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Abstract

Non-Maximum Suppression (NMS) is an essential step

of modern object detection models for removing duplicated

candidates. The efficacy of NMS heavily affects the final

detection results. Prior works exploit suppression criteri-

ons relying on either the objectiveness derived from classi-

fication or the localization produced by regression, both of

which are heuristically designed and fail to explicitly link

with the suppression rank. To address this issue, in this pa-

per, we propose a novel Learning-to-Rank (LTR) model to

produce the suppression rank via a learning procedure, thus

facilitating the candidate generation and lifting the detec-

tion performance. In particular, we define a ranking score

based on IoU to indicate the ranks of candidates during the

NMS step, where candidates with high ranking score will

be reserved and the ones with low ranking score will be

eliminated. We design a lightweight network to predict the

ranking score. We introduce a ranking loss to supervise the

generation of these ranking scores, which encourages can-

didates with IoU to the ground-truth to rank higher. To fa-

cilitate the training procedure, we design a novel sampling

strategy via dividing candidates into different levels and se-

lect hard pairs to adopt in the training. During the inference

phase, this module can be exploited as a plugin to current

object detector. The training and inference of the overall

framework is end-to-end. Comprehensive experiments on

benchmarks PASCAL VOC and MS COCO demonstrate the

generality and effectiveness of our model for facilitating ex-

isting object detectors to state-of-the-art accuracy.

1. Introduction

Object detection is a fundamental yet challenging task in

computer vision, It is extensively applied in video/image in-

dexing [29] [24], face recognition [31], autonomous driving

cars [7] [19] and human pose estimation [32].

Existing object detection models heavily rely on the

Non-Maximum Suppression (NMS) algorithm to remove

duplicated bounding boxes via a suppression criterion,
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Figure 1. Motivations for the proposed Learning-to-Rank model

for oject detection. Yellow boxes represent the groundtruth. Read

and green boxes represent the predicted candidates. Existing

works fail to reserve the more accurate green candidates due to

the heuristically designed suppression criterions based on classifi-

cation or localization scores. The proposed LTR model addresses

this problem via producing the suppression rank with a learning

procedure. See text for details.

which is defined either from the objectness derived from

classification or localization produced by regression. How-

ever, these existing suppression criterions fail to explicitly

link with the candidate rank in the elimination procedure,

as shown in Figure 1. Inaccurate ranks of candidates will

cause error eliminations and degrades the performance of

object detectors. The suppression criterion still needs to be

improved to facilitate the performance of object detectors.

In this paper, we propose to enhance the suppression cri-

terion in both the training and inference phases of object de-

tectors. We observe existing criterions are either designed

in a heuristic manner or produced in an implicit way. An

explicit ranking score definition and generation can suc-

cessfully remove the gap between the suppression criterion

and candidate preservation. Motivated by this, we propose

a Learning-To-Rank (LTR) model to predict the ranking

scores of candidates in a learning procedure, thus overcom-

ing the limitations of existing methods and improving the

object detection.

In particular, we define a ranking score based on IoU

to indicate the ranks of candidates during the NMS step,

where candidates with high ranking score will be reserved

and the ones with low ranking score will be eliminated. We
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design a lightweight network to predict the ranking score.

We introduce a ranking loss to supervise the generation of

these ranking scores, which encourages candidates with IoU

to the ground-truth to rank higher. To facilitate the training

procudure, we design a novel sampling strategy via dividing

candidates into different levels and select hard pairs to adopt

in the training. During the inference phase, this module can

be exploited as a plugin to current object detector.

We implement this module with a small convolutional

neural network. The training and inference of the over-

all framework is end-to-end. Comprehensive experiments

on PASCAL VOC [8] and MSCOCO [22] show that

our proposed LTR model achieves outperforming accuracy

with multiple detection framework, including Faster R-

CNN [11], Mask RCNN [12] and Cascade rcnn [2], without

any bells and whistles. Our contributions can be summa-

rized into three folds: (1) We propose a novel Learning-To-

Rank model to improve the NMS algorithm in both training

and inference phases of object detection. (2) We propose a

novel pair sampling strategy to improve the learning speed.

(3) Our LTR model generally improves the performance of

multiple object detector and sets new state-of-the-art accu-

racy on multiple benchmarks.

2. Related work

Object detection has been extensively studied in the

literature. Recently, deep learning techniques signifi-

cantly boost the performance of object detection algorithms

over traditional methods based on hand-crafted ones (e.g.,

Haar [35], SIFT [9], HOG [6], etc), due to its strong capa-

bilities to extract power features with Convolution Neural

Networks (CNNs). Existing CNN based methods can be

divided into two categories: one-stage based detectors and

two-stage based ones.

One-stage based detectors, such as SSD [23], Retinanet

[21] and YOLO [25], are mainly focused on computation

efficiency, which enables fast object detections. In term

of accuracy, two-stage based detectors still dominate the

community and usually outperform the single-stage based

ones. In this paper, we aim to improve the two-stage based

detectors, thus further pushing forward the frontier of ob-

ject detection. Current two-stage based object detectors in-

volves two steps: (1) object proposal generation and (2)

object classification and bounding box refinement. In this

paradigm, Non-Maximum Suppression (NMS) plays a key

role to produce high quality candidates, which significantly

affecting the final detection results. However, most of exist-

ing works ignore this important post-processing step. Here,

we propose to improve the NMS, thus lifting the perfor-

mance of two-stage based detectors. In the following, we

mainly review existing NMS algorithms.

In order to remove massive duplicated bounding boxes,

NMS is applied as the post-process procedure in main-

stream detection pipeline [9] [11] [27] [4]. NMS se-

lects the bounding box with the maximum classification

confidence and eliminates its nearby boxes using a prede-

fined IoU threshold iteratively. In computer vision, it has

been almost 50 years to take the NMS algorithm as the

post-processing process for most of object detection frame-

work. NMS is still crucial to CNN-based detectors, which

improves performance by removing duplicated results. Al-

though detectors can generate many candidate bounding

boxes with accurate location before NMS, these bounding

boxes will probably be removed because of lower predicted

confidence during NMS. Recently, many effective tech-

niques are proposed to improve NMS. Soft-NMS [1] is a

parameter-free algorithm, where duplicate bounding boxes

removal is replaced by decaying the bounding box scores

with a continuous function. A set of learning-based algo-

rithms have been proposed as alternatives to the parameter-

free NMS and Soft-NMS. Softer NMS [14] averages the

selected boxes in a softer way. Learning NMS [15] uses a

complex neural network to perform NMS using only boxes

and their scores. Fitness NMS [34] introduces the localiza-

tion information of bounding box into ranking confidence.

Relation network [16] uses a sub-network to learn NMS

by mining the visual information of object-object interac-

tions. However, the confidence training of prior works are

all based on classification task or regression task, which are

not suitable for NMS algorithm.

Different from existing NMS algorithms, we propose a

novel learning-to-rank model to produce the suppression

score via a learning procedure and explicitly build link to

the suppression rank, thus facilitating the candidate genera-

tion and lifting the detection performance, which is elabo-

rated bellow.

3. Proposed Approach

In this section, we will illustrate the proposed Learning-

to-Rank network model for object detection. An overview

of the LTR model is given in Figure 2. The core of LTR

is the Rank-NMS subnetwork, which is pluggable to the

conventional two-stage object detectors. In particular, the

Rank-NMS subnetwork takes the ROI-Aligned features of

positive bbox candidates from the object detector as in-

put and predicts their ranking scores based on Intersection-

over-Union (IoU) values to the ground-truth. Then, LTR

fuses the ranking scores with the classification scores to pro-

duce the final ranking confidences, which are used as sup-

pression criterion for the NMS algorithm. In this way, LTR

overcomes limitations of existing heuristically designed cri-

terions for NMS and encourages to reserve bbox candidates

with higher IoU with the ground-truth, thus improving the

object detection accuracy. To train the Rank-NMS subnet-

work, we design a ranking loss as supervision and propose

a sample-pair selection strategy to speed up convergence,
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Figure 2. Overview of the proposed Learnin-to-Rank model for object detections.

details of which are illustrated in the following.

3.1. Ranking Loss

In general, the higher IoU values the bboxes to the

groundtruth are, the better the localization is. Therefore,

the Rank-NMS subnetwork, denoted as R(·), aims to pre-

dict higher ranking scores for bboxes with higher IoU val-

ues and vice versa. To achieve this goal, we define the IoU

based ranking as following

R(f(bi)) + α < R(f(bj)), s.t. ρi < ρj , (1)

where bi and bj denote bbox candidates, and ρi and ρj their

IoU values with groudtruth, respectively. f(·) denotes the

ROI-Aligned operation to extract features for a bbox. α is a

constant to control the ranking margin. Then, we define the

ranking loss by

L =
1

N

∑

(bi,bj), ρi≤ρj

max (0,R(f(bi))− R(f(bj)) + α) ,

(2)

where N is the total number of bbox pairs that satisfy

the ranking condition defined in Eqn. (1). We train the

Rank-NMS subnetwork by minimizing the loss defined in

Eqn. (2). In practice, N is always very large and the pos-

sible bbox pairs contains many easily-ranked ones. To ac-

celerate the training, we propose an effective sample-pair

selection strategy, explained in the next subsection.

3.2. Pair Selection

The selection strategy of training pairs is crucial to learn

the proposed Rank-NMS network model. To reduce the re-

dundant and eliminate the uninformative bbox paris from

Eqn. (1), we propose a sampling-after-splitting strategy to

effectively select valuable training pairs. In particular, we

first divide all bboxes into subsets according to their q-

values, which are calculated by the quantization function:

q(ρi) =

⌈

max(0, ρi − 0.5)

0.05

⌉

. (3)

Algorithm 1 Pair sampling algorithm

Input: The set of ranking scores for n bbox candidates

R={r1, ..., rn} and the set of k quantized subsets

S={S0, ..., Sk};
Output: The set of selected pairs P
1: P ← ∅;
2: for i = 1 to k do

3: Posi ← Si; // take all positive samples

4: Ui ← S0 ∪ ... ∪ Si−1; // take all negative samples

5: Generate a ranked list Li upon Ui in descending or-

der of the predicted ranking score;

6: Negi ← get top h elements of Li;

7: Generate the pair set Ci by the Cartesian product of

Posi and Negi;
8: end for

9: P ← Ci ∪ · · · ∪ Ck;

10: return P;

Eqn. (3) quantizes bbox candidates based on their IoU val-

ues with groundtruth and enforces larger IoU values to pro-

duce larger quantization results. Based on Eqn. (3), we

will generate 11 subsets with their indices ranging from 0

to 10. Then, we sample the positive and negative sam-

ples individually for each of quantized subsets following the

same rules—bounding boxes with higher IoU values to the

ground-truth are defined as positive samples while bound-

ing boxes with lower IoU values as negative ones. For the

ith quantization subset, its positive samples are the ones in

itself. While its negative samples are the top-h elements

in the list that ranks the bounding boxes from union of the

quantized subsets with the quantization value smaller than

i in the descending order based on the ranking score. Then,

the training pair set for this quantiation subset is derived by

Cartersian product between its positive and negative sam-

ples. We repeat the above procedure to generate the train-

ing pair set for all the quantization subsets. Algorithm 1

illustrates the pair selection strategy.
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3.3. Score Fusion

Prior works always exploits classification scores of bbox

candidates as the suppression criterion of NMS algorithm,

which considers the objectiveness and well filters out neg-

ative candidates. Differently, the ranking score accounts

for the overlapness between bbox candidates and groudtruth

and is good at reserving accurate positive candidate. To de-

rive more reliable suppression criterion, we propose to fuse

the classification and ranking scores via their weighted sum:

s = βsr + (1− β)sc, (4)

where sr and sc denote the ranking and classification

scores, respectively. β is the balance factor, set as 0.15.

s is the final score used as the suppression criterion of the

NMS algorithm in both training and inference phases.

4. Experiments

4.1. Experiment setup

Datasets We conduct experiments on two widely used

benchmarks for the object detection task: MSCOCO [22]

dataset and PASCAL VOC [8] dataset. In particular,

MSCOCO is a large scale dataset with 80 categories of ob-

ject annotations in total. In this paper, we use the 2017 split,

containing 118,000 samples, to train our models. We use the

standard validation split (5,000 samples) and test-dev split

(20,000 samples) for evaluating our proposed method. We

exploit the official Average Precision (AP) as metric. PAS-

CAL VOC is another dataset for extensively evaluating the

object detection algorithms. It provides annotations for 20

object classes and provides two different splits: VOC 2017

and VOC 2012. Here, we follow the conventions to use

the combination of training and validation sets of these two

splits, for model training, including 16,000 images in total.

We evaluate our models on the VOC 2007 test set also with

AP as the metric.

Data augmentation Follow conventions, we only adopt

horizontal flipping in data augmentation to our models for

both MSCOCO and PASCAL VOC datasets.

Training and inference We exploit ResNet [13] as the

network backbone. In the training phase, we exploit the Im-

ageNet pre-trained models to initialize our network for both

MSCOCO and PASCAL VOC datasets. The new adding

layers are randomly initialized with normal distributions,

where the mean is set to 0 and standard deviation 0.01 or

0.001. We set the dimension of features as 1024 for all the

classification, regression and ranking tasks. We extract 512

proposals per image from the region proposal network. We

make all the regressors in our model class-agnostic for sim-

plicity. We use a batch size of 16 for training all the models.

We implement the proposed method with MMDetection [3].

Table 1. Ablation analysis on the ranking margin α in the ranking

loss, with β fixed as 0.15 on PASCAL VOC 2007VAL dataset.

α AP AP50 AP60 AP70 AP80 AP90

0.0 54.45 79.91 74.76 61.66 39.08 10.73

0.25 57.92 79.87 75.65 65.39 46.12 16.29

0.5 58.75 79.98 75.50 65.43 48.00 18.34

0.75 58.32 78.39 74.63 65.25 48.30 18.47

1.0 57.22 76.48 73.02 63.89 47.75 18.24

We use the SGD as the optimizer for model learning. We

train all models for 12 epochs in total. We set the initial

learning rate as 0.02 and 0.01 for MSCOCO and PASCAL

VOC, respectively. In addition, we drop the learning rate

by a factor of 10 at 8th and 11 epochs, while for PASCAL

VOC, we only drop the learning rate at 9th epoch with the

same factor. We use the Cross-Entropy loss for object clas-

sification and Smooth L1 loss [10] for bounding box regres-

sion, which are summed with the ranking loss for supervis-

ing the model training. We also adopt linear warming up

strategy to begin the training of our model. For MSCOCO

(PASCAL VOC), We resize the image to make its short edge

as 800 (600) pixels while keeping the long edge no longer

than 1,333 (1,000) pixels, as input to the network for both

training and inference. We perform single-scale testing to

generate all the results.

4.2. Results on PASCAL VOC

4.2.1 Ablation study

We first conduct ablation studies on the validation set PAS-

CAL VOC 2007VAL to analyze the effects of some impor-

tant hyper-parameters to the proposed model, including the

ranking margin α in Eqn. 1 and the balance weight β in

Eqn. 4. Results are shown in Table 1 and 2, respectively.

From Table 1, we can see when setting α as 0, which

indicates learning the rank loss without margin, our model

achieves 54.45 AP. While exploiting soft margin (α > 0)

brings obvious performance improvements, e.g., α = 0.5
achieves 7% accuracy gain over α = 0, demonstrating that

soft margin can enlarge the rank gap for proposal pairs and

leading to more discriminative ranking scores. We can also

see that increasing α from 0 to 0.5, the accuracy is consis-

tently raised from 54.45% AP to 58.75% AP, especially for

high IoU metrics, e.g., AP90, due to the improvement to the

error tolerance. However, further increasing α to 1.0 de-

grades the performance, caused by introducing much noise

with too large margin during the ranking process. There-

fore, we set α as 0.5 in our experiments.

Table 2 shows the effects of the balancing weight β on

the detection results, while varying α from 0.25 to 0.75. We

can see that with small ranking margin α = 0.25, prop-

erly increasing β can bring performance improvement, im-

plying that correct ranking score is complementary to the
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Table 2. Ablation analysis on the balancing weight β for score

fusion with different α on PASCAL VOC 2007VAL dataset.

β α AP AP50 AP60 AP70 AP80 AP90

0.05 0.25 57.28 79.94 75.38 64.64 44.55 15.49

0.05 0.5 58.26 80.29 75.64 65.51 46.56 16.93

0.05 0.75 58.44 79.56 75.27 65.56 47.60 17.63

0.15 0.5 58.75 79.98 75.50 65.43 48.00 18.34

0.25 0.25 58.09 79.65 75.52 65.29 46.56 16.57

0.25 0.5 58.18 78.74 74.74 65.20 47.55 17.66

0.25 0.75 56.89 75.78 72.31 63.28 47.75 18.62

0.35 0.25 57.99 79.26 75.13 65.13 47.14 16.69

0.35 0.5 57.19 76.93 72.97 63.96 47.29 17.96

0.35 0.75 55.29 73.22 70. 00 61.24 46.57 18.81

0.45 0.25 57.56 78.44 74 3.3 64 5.8 46.82 16.93

0.45 0.5 55.96 74.99 71.29 62 37. 46.28 17.81

0.45 0.75 54.08 71.31 68. 32 59 9.1 45.70 18.49

Table 3. Ablation analysis on the positive samples ratio on PAS-

CAL VOC 2007VAL dataset.

pos ratio AP AP50 AP60 AP70 AP80 AP90

0.25 58.75 79.98 75.50 65.43 48.00 18.34

0.5 58.26 79.50 75.40 65.19 47.09 17.36

0.75 58.60 79.70 75.24 65.11 47.64 18.48

classification confidence and helps to select more suitable

object proposals. However, when using large ranking mar-

gin, larger β causes accuracy drop, due to the introducing

of ranking noise that brings negative effects for generating

proposals. In addition, we find that β = 0.15 with α = 0.5
gives the best detection performance, which is utilized de-

fault parameter setting in our experiments.

Next, we conduct experiments to analyze the effects of

the ratio of positive samples in the learning phase with the

proposed ranking loss. Results are shown in Table 3. We

experiment with three different ratios ranging from 0.25

to 0.75. We can see decreasing the positive sample ratio

always improves the performance, indicating less positive

samples can facilitate the model to differentiate correct pro-

posals with erroneous ones, which thereby enhances the

learning of the proposed ranking loss.

Then, we compare the proposed hard-pair sampling

strategy with the full-pair one and show the results in Ta-

ble 4. We can see that the proposed hard-pair sampling

strategy achieves superior performance over the full-pair

one (58.75% AP vs 56.54% AP), demonstrating the effec-

tiveness of mining hard pairs of proposals to facilitate the

learning of the ranking loss. The superiority of the proposed

hard-pair sample strategy can be further observed when us-

ing high IoU metrics, e.g., at AP 90, the hard-pair sampling

strategy lifts the performance from 13.31% AP to 18.34%
AP, which further verifying its efficacy to improve proposal

selection.

Table 4. Comparison between the proposed hard-pair sampling

strategy and the full-pair one on PASCAL VOC 2007VAL dataset.

Sampling Strategy AP AP50 AP60 AP70 AP80 AP90

Hard-Pair 58.75 79.98 75.50 65.43 48.00 18.34

Full-pair 56.54 79.49 75.09 63.75 43.84 13.31

4.2.2 Comparison with the state-of-the-arts

Table 5 shows the comparisons between the proposed ap-

proach with state-of-the-arts on the full testing dataset of

PASCAL VOC 2017. We evaluate the efficacy of the pro-

posed Rank-NMS on two state-of-the-art object detectors:

Faster R-CNN and Cascade R-CNN. We adopt the ResNet-

FPN as the backbone and vary its depth in 50 and 101.

From Table 5, we can see the proposed Rank-NMS con-

sistently improves the detection accuracy for both Faster

and Cascade R-CNNs. The performance improvement on

Faster R-CNN is obvious, 4.59% AP and 3.35% AP with

the backbone of 50 and 101 layers ResNet-FPN, respec-

tively. These results validate the effectiveness of the pro-

posed Rank-NMS for generating high quality proposals. We

can also find that even the baseline Cascade R-CNN already

achieves very high detection accuracy, the proposed Rank-

NMS still raises their performance, which can be more ob-

viously observed at AP 90 (from 21.53% AP to 24.68% AP

and from 25.75% AP to 28.90% AP with ResNet-50/101-

FPN as backbone, respectively.). These results further

demonstrate the effectiveness of the proposed Rank-NMS

to improve the proposal generation for current state-of-the-

art object detectors.

4.3. Results on MSCOCO

In this section, we conduct experiments on MSCOCO

dataset to further evaluate the efficacy of the proposed

Rank-NMS. Details are explained bellow.

4.3.1 Compare with other NMS method

We first compare the proposed Rank-NMS with tradition

NMS algorithms: Soft-NMS [1] and IoU-NMS (the stan-

dalone version) [18], on MSCOCO validation set. In par-

ticular, the Soft-NMS is based on the confidence score

from the classification while the IoU-NMS the overlap score

from the regression. We conduct experiments with different

objectors, including Faster R-CNN, Cascade R-CNN and

Mask R-CNN, to comprehensively analyzing the effective-

ness of different NMS algorithms. Here, we utilize ResNet-

50 as the backbone for all models. In addition, we also ex-

periment with the combination of the proposed Rank-NMS

and Soft-NMS to verify the compatibility of the proposed

method. Results are shown in Table 6.

We can see, with a fixed object detector, the proposed

Rank-NMS consistently outperforms IoU-NMS and Soft-
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Table 5. Comparison with state-of-the-arts on the full testing dataset of PASCAL VOC 2007 .

Backbone Method Rank-NMS AP AP50 AP60 AP70 AP80 AP90

ResNet-50-FPN

Faster R-CNN ✗ 54.16 79.79 75.02 61.74 39.02 8.84

Faster R-CNN X 58.75 79.98 75.50 65.43 48.00 18.34

Cascade R-CNN ✗ 60.09 79.98 74.66 65.84 50.52 21.53

Cascade R-CNN X 61.32 79.71 75.74 67.13 52.31 24.68

ResNet-101-FPN

Faster R-CNN ✗ 58.22 82.1 77.49 66.56 45.70 12.50

Faster R-CNN X 61.57 80.58 76.90 67.70 52.40 22.67

Cascade R-CNN ✗ 63.37 81.69 77.30 69.26 55.01 25.75

Cascade R-CNN X 63.90 81.14 77.17 69.81 56.08 28.90

Table 6. Comparisons between the proposed Rank-NMS with tradition NMS algorithms on MSCOCO validation set.

Method +IoU-NMS [18] +Soft-NMS +Rank-NMS AP AP50 AP75 APS APM APL

Faster R-CNN

36.4 58.4 39.1 21.6 40.1 46.6

X 37.3 56 0 - - - -

X 36.9 58.4 40.1 21.9 40.7 47.1

X 38.6 58.2 41.7 22.4 42.4 50.9

X X 38.9 58.1 42.4 22.5 42.8 51.2

Cascade R-CNN

40.3 58.6 43.9 22.9 43.8 53.2

X 40.9 58.2 - - - -

X 41.0 58.8 45.2 23.2 44.6 54.0

X 41.0 59.1 44.5 23.0 44.3 54.8

X X 41.4 58.8 45.5 23.2 44.9 55.3

Mask R-CNN

37.3 59.1 40.3 22.0 40.9 48.2

X 38.1 56.4 - - - -

X 37.8 59.1 41.3 22.2 41 6. 48.7

X 39.3 58.8 42.3 22.8 42.7 52.2

X X 39.6 58.7 43.1 23.0 43.1 52.5

NMS. This demonstrates the advantage of the proposed

Rank-NMS over existing classification or regression based

NMSs for selecting high quality proposals with the learned

ranking score. We can also see that the performance im-

provement on large objects is more obvious, e.g., with Mask

R-CNN detector, Rank-NMS improves the accuracy from

48.7% APL to 52.2% APL. In addition, we can find the pro-

posed Rank-NMS improves all the object detectors, demon-

strating its generality. Moreover, we can observe, combin-

ing the Rank-NMS with Soft-NMS can further achieve per-

formance gain. This result shows that the proposed Rank-

NMS is compatible with existing NMS algorithms and pro-

vides valuable complementary proposals to improve object

detection. For the comparison with Softer-NMS [14], its

map result achieves 39.2 AP on COCO val2017 by length-

ening the learning period. Our Rank-NMS achieves 38.9

AP with only half of the learning period as Softer-NMS and

has the potential to further improve performance by length-

ening the learning period.

For further analyzing the advantages of the proposed

Rank-NMS, we plot the recall curve for different NMS al-

gorithms in Figure 3, with the matching IoU ranging from

0.5 to 1. We can find that the proposed Rank-NMS con-

sistently achieves better recall over the traditional NMS al-

gorithms when varying the matching IoU, indicating that it

produces the improved ranking list for proposals. In addi-

tion, we can see that combining Rank-NMS with Soft-NMS

34.5% recall at matching IoU 0.9, where the recall upper-

bound is 41.4%. This results further validate the effective-

ness of the proposed Rank-NMS for preserving higher IoU

proposals.

Similar to PASCAL VOC dataset, we also conduct ex-

periments on MSCOCO validation set to analyze the ef-

fects of the proposed Rank-NMS on different object detec-

tor. In addition, we also report the running speed to analyze

the efficiency of Rank-NMS. Results are shown in Table 9.

We can see that the proposed Rank-NMS can consistently

improve the object detection models, including Faster R-

CNN, Cascade R-CNN and Mask R-CNN. We can also see

that the proposed Rank-NMS can improve the object de-

tectors with large network backbone, e.g., Cascade R-CNN

with ResNet-101-FPN. These results further validate the ef-
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Table 7. Studies on the effects of classification and ranking scores

to the NMS algorithm for object detection task on MSCOCO val5k

dataset.

NMS Score AP AP50 AP75 APS APL APM

NMS-Cls 36.4 58.4 39.1 21.6 40.1 46.6

NMS-LTR 35.4 51.6 38.7 19.0 39.2 48.4

NMS-Cls+LTR 38.6 58.2 41.7 22.4 42.4 50.9

fectiveness and generality of the proposed Rank-NMS for

improving the proposal selection. In addition, we can see

that using Rank-NMS only brings slight times cost, which

demonstrates the efficiency of the proposed Rank-NMS for

object detection.

4.3.2 Performance of individual LTR

We conduct experiments on COCO dataset for Faster FPN

model with ResNet50 to study the effects of the classifi-

cation and ranking scores to the NMS algorithm for ob-

ject detection task. Results are shown in Table 7. We use

NMS-LTR to denote the NMS algorithm with only the rank-

ing score for suppressing bounding boxes while NMS-Cls

the one with only the classification score. We use NMS-

Cls+LTR to denote performing NMS algorithm with the fu-

sion of classification and ranking scores. We use Faster R-

CNN as the object detector and the other settings are the

same for the experiments. We can see the baseline NMS-

Cls achieves 36.4 AP. While NMS-LTR slightly decreases

the performance to 35.4 AP, since the ranking score is better

at ranking bounding box candidates for the true positives but

it is weaker to distinguish the true negatives than the classi-

fication score. After fusing the ranking score with classifi-

cation score, we can see NMS-Cls+LTR achieves 38.6 AP,

outperforming both the NMS algorithm with only a single

kind of score. This result verifies that the proposed ranking

score is complementary to the classification score, which

can help produce more accurate ranking of bounding box

candidates after filtering the false alarms with the classifi-

cation score. We will add the above experiments and illus-

trations in revision.

4.3.3 Comparison with the state-of-the-arts

Next, we compare the proposed Rank-NMS with state-of-

the-art object detection models on MSCOCO test-dev. We

evaluate the proposed method with three object detectors:

Faster R-CNN, Mask R-CNN and Cascade R-CNN1. We

use ResNet-101-FPN as the backbone. We report the perfor-

mance of all methods with single-model inference for fair

comparison. Results are shown in Table 8.

We can see that with Cascade R-CNN as the object de-

tector, our Rank-NMS sets new state-of-the-art 43.7% AP

1We set positive samples ratio of each stage of Cascade R-CNN as 0.5.
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Figure 3. Comparison among the recall curves of different NMS

algorithms with the matching IoU ranging from 0.5 to 1.
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Figure 4. Qualitative comparison between the proposed Rank-

NMS and the traditional NMS on MSCOCO dataset. .

on MSCOCO test-dev, demonstrating the superior perfor-

mance of the proposed methods. We can also find that when

combining with Soft-NMS, the performance can be further

improved to 43.7% AP, in addition improving all object de-

tectors with Rank-NMS only. These results further verify

the compatibility of the proposed Rank-NMS method.

4.3.4 Qualitative results

Qualitative results for comparison between the proposed

Rank-NMS with traditional NMS algorithms are provided
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Table 8. Comparison with the state-of-the-art single-model detectors on MSCOCO test-dev. * denotes using bells and whistles at inference.

Method Backbone AP AP50 AP75 APS APM APL

YOLOv2 [25] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5

YOLOv3 [26] Darknet-53 33.0 57.9 34.4 18.3 35.4 41.9

SSD513 [23] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8

RetinaNet [21] ResNet-101 39.1 59.1 42.3 21.8 42. 7 50.2

Faster R-CNN ResNet-101-FPN [20] 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN by G-RMI [17] Inception-ResNet-v2 [30] 34.7 55.5 36.7 13.5 38.1 52.0

Faster R-CNN Inception-ResNet-v2-TDM [28] 36.8 57.7 39.2 16.2 39.8 52.1

Mask R-CNN [12] ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2

Cascade R-CNN [2] ResNet-101-FPN 42.8 62.1 46.3 23.7 45.5 55.2

Fitness NMS [34] DeNet-101 [33] 41.8 60.9 44.9 21.5 45.0 57.5

Deformable R-FCN [5] * Aligned-Inception-ResNet 37.5 58.0 40.8 19.4 40.1 52.5

Deformable R-FCN* + Soft-NMS [1] Aligned-Inception-ResNet 40.9 62.8 - 23.3 43.6 53.3

IoU-Net [18] ResNet-101-FPN 40.6 59.0 - - - -

Faster R-CNN +Rank-NMS ResNet-101-FPN 41.0 60.8 44.5 23.2 44.5 52.5

Faster R-CNN +Rank-NMS +Soft-NMS ResNet-101-FPN 41.3 60.7 45.3 23.5 44.9 52.9

Mask R-CNN +Rank-NMS ResNet-101-FPN 41.6 61.3 45.4 23.7 45.1 53.5

Mask R-CNN +Rank-NMS +Soft-NMS ResNet-101-FPN 42.0 61.1 46.2 23.9 45.5 53.9

Cascade R-CNN +Rank-NMS ResNet-101-FPN 43.2 61.8 47.0 24.6 46.2 55.4

Cascade R-CNN +Rank-NMS +Soft-NMS ResNet-101-FPN 43.7 61.6 48.1 24.9 46.8 56.1

Table 9. Analysis for the effects of the proposed Rank-NMS on different object detectors on MSCOCO 2017 validation set. We also report

the running speed, counted on a single Titan P100 GPU, to analyze the efficiency of Rank-NMS.

Backbone Method +Rank-NMS Inf Time(fps) AP AP50 AP75 APS APM APL

ResNet-50-FPN

Faster R-CNN ✗ 9.3 36.4 58.4 39.1 21.6 40.1 46.6

Faster R-CNN X 8.3 38.6 58.2 41.7 22.4 42.4 50.9

Cascade R-CNN ✗ 6.7 40.3 58.6 43. 9 22.9 43 8. 53.2

Cascade R-CNN X 5.8 41.0 59.1 44.5 23.0 44 3. 54.8

Mask R-CNN ✗ 7.3 37.3 59.1 40.3 22.0 40.9 48.2

Mask R-CNN X 6.2 39.3 58.8 42.3 22.8 42.7 52.2

ResNet-101-FPN

Faster R-CNN ✗ 7.6 38.6 60.4 41.8 22.3 43.2 49.8

Faster R-CNN X 7.0 40.3 60.1 43.5 23.5 44.4 53.7

Cascade R-CNN ✗ 5.8 42.7 61.6 46.6 23.8 46.2 57.4

Cascade R-CNN X 5.5 42.8 60.9 46.7 24.9 46.3 57.2

Mask R-CNN ✗ 6.2 39.4 61.0 43.3 23.1 43.7 51.3

Mask R-CNN X 5.6 41.1 60.6 44.7 23.5 45.1 55.1

in Figure 4. We can see that the proposed Rank-NMS

can help generate more accurate detection results over tra-

ditional NMS under challenging scenarios, e.g., low-light

conditions (1st row), viewpoint variation (3rd row) and ob-

ject overlapping (5th row). These results further demon-

strate the effectiveness of the proposed Rank-NMS model

for proposal selection.

5. Conclusion

In this paper, we propose a novel Learning-to-Rank

(LTR) model to improve the proposal selection in the NSM

procedure. In particular, LTR introduces the ranking loss to

learn to predict the ranking score for the generated propos-

als from the region proposal networks, which provides more

reliable criterion for ranking the proposals. To facilitate the

training phase, we also propose a novel hard-pair sampling

strategy to select the discriminative proposal pairs for learn-

ing the ranking score. We implement the LTR model with a

small CNN, which can be inserted into current object detec-

tors for end-to-end training and inference. Comprehensive

experiments on multiple benchmarks demonstrate the out-

performing accuracy of the proposed Rank-NMS, together

with its generality to various object detectors.
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