model be more robust to variations in video speeds, but

also allows the model to capture temporal dynamics over

greater time horizons and learn longer-term state transi-

tions. We leave investigation into other ways of combining

video and text to future work.

Overall, we have three training regimes corresponding

to the different input data modalities: text-only, video-only

and video-text. For text-only and video-only, the standard

mask-completion objectives are used for training the model.

For text-video, we use the linguistic-visual alignment clas-

sification objective described above. The overall training

objective is a weighted sum of the individual objectives.

The text objective forces VideoBERT to do well at language

modeling; the video objective forces it to learn a “language

model for video”, which can be used for learning dynam-

ics and forecasting; and the text-video objective forces it to

learn a correspondence between the two domains.

Once we have trained the model, we can use it in a va-

riety of downstream tasks, and in this work we quantita-

tively evaluate two applications. In the first application, we

treat it as a probabilistic model, and ask it to predict or im-

pute the symbols that have been MASKed out. We illustrate

this in Section 4.4, where we perform “zero-shot” classifi-

cation. In the second application, we extract the predicted

representation (derived from the internal activations of the

model) for the [CLS] token, and use that dense vector as

a representation of the entire input. This can be combined

with other features derived from the input to be used in a

downstream supervised learning task. We demonstrate this

in Section 4.6, where we perform video captioning.

4. Experiments and Analysis

In this section we describe our experimental setup, and

show quantitative and qualitative results.
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4.1. Dataset

Deep learning models, in both language and vision do-

mains, have consistently demonstrated dramatic gains in

performance with increasingly large datasets. For example,

the “large” BERT model (which we use) was pretrained on

the concatenation of the BooksCorpus (800M words) and

English Wikipedia (2,500M words).

Therefore, we would like to train VideoBERT with a

comparably large-scale video dataset. Since we are inter-

ested in the connection between language and vision, we

would like to find videos where the spoken words are more

likely to refer to visual content. Intuitively, this is often

the case for instructional videos, and we focus on cooking

videos specifically, since it is a well studied domain with

existing annotated datasets available for evaluation. Unfor-

tunately, such datasets are relatively small, so we turn to

YouTube to collect a large-scale video dataset for training.

We extract a set of publicly available cooking videos

from YouTube using the YouTube video annotation sys-

tem to retrieve videos with topics related to “cooking” and

“recipe”. We also filter videos by their duration, removing

videos longer than 15 minutes, resulting in a set of 312K

videos. The total duration of this dataset is 23,186 hours, or

roughly 966 days. For reference, this is more than two or-

ders of magnitude larger than the next largest cooking video

dataset, YouCook II, which consists of 2K videos with a to-

tal duration of 176 hours [38].

To obtain text from the videos, we utilize YouTube’s au-

tomatic speech recognition (ASR) toolkit provided by the

YouTube Data API [1] to retrieve timestamped speech in-

formation. The API returns word sequences and the pre-

dicted language type. Among the 312K videos, 180K have

ASR that can be retrieved by the API, and 120K of these

are predicted to be in English. In our experiments, while we

use all videos for the video-only objective, we only use text

from English ASR for VideoBERT’s text-only and video-

text objectives.

We evaluate VideoBERT on the YouCook II dataset [38],

which contains 2000 YouTube videos averaging 5.26 min-

utes in duration, for a total of 176 hours. The videos have

manually annotated segmentation boundaries and captions.

On average there are 7.7 segments per video, and 8.8 words

per caption. We use the provided dataset split, with 1333

videos for training and 457 for validation. To avoid po-

tential bias during pretraining, we also remove any videos

which appear in YouCook II from our pretraining set.

4.2. Video and Language Preprocessing

For each input video, we sample frames at 20 fps, and

create clips from 30-frame (1.5 seconds) non-overlapping

windows over the video. For each 30-frame clip, we apply

a pretrained video ConvNet to extract its features. In this

work, we use the S3D [34] which adds separable temporal

convolutions to an Inception network [25] backbone. We

take the feature activations before the final linear classifier

and apply 3D average pooling to obtain a 1024-dimension

feature vector. We pretrain the S3D network on the Kinet-

ics [9] dataset, which covers a wide spectrum of actions

from YouTube videos, and serves as a generic representa-

tion for each individual clip.

We tokenize the visual features using hierarchical k-

means. We adjust the number of hierarchy levels d and the

number of clusters per level k by visually inspecting the co-

herence and representativeness of the clusters. We set d=4
and k = 12, which yields 124 = 20736 clusters in total.

Figure 4 illustrates the result of this “vector quantization”

process.

For each ASR word sequence, we break the stream

of words into sentences by adding punctuation using an

off-the-shelf LSTM-based language model. For each sen-

tence, we follow the standard text preprocessing steps from

BERT [6] and tokenize the text into WordPieces [33]. We

use the same vocabulary provided by the authors of BERT,

which contains 30,000 tokens.

Unlike language which can be naturally broken into sen-

tences, it is unclear how to break videos into semantically

coherent segments. We use a simple heuristic to address

this problem: when an ASR sentence is available, it is as-

sociated with starting and ending timestamps, and we treat

video tokens that fall into that time period as a segment.

When ASR is not available, we simply treat 16 tokens as a

segment.

4.3. Model Pre­training

We initialize the BERT weights from a text pre-trained

checkpoint. Specifically, we use the BERTLARGE model re-

leased by the authors of [6], using the same backbone archi-

tecture: it has 24 layers of Transformer blocks, where each

block has 1024 hidden units and 16 self-attention heads.

We add support for video tokens by appending 20,736

entries to the word embedding lookup table for each of

our new “visual words”. We initialize these entries with

the S3D features from their corresponding cluster centroids.

The input embeddings are frozen during pretraining.

Our model training process largely follows the setup of

BERT: we use 4 Cloud TPUs in the Pod configuration with

a total batch size of 128, and we train the model for 0.5

million iterations, or roughly 8 epochs. We use the Adam

optimizer with an initial learning rate of 1e-5, and a linear

decay learning rate schedule. The training process takes

around 2 days.

4.4. Zero­shot action classification

Once pretrained, the VideoBERT model can be used

for “zero-shot” classification on novel datasets, such as

YouCook II (By “zero-shot” we mean the model is not
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Figure 4: Examples of video sentence pairs from the pretraining videos. We quantize each video segment into a token, and

then represent it by the corresponding visual centroid. For each row, we show the original frames (left) and visual centroids

(right). We can see that the tokenization process preserves semantic information rather than low-level visual appearance.

trained on YouCook II data nor with the same label ontol-

ogy used in YouCook II). More precisely, we want to com-

pute p(y|x) where x is the sequence visual tokens, and y is

a sequence of words. Since the model is trained to predict

sentences, we define y to be the fixed sentence, “now let

me show you how to [MASK] the [MASK],” and ex-

tract the verb and noun labels from the tokens predicted in

the first and second masked slots, respectively. See Figure 5

for some qualitative results.

For quantitative evaluation, we use the YouCook II

dataset. In [37], the authors collected ground truth bound-

ing boxes for the 63 most common objects for the validation

set of YouCook II. However, there are no ground truth la-

bels for actions, and many other common objects are not

labeled. So, we collect action and object labels, derived

from the ground truth captions, to address this shortcoming.

We run an off-the-shelf part-of-speech tagger on the ground

truth captions to retrieve the 100 most common nouns and

45 most common verbs, and use these to derive ground truth

labels. While VideoBERT’s word piece vocabulary gives

it the power to effectively perform open-vocabulary clas-

sification, it is thus more likely to make semantically cor-

rect predictions that do not exactly match the more limited

ground truth. So, we report both top-1 and top-5 classifica-

tion accuracy metrics, where the latter is intended to miti-

gate this issue, and we leave more sophisticated evaluation

techniques for future work. Lastly, if there is more than

one verb or noun associated with a video clip, we deem a

prediction correct if it matches any of those. We report the

performance on the validation set of YouCook II.

Table 1 shows the top-1 and top-5 accuracies of

VideoBERT and its ablations. To verify that VideoBERT

actually makes use of video inputs, we first remove the

video inputs to VideoBERT, and use just the language

Figure 5: Using VideoBERT to predict nouns and verbs

given a video clip. See text for details. The video clip is

first converted into video tokens (two are shown here for

each example), and then visualized using their centroids.

7469



Method Supervision verb top-1 (%) verb top-5 (%) object top-1 (%) object top-5 (%)

S3D [34] yes 16.1 46.9 13.2 30.9

BERT (language prior) no 0.0 0.0 0.0 0.0

VideoBERT (language prior) no 0.4 6.9 7.7 15.3

VideoBERT (cross modal) no 3.2 43.3 13.1 33.7

Table 1: Action classification performance on YouCook II dataset. See text for details.

Method Data size verb top-1 (%) verb top-5 (%) object top-1 (%) object top-5 (%)

VideoBERT 10K 0.4 15.5 2.9 17.8

VideoBERT 50K 1.1 15.7 8.7 27.3

VideoBERT 100K 2.9 24.5 11.2 30.6

VideoBERT 300K 3.2 43.3 13.1 33.7

Table 2: Action classification performance on YouCook II dataset as a function of pre-training data size.

model p(y) to perform prediction. We also use the lan-

guage prior from the text-only BERT model, that was not

fine-tuned on cooking videos. We can see that VideoBERT

significantly outperforms both baselines. As expected, the

language prior of VideoBERT is adapted to cooking sen-

tences, and is better than the vanilla BERT model.

We then compare with a fully supervised classifier that

was trained using the training split of YouCook II. We

use the pre-computed S3D features (same as the inputs to

VideoBERT), applying average pooling over time, followed

by a linear classifier. Table 1 shows the results. As we

can see, the supervised framework outperforms VideoBERT

in top-1 verb accuracy, which is not surprising given that

VideoBERT has an effectively open vocabulary. (See Fig-

ure 5 for an illustration of the ambiguity of the action la-

bels.) However, the top-5 accuracy metric reveals that

VideoBERT achieves comparable performance to the fully

supervised S3D baseline, without using any supervision

from YouCook II, indicating that the model is able to per-

form competitively in this “zero-shot” setting.

4.5. Benefits of large training sets

We also studied the impact of the size of the pretrain-

ing dataset. For this experiment, we take random subsets

of 10K, 50K and 100K videos from the pretraining set,

and pretrain VideoBERT using the same setup as above,

for the same number of epochs. Table 2 shows the perfor-

mance. We can see that the accuracy grows monotonically

as the amount of data increases, showing no signs of satura-

tion. This indicates that VideoBERT may benefit from even

larger pretraining datasets.

4.6. Transfer learning for captioning

We further demonstrate the effectiveness of VideoBERT

when used as a feature extractor. To extract features given

only video inputs, we again use a simple fill-in-the-blank

task, by appending the video tokens to a template sentence

“now let’s [MASK] the [MASK] to the [MASK],

and then [MASK] the [MASK].” We extract the fea-

tures for the video tokens and the masked out text tokens,

take their average and concatenate the two together, to be

used by a supervised model in a downstream task.

We evaluate the extracted features on video captioning,

following the setup from [39], where the ground truth video

segmentations are used to train a supervised model map-

ping video segments to captions. We use the same model

that they do, namely a transformer encoder-decoder, but we

replace the inputs to the encoder with the features derived

from VideoBERT described above. We also concatenate the

VideoBERT features with average-pooled S3D features; as

a baseline, we also consider using just S3D features without

VideoBERT. We set the number of Transformer block lay-

ers to 2, the hidden unit size to 128, and Dropout probability

to 0.4. We use a 5-fold cross validation on the training split

to set the hyper-parameters, and report performance on the

validation set. We train the model for 40K iterations with

batch size of 128. We use the same Adam optimizer as in

VideoBERT pre-training, and set the initial learning rate to

1e-3 with a linear decay schedule.

Table 3 shows the results. We follow the standard prac-

tice in machine translation and compute BLEU and ME-

TEOR scores micro-averaged at corpus level, and also re-

port ROUGE-L [14] and CIDEr [29] scores. For the base-

line method [39], we recompute the metrics using the

predictions provided by the authors. We can see that

VideoBERT consistently outperforms the S3D baseline, es-

pecially for CIDEr. We can also see that cross-modal pre-

training outperforms the video-only version. Furthermore,

by concatenating the features from VideoBERT and S3D,

the model achieves the best performance across all metrics1.

Figure 6 shows some qualitative results. We note that

the predicted word sequence is rarely exactly equal to the

ground truth, which explains why the metrics in Table 3

(which measure n-gram overlap) are all low in absolute

value. However, semantically the results seem reasonable.

1The metrics used by [39] are macro-averaged at video level and may

suffer from undesirable sparsity artifacts. Using their provided evaluation

code, VideoBERT + S3D has B@4 of 1.79, and METEOR of 10.80.
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Method BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Zhou et al. [39] 7.53 3.84 11.55 27.44 0.38

S3D [34] 6.12 3.24 9.52 26.09 0.31

VideoBERT (video only) 6.33 3.81 10.81 27.14 0.47

VideoBERT 6.80 4.04 11.01 27.50 0.49

VideoBERT + S3D 7.59 4.33 11.94 28.80 0.55

Table 3: Video captioning performance on YouCook II. We follow the setup from [39] and report captioning performance on

the validation set, given ground truth video segments. Higher numbers are better.

Figure 6: Examples of generated captions by VideoBERT and the S3D baseline. In the last example, VideoBERT fails to

exploit the full temporal context, since it misses the paper towel frame.

5. Discussion and conclusion

This paper adapts the powerful BERT model to learn a

joint visual-linguistic representation for video. Our exper-

imental results demonstrate that we are able to learn high-

level semantic representations, and we outperform the state-

of-the-art for video captioning on the YouCook II dataset.

We also show that this model can be used directly for open-

vocabulary classification, and that its performance grows

monotonically with the size of training set.

This work is a first step in the direction of learning

such joint representations. For many applications, includ-

ing cooking, it is important to use spatially fine-grained vi-

sual representations, instead of just working at the frame or

clip level, so that we can distinguish individual objects and

their attributes. We envision either using pretrained object

detection and semantic segmentation models, or using unsu-

pervised techniques for broader coverage. We also want to

explicitly model visual patterns at multiple temporal scales,

instead of our current approach, that skips frames but builds

a single vocabulary.

Beyond improving the model, we plan to assess our ap-

proach on other video understanding tasks, and on other do-

mains besides cooking. (For example, we may use the re-

cently released COIN dataset of manually labeled instruc-

tional videos [26].) We believe the future prospects for large

scale representation learning from video and language look

quite promising.
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