
A Weakly Supervised Fine Label Classifier Enhanced by Coarse Supervision

Fariborz Taherkhani, Hadi Kazemi, Ali Dabouei, Jeremy Dawson, Nasser M. Nasrabadi

Lane Department of Computer Science and Electrical Engineering

West Virginia University

{ft0009, hakazemi, ad0046}@mix.wvu.edu, {jeremy.dawson, nasser.nasrabadi}@mail.wvu.edu

Abstract

Objects are usually organized in a hierarchical structure

in which each coarse category (e.g., big cat) corresponds to

a superclass of several fine categories (e.g., cheetah, leop-

ard). The objects grouped within the same coarse category,

but in different fine categories, usually share a set of global

features; however, these objects have distinctive local prop-

erties that characterize them at a fine level. This paper ad-

dresses the challenge of fine image classification in a weakly

supervised fashion, whereby a subset of images is tagged

by fine labels (i.e., fine images), while the remaining are

tagged by coarse labels (i.e., coarse images). We propose a

new deep model that leverages coarse images to improve the

classification performance of fine images within the coarse

category. Our model is an end-to-end framework consisting

of a Convolutional Neural Network (CNN) which uses fine

and coarse images to tune its parameters. The CNN outputs

are then fanned out into two separate branches such that

the first branch uses a supervised low rank self-expressive

layer to project the CNN outputs to the low rank subspaces

to capture the global structures for the coarse classifica-

tion, while the other branch uses a supervised sparse self-

expressive layer to project them to the sparse subspaces to

capture the local structures for the fine classification. Our

deep model uses coarse images in conjunction with fine im-

ages to jointly explore the low rank and sparse subspaces by

sharing the network parameters during the training which

causes the data obtained by the CNN to be well-projected

to both sparse and low rank subspaces for classification.

1. Introduction

Over the past few years, CNNs have provided promising

results in object recognition and other visual classification

tasks [15, 20, 30]. Along with these developments, image

sub-categorization has been used to increase performance

of a wide variety of applications in computer vision, such

as face recognition [39] and object detection [10]. However,

training a CNN requires a vast amount of accurately anno-

Figure 1. Hierarchical structure for weakly supervised learning.

tated images [20]. Moreover, providing a sufficient amount

of labeled images to train a CNN is labor intensive, time

consuming, and usually requires expert knowledge to anno-

tate them accurately, especially where the class of objects is

too fine-grained [28, 6].

Objects in the fine classes which are grouped in the same

coarse category usually share a set of common visual fea-

tures. These shared visual properties are typically the global

structure underlying the objects which allow them to be cat-

egorized at a coarse level. However, these objects have dis-

tinctive local properties that are used to characterize them

at a fine level. For example, consider the images in Fig. 1.

These images are different species of big cats (e.g., chee-

tah, jaguar, leopard). We can see that all these animals

have spots; this is a global feature that is common among

them (i.e., commonalities). However, these animals have

distinctive feline features (e.g., cheetahs have a ”tear line”

on their faces that leopards do not) which are specific to

each species. These are the local features that are disjoint

from the common features among these animals which are

used for fine image classification.

The low rank and sparse representation of the high di-

mensional data is based on the fact that a correlation often

exists among the data which belong to the same class such

that a low rank subspace captures the global and smooth

structures, while a sparse subspace captures the local struc-

tures and fine details underlying the data [3, 24, 8, 38].

In this work, we make a structural assumption about all

the data points which are extracted from the CNN in our

6459

framework. This assumption is based on the fact that there

is correlation among the data points which belong to the

same class. This structural assumption causes all the data

extracted from the CNN to exist in a union of low rank, or

approximately low rank, subspaces. These subspaces in our

model are explored by using a self-expressive property such

that each data point can be represented as a linear combina-

tion of other samples in the same subspace. In addition to

the low rankness of the data (i.e., low rank self-expressive),

we also put one sparsity constraint on the number of data

which are used to express a given image from a fine cate-

gory (i.e., sparse self-expressive). This is because the dif-

ferences between images in a fine category are very small,

so we want any given data point from a fine category to be

expressed as a linear combination of a very small number of

similar data points. We use low rank and sparse subspaces

to represent the coarse and fine concepts of the data to ad-

dress the challenge of fine and coarse image classification.

In our model, sparse and low rank subspaces are explored

jointly by sharing the network parameters to take advantage

of both the coarse and fine images during the training which

causes the data extracted from the CNN to be well-projected

to sparse and low rank subspaces for classification.

2. Related Work

2.1. Hierarchical Structure for Visual Recognition

The hierarchical structure between objects in most large-

scale datasets, such as ImageNet, has been incorporated in

deep models to learn each category of images in conjunction

with the other categories to improve the overall recognition

performance [12, 32, 5, 35, 28, 36]. Most of these methods

such as [28], learn the shared and disjoint properties among

the objects jointly by focusing on their commonalities and

differences in a class hierarchy such that the shared proper-

ties discriminate the objects at coarse level of abstraction,

while the disjoint properties characterize them at fine level

of abstraction. For example, Srivastava et al. [32] create a

class hierarchy and use a CNN model which transfers the

knowledge between the classes to enhance the overall per-

formance by using a small number of training samples.

In other scenarios, Xiao et al. [35] introduce a training

method that expands a network hierarchically. Due to scal-

ability constraints, the categories in this method are first

grouped together based on their similarities, and then self-

organized into two groups including coarse and fine levels.

Furthermore, Goo et al. [12] propose a method that uses

the shared and specialized properties in a semantic hier-

archical structure to learn improved discriminative CNN

features. This method uses min and difference pooling to

implement generalization and specialization layers. In an-

other case, Guo et al. [13] introduce an end-to-end frame-

work that integrates a CNN and a Recurrent Neural Net-

work (RNN) for hierarchical categorization. In this method,

goal of the CNN is to obtain discriminative features from

the input images, while the goal of the RNN is to train the

coarse and fine image classification jointly.

Among all of the aforementioned methods which use hi-

erarchical structure to improve fine and coarse classification

performance, there are only two methods [28, 13] that con-

sider fine image classification in a weakly supervised fash-

ion. Here, we revisit the hierarchical structure between the

fine and coarse categories and propose a new deep model

which uses the self-expressiveness property of the data with

low rank and sparse representation to tackle the challenge

of fine image classification in a weakly supervised fashion.

2.2. Low Rank and Sparse Representation

Low Rank and Sparse Representation (LRR, SR) meth-

ods are usually used in an unsupervised manner to cap-

ture low dimensional linear subspaces underlying the data

[24, 9, 34, 7]. These subspaces usually have a self-

expressive property, meaning that a sample taken from a

single subspace can be expressed as a linear combination of

other samples from the same subspace [7, 27]. Generally,

in LRR and SR, an affinity matrix is constructed to measure

the pairwise similarities between the data points. The LRR

methods usually construct the affinity matrix such that it has

the minimum possible rank, while SR methods construct the

affinity matrix such that it has the minimum ℓ1 norm.

There are also supervised versions of LRR [31, 33] and

SR [18, 16, 26, 37, 11]. These methods sufficiently ex-

ploit the labeled data to learn a discriminative low rank and

sparse representation for the data points. These methods

incorporate label information as a constraint to guide the

learning process for exploring a robust and discriminative

subspace projection [23, 22]. In these methods, the data

from different classes are well-separated after projection.

Like the supervised methods, in this work we incorporate

the label information by using a contrastive loss function

[14] during the projection of the CNN outputs to the low

rank and sparse subspaces to increase the class separability.

3. Preliminaries

3.1. Low Rank and Sparse SelfExpressive

Assume that the data points {x1, x2, ..., xn} are clean

and sampled from multiple linear subspaces. A subspace

is considered self-expressive if each data point from the

subspace is expressed by a linear combination of the other

data from the same subspace. By stacking all of the data

points xi in a column-wise fashion into a data matrix X , this

property can be represented by a linear equation as follows:

X = XC, where C is an affinity matrix which measures the

pairwise similarity between all of the data points. Specifi-

6460

cally, this idea is formulated by an optimization problem as:

min
C

||C||p s.t. X = XC, diag(C) = 0, (1)

where p is an arbitrary matrix norm. The diagonal con-

straint on C avoids trivial solutions such as identity matrix.

Various methods have been introduced to define an

affinity matrix to explore a set of subspaces. All of these

methods aim to find C such that cij 6= 0 if xi and xj are

in the same subspace, and cij = 0 if they are in different

subspaces. In the low rank representation [9, 24, 21],

the nuclear norm of C is minimized in (1) instead of

minimizing the rank of C, because rank minimization is

an NP hard problem and the nuclear norm is the tightest

convex relaxation to the rank [4]. Following the model [9]

for LRR in general case which data may be contaminated

by noise, the model searches for a clean dictionary (e.g.,

A), and then assumes that the data are obtained by adding

noise or error term (e.g., E) to the clean dictionary (i.e.,

X = A + E). In this theoretically sound model, the er-

ror term for LRR is relaxed by a Frobenius norm as follows:

min
C

||C||∗ +
λ

2
||X −XC||2F , (2)

where, ||.||∗ is the nuclear norm and ||.||F is the Frobenius

norm, and λ is a hyper-parameter that balances the nuclear

and the Frobenius norm. By denoting the SVD of X as

UΣV , the optimal solution of (2) is obtained by using:

Ĉ = V1(I −
1

λ
Σ−2

1
)V ⊤

1
, (3)

where U = [U1, U2], Σ = diag(Σ1,Σ2) and V = [V1, V2].
Matrices are partitioned according to the sets I1 = {i :
σi >

1√
λ
} and I2 = {i : σi ≤

1√
λ
} [9].

In a sparse representation, however, each data point is ex-

pressed by the minimum possible number of the other data

from the same subspace. Similar to the low rank represen-

tation case, we relax the optimization problem by replacing

the ℓ0 with the ℓ1 norm, because the ℓ0 norm is a combi-

natorial norm and ℓ1 is the closest convex norm to the ℓ0
norm. Thus, (1) for the sparse subspace, is as follows:

min
C

||C||1 +
λ

2
||X −XC||2F , diag(C) = 0. (4)

This problem can be efficiently solved by Alternating Di-

rection Method of Multipliers (ADMM) algorithm [2].

4. Supervised Self-Expressive Layers

Before explaining our entire framework in Section 5, in

this section we describe our supervised low rank and sparse

self-expressive layers in our framework, as shown in Fig.

2. These layers incorporate labels to explore sparse and low

rank subspaces underlying the data. In this framework, the

coarse properties of the data are represented by low rank

subspaces, while the fine properties of the data are repre-

sented by sparse subspaces. Therefore, the supervised self-

expressive layers in our framework have two main charac-

teristics: 1) the low rank self-expressive layer learns the

global and coarse concepts of the data, while the sparse self-

expressive layer learns the local and fine concepts of the

data, and 2) these layers incorporate the label information

to increase the class separability by leveraging a contrastive

loss function during the exploration of the subspaces.

Note that in the self-expressive layers, coarse concepts

can be represented by samples from the fine categories.

However, fine concepts may not be represented by coarse

samples. For example, consider the coarse category of big

cats including cheetah, leopard and jaguar subcategories.

When we want to represent the ”spots” which is a coarse

and common concept among all of the samples from the big

cats category, we use samples from all of the fine categories

and other samples which are only labeled by big cat as all

have this property. However, if we want to represent the

”tear line on the face”, which is a fine concept, we use the

samples from the cheetah class, not samples from the leop-

ard or jaguar classes, since the cheetahs have this property

while leopards and jaguar do not. For this reason, we sep-

arate the CNN outputs into two different branches, where

one of them is used for classifying the coarse concepts and

the other one is used for classifying the fine concepts.

4.1. Supervised Low Rank SelfExpressive Layer

The main goal of the low rank self-expressive layer in

our framework is to explore the subspaces that represent the

global and coarse structures of the CNN outputs. Assume

that g(ws, xi) indicates the feature vector obtained by our

CNN for sample xi (i.e., output of fully connected layer in

Fig. 2 for sample xi), where ws is parameters of the CNN.

Let G(ws, X) represent the feature matrix constructed by

stacking [g(ws, x1), g(ws, x2), ..., g(ws, xn)] column-wise.

The cost function SLR(ws, CL, X), used to train the super-

vised low rank self-expressive layer is as follows:

||CL||∗ +
λ

2
||G(ws, X)−G(ws, X)CL||

2

F+

n∑

i=1

n∑

j=1

(1− yij)||g(ws, xi)− g(ws, xj)||
2+

yij max{0, (m− ||g(ws, xi)− g(ws, xj)||)}
2,

(5)

where, CL is a low rank affinity matrix. The first two

terms in (5) are the loss terms which are used to ex-

plore the low rank subspaces underlying the data matrix

G(ws, X). CL in (5) forces G(ws, X) to be projected into

the low rank subspaces. In other words, CL regularizes

ws to learn the low rank structures of features. This is

6461

Figure 2. indicates our deep framework, the CNN output is fanned out into two separate branches for fine and coarse image classification.

because, based on the rank inequality of multiplying two

matrices (i.e., rank(AB) < min{rank(A), rank(B)}),

we can conclude that, by minimizing (5) with respect

to ws, G(ws, X) is projected into subspaces such that

rank(G(ws, X)) < rank(CL). Note that we simultane-

ously minimize rank(CL) by using the term ||CL||∗ in (5)

which causes to be reduced the rank of G(ws, X).

The third term in (5) is a contrastive loss, the goal of

which is to bring g(ws, xi) and g(ws, xj) close to each

other if xi and xj samples belong to the same coarse cat-

egory, while pushing them away from each other if they be-

long to the different coarse categories. yij = 0 if xi and xj

have the same coarse label, otherwise, yij = 1. Here, m is

the margin used in the contrastive loss.

4.2. Supervised Sparse SelfExpressive Layer

The goal of the sparse self-expressive layer in our frame-

work is to explore the subpaces which represent the local

and fine structures of the CNN outputs. In the sparse self-

expressive layer, we put a sparsity constraint on the num-

ber of similar data points which are used to express a given

sample (x) from a fine category. The sparsity constraint pre-

vents the samples (Z) within the same coarse category, but

belonging to the different fine categories, from contribut-

ing to the expression of sample x. This is because we want

to express the fine concept of x, and Z may not have the

same fine concept. Indeed, we choose the sparse subspace

as a solution to express the fine concepts because the dif-

ferences between images in a fine category are very small,

so we want any given data point from a fine category to be

expressed as a linear combination of a very small number

of similar data points. Eq. (6) shows the loss used to learn

the sparse self-expressive layer. The first and second terms

in (6) are the loss terms used to explore sparse subspaces,

while the third term is the supervised loss used to increase

the separability of the fine classes. Minimizing (6) with re-

spect to ws forces the feature matrix G(ws, X) to be pro-

jected in subspaces such that each sample g(ws, xi) can be

expressed by the minimum possible number of other sam-

ples from the same subspace. This is obtained by putting a

constraint on the affinity matrix CS so that it has a small ℓ1
norm. y′ij = 0 if xi and xj belong to the same fine category,

otherwise y′ij = 1. Our supervised sparse self-expressive

layer cost function, SS(ws, CS , X), is defined as follows:

||CS ||1 +
λ

2
||G(ws, X)−G(ws, X)CS ||

2

F+

n∑

i=1

n∑

j=1

(1− y′ij)||g(ws, xi)− g(ws, xj)||
2+

y′ij max{0, (m− ||g(ws, xi)− g(ws, xj)||)}
2,

(6)

where, CS is a sparse affinity matrix. Note that in the sparse

subspaces of our model, the structural assumption (i.e., low

rankness) among the data points is preserved as well. This

is because the two branches of the framework are trained

jointly by sharing the parameters (ws) during the training

such that the rank of G(ws, X) is attempted to be mini-

mized in the low rank self-expressive layer.

5. Fine-Coarse Label Classifier Framework

Fig. 2 illustrates our complete architecture. This archi-

tecture is an end-to-end framework consisting of a CNN

whose output is fanned out into two separate branches. The

first branch projects the CNN outputs into the low rank sub-

spaces by using a supervised low rank self-expressive layer.

The data points projected into the low rank subspaces are

then classified into the coarse categories by using a softmax

layer (wc in Fig. 2). The second branch, however, projects

the CNN outputs into the sparse subspaces by using a su-

pervised sparse self-expressive layer. The data points pro-

jected into the sparse subspaces are then classified into the

fine classes by using a softmax layer (wf in Fig. 2).

Eq. (7) indicates the total loss function that our deep

model uses for joint fine and coarse image classification.

In this loss function, both the fine and coarse classification

tasks share the parameters (ws) to jointly explore the sparse

and low rank subspaces by optimizing the Eq. (5) and Eq.

(6) simultaneously during the training phase. In this frame-

6462

work, coarse images contribute to the fine classification be-

cause images with the same coarse label, but belonging to

different fine categories, still have a common global struc-

ture that can be used in conjunction with fine images to bet-

ter tune the parameters of our model (ws) during the training

phase. In such a case, the coarse images affect the parame-

ters such that the CNN outputs are well-projected into both

low rank and sparse subspaces which contributes to the fine

classification. The parameters which are optimized in our

architecture are {wc, wf , ws, CL, CS}. The total loss of the

framework, L(.), is formulated as follows:

L(ws, wc, wf , CL, CS , X) =

φ(SS(ws, CS , X) + γ(SLR(ws, CL, X))+

Lc(wcG(ws, X), Lc) + Lc(wfG(ws, X), Lf),

(7)

where, Lc(.) is the softmax cross entropy loss function used

for classification. The SLR and SS are the supervised

sparse and low rank self-expressive layer loss functions de-

fined in (5) and (6), respectively. Lc and Lf are the coarse

and fine ground truth labels, respectively. wcG(ws, X) and

wfG(ws, X) are the predicted coarse and fine labels by our

model, respectively. φ and γ are the hyper-parameters that

balance different loss terms during the training.

6. Experiments and Implementation Details

6.1. CNN Architecture

We use a VGG [30] architecture as shown in Fig. 2.

We apply batch normalization [17] after each convolutional

layer, and before performing the Rectified Linear Units

(ReLU) activation function [20]. We use an Adam opti-

mizer [19] with the default hyper-parameters values (ǫ =
10−3 , β1 = 0.9, β2 = 0.999) to train the parameters of the

CNN. The batch size in all experiments is fixed to 128 and

the framework is implemented in TensorFlow.

6.2. Training the Framework

We arrange a strategy which has two steps to train the pa-

rameters of the entire network: pre-training and fine-tuning.

This strategy also prevents the trivial all-zero solution while

minimizing the losses defined in (5) and (6). In the pre-

training step, each component of the framework (i.e., CNN

network (ws), first branch (wc, CL) and second branch (wf ,

CS) is trained separately, while in the fine-tuning step, all

of the components of the framework are trained jointly.

6.2.1 Pre-training Step

In the pre-training step, we first initialize the CNN parame-

ters (ws) by a VGG-Net pre-trained on a subset of the Im-

ageNet 2010 [28]. In the next step of the pre-training step,

we train the parameters of each branch separately. In each

branch, there are two tasks that are learned successively: 1)

projecting the CNN outputs (i.e., G(ws, X)) into the low

rank and sparse subspaces, and 2) classifying the projected

data points into the coarse and fine categories. Therefore,

in the first branch, the first task updates CL, and the second

task updates the coarse classifier parameters (wc). In the

second branch, however, the first task updates CS , and the

second task updates the fine classifier parameters (wf).

Note that CL in the first branch and CS in the second

branch can be thought of as the parameters of an additional

network layer (i.e., self-expressive layer as it is shown in

Fig. 2), which allows us to find a solution for CL and

CS in (5) and (6) by using back-propagation in the first

and second branch, respectively. We also note that the self-

expressive layers in our framework are not a fully connected

layer. In the low rank-self-expressive layer, each data point

(zi = g(ws, xi) in Fig. 2, where n is the number of train-

ing data) is only connected to all the data which belong

to the same coarse category. Thus, data within the same

coarse category construct a complete bipartite graph in the

low rank-self-expressive layer. In the sparse-self-expressive

layer, however, each data point attempts to be connected to

only the minimum possible number of data points which

belong to the same fine category. Thus, in this layer, data

points within the same fine category construct a bipartite

graph which is very sparse.

6.2.2 Fine-tuning Step

In the fine-tuning step, all parameters of the framework are

updated jointly. The parameters of the model in this step

have been initialized with a proper starting point obtained

from the pre-training step. In this step, we aim to minimize

the total loss function in (7), all at once. Since the frame-

work is trained in batch mode through several epochs, we

optimize (7) with respect to CL and CS parameters only af-

ter each epoch is finished, where we have observed all the

training data, because CL and CS need to access all the data

points when they project the data points into the subspaces

with the self-expressive property. Therefore, we train the

framework in batch mode and optimize (7) with respect to

all the parameters excluding CL and CS . Then, at the end

of each epoch, we minimize the total loss with respect to

CL and CS (i.e., this step is similar to the alternative min-

imization algorithm, where we optimize one parameter al-

ternatively by fixing all other parameters). Note that during

the training, we store the CNN features of the images. This

process avoids the need to re-calculate those features (i.e.,

G(ws, X)), when we update CL and CS parameters.

6.3. Dataset and Experimental Setup

We arrange our experimental setup as described in [28]

and [13]. We perform our experiments on a subset of the

ImageNet 2010. This subset consists of the classes from the

ImageNet 2010 which have only one parent class. Among

6463

1 10 100 500 1000

82.5

82.6

82.7

82.8

82.9

83

A
cc

u
ra

cy
 %

(a)

0.1 0.2 0.5 1 1.5

m

84.4

84.5

84.6

84.7

84.8

A
cc

u
ra

cy
 %

(b)

0.01 0.1 1 5 10 100

84.9

85

85.1

85.2

85.3

A
cc

u
ra

cy
 %

(c)

1 5 10 100

84

84.2

84.4

84.6

84.8

A
cc

u
ra

cy
 %

(d)

Figure 3. Hyper-parameters tuning: accuracy of the model on the validation set, where |SCoarse| = |Sfine| = 0.5|S|

these classes, the parent classes form the coarse categories,

Scoarse, while their corresponding children contain the fine

categories, Sfine. Using this setup, we have |Scoarse| =
143 coarse classes, and |Sfine| = 387 fine classes. Since in

this work, we consider fine image classification in a weakly

supervised fashion, the original training, validation, and test

sets of the ImageNet 2010 dataset are truncated to Sfine.

The truncated training set contains 487K images in which

there are between 1.4K and 9.8K images for each coarse

category, and between 668 and 2.4K images for each fine

category. For the validation and the test sets, there are 50

and 150 images per fine category, respectively. In all of our

experiments, we report the performance of the model by

using the top-one average accuracy, as reported in [28] and

[13]. We randomly divide the truncated training set, S, into

two disjoint subsets for each fine category. In this case, the

first subset of images, Scoarse, have only the coarse labels,

while the second subset of images, Sfine, have fine labels

as well. More details about the classes, training, validation

and test sets are found here 1.

6.4. Hyperparameters Tuning

We adjust the hyper-parameters of the model based on a

range of the values that provide the best accuracy on the

validation set. We set |Scoarse| = |Sfine| = 0.5|S| in

the training set during the tuning of the hyper-parameters.

The hyper-parameters of our model are {γ, φ, λ,m} de-

fined in (7) in which m and λ are used in the SS(.) and

SLR(.) functions. Fig. 3 indicates the accuracy of the

model on the validation set in tuning the hyper-parameters.

Fig. 3(a) indicates the performance of the model by set-

ting λ = {1, 10, 100, 500, 1000}, the results indicate that

λ = 100 provides the best accuracy. When choosing

m to be {0.2, 0.5, 1, 1.5}, as shown in Fig. 3(b), the

best value for the margin, m, is 1. When setting γ to

be {0.01, 0.1, 1, 5, 10, 100} and φ to be {1, 5, 10, 100}, as

shown in Fig. 3(c) and Fig. 3(d), values of γ = 1 and

φ = 10 provide the best accuracy.

1http://www.vision.ee.ethz.ch/datasets_extra/

mristin/ristin_et_al_cvpr15_data.zip

6.5. Evaluating the Model in Different Cases

In this section, we evaluate performance of our model-

Deep Fine Classifier (DFC), in five different cases. DFC-S

is the case where we train each component of the framework

’separately’ (pre-training step defined in the Section 6.2.1).

However, in this case we ignore the contrastive loss in (5)

and (6) during exploring the subspaces. DFC-S-CL is the

case where we add contrastive loss to the DFC-S case.

DFC- J is the case where we train the entire framework

’jointly’ by using the loss (7), but ignore the contrastive loss

in (5) and (6). DFC-J-CL is the case where we add con-

trastive loss to the DFC- J case, in which we train the en-

tire framework ’jointly’ by considering the contrastive loss

during the exploration of subspaces in (5) and (6). Finally,

Base-J-CL is the case where we remove the sparse and low

rank constraints (i.e., we remove the first two terms from

(5) and (6)) and then train the network using the loss (7).

6.5.1 Supervised Sparse and Low Rank Layers

In a supervised version of exploring low rank and sparse

subspaces, we incorporated the label by using a contrastive

loss function. To see the effectiveness of this process in our

model, we compare DFC on the testing set for two pairs

of different cases (i.e., {DFC-S, DFC-S-CL}, and {DFC-J,

DFC-J-CL}). Table. 1 indicates the performance of the

model in different cases on the testing set where we fix

|Scoarse| = 0.5|S| and set |Sfine| to be 0.1|S|, 0.2|S| and

0.5|S|, respectively. Table. 2 shows the accuracy of the

model on the testing set where we fix |Sfine| = 0.5|S| and

set |Scoarse| to be 0.1|S|, 0.2|S| and 0.5|S|, respectively.

By comparing DFC-J with DFC-J-CL in Table. 1 and

Table. 2, we observe that including contrastive loss during

the exploration of the subspaces, in either configuration of

splitting training data to the coarse and fine labels, increases

our model performance. We can see that fine label classifier

performance in our model is improved by 1.05% on average

(Table. 1) when we fix |Scoarse| = 0.5|S| and vary the

size of |Sfine|, while it is improved by 0.83% on average

(Table. 2) when we fix |Sfine| = 0.5|S| and vary the size

6464

(a) Separate-training (b) Join-training

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) Sparse

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500 0

0.1

0.2

0.3

0.4

0.5

(d) Low rank

Figure 4. Feature visualization (a) and (b); visualization of affinity matrices for coarse categories (c) and (d).

Methods 0.1|S| 0.2|S| 0.5|S|
Base-J-CL 69.19 70.51 72.64

DFC-S 72.84 74.46 77.58
DFC-S-CL 74.32 76.16 79.41

DFC-J 76.23 77.39 80.12
DFC-J-CL 76.89 78.83 81.17

Table 1. Comparing performance of our model in different sce-

narios, we fix |Scoarse| = 0.5|S|, and we set |Sfine| to be 0.1|S|,
0.2|S| and 0.5|S|.

Methods 0.1|S| 0.2|S| 0.5|S|
Base-J-CL 71.12 71.49 72.64

DFC-S 76.52 76.98 77.58
DFC-S-CL 77.48 77.81 79.41

DFC-J 78.63 78.91 80.12
DFC-J-CL 79.15 79.84 81.17

Table 2. Comparing performance of our model in different sce-

narios, we fix |Sfine| = 0.5|S|, and we set |Scoarse| to be 0.1|S|,
0.2|S| and 0.5|S|.

of |Scoarse|. Moreover, by comparing DFC-S with DFC-

S-CL, the average improvement of the model in Table. 1

and Table. 2 are 1.67% and 1.20%, respectively. Finally,

the comparison of results between Base-J-CL and DFC-J-

CL in Table. 1 and Table. 2 shows that the LR and sparse

constraints have a significant impact on our model.

6.5.2 Effectiveness of Joint Training

In this section, we show the effectiveness of joint-training

for our framework. The results reported in Table. 1 and

Table. 2 show that training the model jointly (i.e., DFC-J-

CL case) significantly improves the overall performance of

the framework in comparison to the case where we train our

model components separately (i.e., DFC-S-CL case). These

improvements, on average, are 2.33% and 1.82% in Table.

1 and Table. 2, respectively.

6.6. Impact of Fine and Coarse Samples in Training

Here we investigate the effect of fine images during the

training. Moreover, we demonstrate how coarse images im-

prove the model performance by fixing the fine image set

size during the training. Table. 1 shows the case in which

we fix the coarse image set size (i.e.,|Scoarse| = 0.5|S|)
while we increase the fine image set size (|Sfine|) during

Size 0.1|S| 0.2|S| 0.5|S|

DFC-J-CL-Base 73.92± 0.16 76.31± 0.21 79.06± 0.14

DFC-J-CL 76.89± 0.24 78.83± 0.18 81.17± 0.11

Table 3. The model accuracy by using and not using coarse data.

the training. As shown in Table. 1, the overall perfor-

mance of our entire framework (i.e., DFC-J-CL) increases

by 1.94% and 2.34 % as we increase the size of |Sfine| from

0.1|S| −→ 0.2|S| and 0.2|S| −→ 0.5|S|, respectively. Table.

2 shows the effectiveness of the incorporation of coarse im-

ages into our model. Table. 2 shows the case where we fix

the fine images set size (i.e.,|Sfine| = 0.5|S|) while we in-

crease the coarse image set size (|Scoarse|) during the train-

ing. As shown in Table. 1, the overall performance of our

model (i.e., DFC-J-CL) increases by 0.69% and 1.33 % as

we increase the size of |Scoarse| from 0.1|S| −→ 0.2|S| and

0.2|S| −→ 0.5|S|, respectively.

We also evaluated our entire model (i.e., DFC-J-CL) for

a naive baseline called (DFC-J-CL-Base) where we use two

branches, one for fine and the other one for coarse classifi-

cation. However, in this case during the training, we ignore

coarse images which are not tagged by fine labels and we

only use images which have both the fine and coarse labels.

We set |Sfine| to be 0.1|S|, 0.2|S| and 0.5|S|, and ran this

baseline. By comparing this baseline with DFC-J-CL in Ta-

ble. 3, we observe that our model improves fine classifica-

tion on average by 2.97 %, 2.52 %, and 2.11 % when we

use coarse labeled images with missing fine labels. Note

that the DFC-J-CL-Base and DFC-J-CL will be the same

case if we use 100% of images with fine and coarse labels

and the accuracy of our model in this case is 85.67±0.26%.

6.7. Comparison

We compare our deep fine label classifier with NN-H-

RNCMF [28] and its baseline, RNCMF, and RNN [13],

which also attempt to enhance fine classification by leverag-

ing the coarse images in hierarchical structure. Moreover,

we compare our model with DMSC [1] as a baseline, where

a similar sparse and low-rank approach was employed for a

clustering task. For this method, we modified it to our task.

Specifically, the encoder in this model takes unimodal data

as the input data in our case are RGB images. All of the

hyper-parameters in these methods are chosen based on the

6465

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a) Sparse

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) Low rank

Figure 5. Affinity matrices for fine categories.

Methods 0.1|S| 0.2|S| 0.5|S|
RNCMF [28] 68.49 70.49 73.07

NN-H RNCMF [28] 69.95 71.41 73.43
DMSC [1] 72.97 74.49 76.72
RNN [13] 74.26 75.64 77.12
DFC-J-CL 76.89 78.83 81.17

Table 4. Comparing our method with others by fixing |Scoarse| =
0.5|S|, and setting |Sfine| to be 0.1|S|, 0.2|S| and 0.5|S|.

authors suggestion. All of these methods use the features

extracted from the VGGNet pre-trained on the subset of Im-

ageNet dataset [28]. We are consistent with these methods

regarding the amount of coarsely and finely labeled images

during the training. We set |Scoarse| = 0.5|S|, and change

|Sfine| to {0.1|S|, 0.2|S|, 0.5|S|}. The results in Table. 4

show that DFC-J-CL outperforms other methods in all con-

figurations, indicating its great potential to leverage coarse

images for improving fine image classification. In further

study, we compared our method in a case where all the fine

images are available during the training. In this configu-

ration, our model accuracy is 85.67%, while the accuracy

of the methods including the baseline VGG fine-tuned on

the ImageNet2010, NN-H-RNCMF, and RNN are 76.01%,

74.18%, and 82%, respectively as reported in [28, 13].

6.8. Further Analysis

Inspired by [29], we use a Grad-CAM to expose the im-

plicit attention of our model on the images during the classi-

fication. We observe that our model is triggered by semantic

regions of the images for fine image classification. By using

the Grad-CAM, we can see that our fine label classifier pro-

vides a ”visual explanation” for the decision that it makes

during the classification. Fig. 6 indicates the Grad-CAM in

our model for ’bear’, ’fox’, ’wolf’ and ’spider’ species. It

shows that our model makes decisions by using the appro-

priate regions of the images to classify these species.

Furthermore, we used T-SNE [25] to visualize the CNN

features for training in two cases where we train the model

separately and jointly. Fig. 4(a) illustrates the case where

we train our model separately, while Fig. 4(b) shows the

case where we train the model jointly. Fig. 4(a) and Fig.

4(b) shows that the training data in joint-training are better

separated than separate-training case.

Figure 6. Example of Grad-CAM for classifying different species.

Moreover, we visualized the affinity matrices of sparse

and low rank subspaces for coarse categories. We selected

100 samples of five classes including ’bear’, ’fox’, ’wolf’ ,

’spider’ and ’grouse’ with the same coarse labels. Fig. 4(c)

shows the sparse affinity matrix, CS , and Fig. 4(d) indicates

the low rank affinity matrix, CL, for the coarse categories.

Fig. 4(c) shows that affinity matrix, CS , is much sparser

than affinity matrix, CL. This means that the fine data points

are expressed by few number of samples, while the coarse

data are expressed by more samples in the same subspace.

In further study, we visualized the affinity matrices of

sparse and low rank subspaces for fine categories. We

picked 100 samples from the ’fox’ category by choosing 25

samples per each fine category including ’artic’, ’grey’, ’kit’

, and ’red’. Fig. 5(a) shows the sparse affinity matrix, CS ,

and Fig. 5(b) indicates the low rank affinity matrix, CL, for

the fine categories. Fig. 5(b) shows that almost all samples

contribute to express a given sample in the low rank sub-

space, while Fig. 5(a) shows that these samples are grouped

to four categories such that each sample can be expressed

by the other samples from the same group.

7. Conclusion

We proposed a novel CNN model that uses coarse im-
ages to improve weakly supervised fine image classification
performance. Our model represents coarse and fine con-
cepts of the images in low rank and sparse self-expressive
subspaces such that the sparse and low subspaces are used
to classify images at fine and coarse levels of abstraction, re-
spectively. In our model, the sparse and low rank subspaces
are explored jointly by sharing the parameters to use coarse
images in conjunction with fine images during the training,
which causes the data obtained by the CNN to be well-
projected into sparse and low rank subspaces for classifi-
cation. The experimental results show the great potential of
our model for using coarse images to improve weakly super-
vised fine classification. Moreover, the results indicate the
superiority of our model in comparison to the other methods
which also use coarse images for enhancing weakly super-
vised fine classification.

6466

References

[1] Mahdi Abavisani and Vishal M Patel. Deep multimodal sub-

space clustering networks. IEEE Journal of Selected Topics

in Signal Processing, 12(6):1601–1614, 2018. 7, 8

[2] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,

Jonathan Eckstein, et al. Distributed optimization and sta-

tistical learning via the alternating direction method of mul-

tipliers. Foundations and Trends R© in Machine learning,

3(1):1–122, 2011. 3

[3] Maria Brbić and Ivica Kopriva. Multi-view low-rank sparse

subspace clustering. Pattern Recognition, 73:247–258, 2018.

1

[4] Emmanuel J Candes. The restricted isometry property and its

implications for compressed sensing. Comptes rendus math-

ematique, 346(9-10):589–592, 2008. 3

[5] Jia Deng, Nan Ding, Yangqing Jia, Andrea Frome, Kevin

Murphy, Samy Bengio, Yuan Li, Hartmut Neven, and

Hartwig Adam. Large-scale object classification using label

relation graphs. In European conference on computer vision,

pages 48–64. Springer, 2014. 2

[6] Jia Deng, Jonathan Krause, and Li Fei-Fei. Fine-grained

crowdsourcing for fine-grained recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 580–587, 2013. 1

[7] Ehsan Elhamifar and René Vidal. Sparse subspace cluster-

ing. In Computer Vision and Pattern Recognition, 2009.

CVPR 2009. IEEE Conference on, pages 2790–2797. IEEE,

2009. 2

[8] Ehsan Elhamifar and Rene Vidal. Sparse subspace cluster-

ing: Algorithm, theory, and applications. IEEE transactions

on pattern analysis and machine intelligence, 35(11):2765–

2781, 2013. 1

[9] Paolo Favaro, René Vidal, and Avinash Ravichandran. A

closed form solution to robust subspace estimation and clus-

tering. In Computer Vision and Pattern Recognition (CVPR),

2011 IEEE Conference on, pages 1801–1807. IEEE, 2011. 2,

3

[10] Pedro F Felzenszwalb, Ross B Girshick, David McAllester,

and Deva Ramanan. Object detection with discriminatively

trained part-based models. IEEE transactions on pattern

analysis and machine intelligence, 32(9):1627–1645, 2010.

1

[11] Yuan Gao, Jiayi Ma, and Alan L Yuille. Semi-supervised

sparse representation based classification for face recogni-

tion with insufficient labeled samples. IEEE Transactions on

Image Processing, 26(5):2545–2560, 2017. 2

[12] Wonjoon Goo, Juyong Kim, Gunhee Kim, and Sung Ju

Hwang. Taxonomy-regularized semantic deep convolutional

neural networks. In European Conference on Computer Vi-

sion, pages 86–101. Springer, 2016. 2

[13] Yanming Guo, Yu Liu, Erwin M Bakker, Yuanhao Guo, and

Michael S Lew. Cnn-rnn: a large-scale hierarchical image

classification framework. Multimedia Tools and Applica-

tions, pages 1–21, 2018. 2, 5, 6, 7, 8

[14] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensional-

ity reduction by learning an invariant mapping. In 2006 IEEE

Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR’06), volume 2, pages 1735–1742.

IEEE, 2006. 2

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 1

[16] Jin Huang, Feiping Nie, Heng Huang, and Chris HQ Ding.

Supervised and projected sparse coding for image classifica-

tion. In AAAI, 2013. 2

[17] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015. 5

[18] Xudong Jiang and Jian Lai. Sparse and dense hybrid repre-

sentation via dictionary decomposition for face recognition.

IEEE Transactions on Pattern Analysis & Machine Intelli-

gence, (1):1–1, 2015. 2

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger, editors, Advances in Neural Information Pro-

cessing Systems 25, pages 1097–1105. Curran Associates,

Inc., 2012. 1, 5

[21] Chun-Guang Li and Rene Vidal. Structured sparse subspace

clustering: A unified optimization framework. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 277–286, 2015. 3

[22] Ping Li, Jun Yu, Meng Wang, Luming Zhang, Deng Cai,

and Xuelong Li. Constrained low-rank learning using least

squares-based regularization. IEEE transactions on cyber-

netics, 2016. 2

[23] Sheng Li and Yun Fu. Robust subspace discovery through

supervised low-rank constraints. In Proceedings of the 2014

SIAM International Conference on Data Mining, pages 163–

171. SIAM, 2014. 2

[24] Guangcan Liu, Zhouchen Lin, and Yong Yu. Robust sub-

space segmentation by low-rank representation. In Proceed-

ings of the 27th international conference on machine learn-

ing (ICML-10), pages 663–670, 2010. 1, 2, 3

[25] Laurens van der Maaten and Geoffrey Hinton. Visualiz-

ing data using t-sne. Journal of machine learning research,

9(Nov):2579–2605, 2008. 8

[26] Julien Mairal, Jean Ponce, Guillermo Sapiro, Andrew Zisser-

man, and Francis R Bach. Supervised dictionary learning. In

Advances in neural information processing systems, pages

1033–1040, 2009. 2

[27] Shankar R Rao, Roberto Tron, René Vidal, and Yi Ma. Mo-

tion segmentation via robust subspace separation in the pres-

ence of outlying, incomplete, or corrupted trajectories. 2008.

2

[28] Marko Ristin, Juergen Gall, Matthieu Guillaumin, and Luc

Van Gool. From categories to subcategories: large-scale

image classification with partial class label refinement. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 231–239, 2015. 1, 2, 5, 6, 7, 8

6467

[29] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,

Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.

Grad-cam: Visual explanations from deep networks via

gradient-based localization. In Proceedings of the IEEE In-

ternational Conference on Computer Vision, pages 618–626,

2017. 8

[30] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 1, 5

[31] Farzad Siyahjani, Ranya Almohsen, Sinan Sabri, and Gian-

franco Doretto. A supervised low-rank method for learning

invariant subspaces. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pages 4220–4228,

2015. 2

[32] Nitish Srivastava and Ruslan R Salakhutdinov. Discrimina-

tive transfer learning with tree-based priors. In Advances in

Neural Information Processing Systems, pages 2094–2102,

2013. 2

[33] JianWen Tao, Dawei Song, Shiting Wen, and Wenjun Hu.

Robust multi-source adaptation visual classification using

supervised low-rank representation. Pattern Recognition,

61:47–65, 2017. 2

[34] René Vidal and Paolo Favaro. Low rank subspace clustering

(lrsc). Pattern Recognition Letters, 43:47–61, 2014. 2

[35] Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang, Yuxin Peng,

and Zheng Zhang. Error-driven incremental learning in deep

convolutional neural network for large-scale image classifi-

cation. In Proceedings of the 22nd ACM international con-

ference on Multimedia, pages 177–186. ACM, 2014. 2

[36] Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh Ja-

gadeesh, Dennis DeCoste, Wei Di, and Yizhou Yu. Hd-cnn:

hierarchical deep convolutional neural networks for large

scale visual recognition. In Proceedings of the IEEE inter-

national conference on computer vision, pages 2740–2748,

2015. 2

[37] Jianchao Yang, Jiangping Wang, and Thomas Huang. Learn-

ing the sparse representation for classification. In Multimedia

and Expo (ICME), 2011 IEEE International Conference on,

pages 1–6. IEEE, 2011. 2

[38] Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao.

On compressing deep models by low rank and sparse decom-

position. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 7370–7379,

2017. 1

[39] Manli Zhu and Aleix M Martinez. Subclass discriminant

analysis. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 28(8):1274–1286, 2006. 1

6468

