
KPConv: Flexible and Deformable Convolution for Point Clouds

Hugues Thomas1 Charles R. Qi2 Jean-Emmanuel Deschaud1 Beatriz Marcotegui1

François Goulette1 Leonidas J. Guibas2,3

1Mines ParisTech 2Facebook AI Research 3Stanford University

Abstract

We present Kernel Point Convolution1 (KPConv), a new

design of point convolution, i.e. that operates on point

clouds without any intermediate representation. The convo-

lution weights of KPConv are located in Euclidean space by

kernel points, and applied to the input points close to them.

Its capacity to use any number of kernel points gives KP-

Conv more flexibility than fixed grid convolutions. Further-

more, these locations are continuous in space and can be

learned by the network. Therefore, KPConv can be extended

to deformable convolutions that learn to adapt kernel points

to local geometry. Thanks to a regular subsampling strat-

egy, KPConv is also efficient and robust to varying densities.

Whether they use deformable KPConv for complex tasks, or

rigid KPconv for simpler tasks, our networks outperform

state-of-the-art classification and segmentation approaches

on several datasets. We also offer ablation studies and

visualizations to provide understanding of what has been

learned by KPConv and to validate the descriptive power

of deformable KPConv.

1. Introduction

The dawn of deep learning has boosted modern computer

vision with discrete convolution as its fundamental building

block. This operation combines the data of local neighbor-

hoods on a 2D grid. Thanks to this regular structure, it can

be computed with high efficiency on modern hardware, but

when deprived of this regular structure, the convolution op-

eration has yet to be defined properly, with the same effi-

ciency as on 2D grids.

Many applications relying on such irregular data have

grown with the rise of 3D scanning technologies. For ex-

ample, 3D point cloud segmentation or 3D simultaneous

localization and mapping rely on non-grid structured data:

point clouds. A point cloud is a set of points in 3D (or

higher-dimensional) space. In many applications, the points

1Project page: https:// github.com/ HuguesTHOMAS/ KPConv

are coupled with corresponding features like colors. In this

work, we will always consider a point cloud as those two el-

ements: the points P ∈ R
N×3 and the features F ∈ R

N×D.

Such a point cloud is a sparse structure that has the property

to be unordered, which makes it very different from a grid.

However, it shares a common property with a grid which

is essential to the definition of convolutions: it is spatially

localized. In a grid, the features are localized by their in-

dex in a matrix, while in a point cloud, they are localized by

their corresponding point coordinates. Thus, the points are

to be considered as structural elements, and the features as

the real data.

Various approaches have been proposed to handle such

data, and can be grouped into different categories that we

will develop in the related work section. Several meth-

ods fall into the grid-based category, whose principle is to

project the sparse 3D data on a regular structure where a

convolution operation can be defined more easily [23, 28,

33]. Other approaches use multilayer perceptrons (MLP) to

process point clouds directly, following the idea proposed

by [47, 25].

More recently, some attempts have been made to design

a convolution that operates directly on points [2, 44, 19, 14,

13]. These methods use the spatial localization property of

Figure 1. KPConv illustrated on 2D points. Input points with a

constant scalar feature (in grey) are convolved through a KPConv

that is defined by a set of kernel points (in black) with filter weights

on each point.
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a point cloud to define point convolutions with spatial ker-

nels. They share the idea that a convolution should define a

set of customizable spatial filters applied locally in the point

cloud.

This paper introduces a new point convolution operator

named Kernel Point Convolution (KPConv). KPConv also

consists of a set of local 3D filters, but overcomes previous

point convolution limitations as shown in related work. KP-

Conv is inspired by image-based convolution, but in place

of kernel pixels, we use a set of kernel points to define

the area where each kernel weight is applied, like shown

in Figure 1. The kernel weights are thus carried by points,

like the input features, and their area of influence is defined

by a correlation function. The number of kernel points is

not constrained, making our design very flexible. Despite

the resemblance of vocabulary, our work differs from [31],

which is inspired from point cloud registration techniques,

and uses kernel points without any weights to learns local

geometric patterns.

Furthermore, we propose a deformable version of our

convolution [7], which consists of learning local shifts ap-

plied to the kernel points (see Figure 3). Our network gen-

erates different shifts at each convolution location, meaning

that it can adapt the shape of its kernels for different re-

gions of the input cloud. Our deformable convolution is

not designed the same way as its image counterpart. Due

to the different nature of the data, it needs a regularization

to help the deformed kernels fit the point cloud geometry

and avoid empty space. We use Effective Receptive Field

(ERF) [21] and ablation studies to compare rigid KPConv

with deformable KPConv.

As opposed to [40, 2, 44, 19], we favor radius neighbor-

hoods instead of k-nearest-neighbors (KNN). As shown by

[13], KNN is not robust in non-uniform sampling settings.

The robustness of our convolution to varying densities is

ensured by the combination of radius neighborhoods and

regular subsampling of the input cloud [37]. Compared to

normalization strategies [13, 14], our approach also allevi-

ates the computational cost of our convolution.

In our experiments section, we show that KPConv can

be used to build very deep architectures for classification

and segmentation, while keeping fast training and infer-

ence times. Overall, rigid and deformable KPConv both

perform very well, topping competing algorithms on sev-

eral datasets. We find that rigid KPConv achieves better

performances on simpler tasks, like object classification, or

small segmentation datasets. Deformable KPConv thrives

on more difficult tasks, like large segmentation datasets of-

fering many object instances and greater diversity. We also

show that deformable KPConv is more robust to a lower

number of kernel points, which implies a greater descrip-

tive power. Last but not least, a qualitative study of KPConv

ERF shows that deformable kernels improve the network

ability to adapt to the geometry of the scene objects.

2. Related Work

In this section, we briefly review previous deep learning

methods to analyze point clouds, paying particular attention

to the methods closer to our definition of point convolutions.

Projection networks. Several methods project points to an

intermediate grid structure. Image-based networks are of-

ten multi-view, using a set of 2D images rendered from the

point cloud at different viewpoints [34, 4, 17]. For scene

segmentation, these methods suffer from occluded surfaces

and density variations. Instead of choosing a global pro-

jection viewpoint, [35] proposed projecting local neighbor-

hoods to local tangent planes and processing them with 2D

convolutions. However, this method relies heavily on tan-

gent estimation.

In the case of voxel-based methods, the points are pro-

jected on 3D grids in Euclidean space [23, 29, 3]. Using

sparse structures like octrees or hash-maps allows larger

grids and enhanced performances [28, 9], but these net-

works still lack flexibility as their kernels are constrained

to use 33 = 27 or 53 = 125 voxels. Using a permutohedral

lattice instead of an Euclidean grid reduces the kernel to

15 lattices [33], but this number is still constrained, while

KPConv allows any number of kernel points. Moreover,

avoiding intermediate structures should make the design of

more complex architectures like instance mask detector or

generative models more straightforward in future works.

Graph convolution networks. The definition of a convo-

lution operator on a graph has been addressed in different

ways. A convolution on a graph can be computed as a mul-

tiplication on its spectral representation [8, 46], or it can fo-

cus on the surface represented by the graph [22, 5, 32, 24].

Despite the similarity between point convolutions and the

most recent graph convolutions [38, 42], the latter learn fil-

ters on edge relationships instead of points relative posi-

tions. In other words, a graph convolution combines fea-

tures on local surface patches, while being invariant to the

deformations of those patches in Euclidean space. In con-

trast, KPConv combines features locally according to the

3D geometry, thus capturing the deformations of the sur-

faces.

Pointwise MLP networks. PointNet [25] is considered

a milestone in point cloud deep learning. This network

uses a shared MLP on every point individually followed

by a global max-pooling. The shared MLP acts as a set of

learned spatial encodings and the global signature of the in-

put point cloud is computed as the maximal response among

all the points for each of these encodings. The network’s

performances are limited because it does not consider local

spatial relationships in the data. Following PointNet, some

hierarchical architectures have been developed to aggregate

local neighborhood information with MLPs [26, 18, 20].
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Figure 2. Comparison between an image convolution (left) and a KPConv (right) on 2D points for a simpler illustration. In the image, each

pixel feature vector is multiplied by a weight matrix (Wk)k<K assigned by the alignment of the kernel with the image. In KPConv, input

points are not aligned with kernel points, and their number can vary. Therefore, each point feature fi is multiplied by all the kernel weight

matrices, with a correlation coefficient hik depending on its relative position to kernel points.

As shown by [40, 19, 13], the kernel of a point convolu-

tion can be implemented with a MLP, because of its ability

to approximate any continuous function. However, using

such a representation makes the convolution operator more

complex and the convergence of the network harder. In our

case, we define an explicit convolution kernel, like image

convolutions, whose weights are directly learned, without

the intermediate representation of a MLP. Our design also

offers a straightforward deformable version, as offsets can

directly be applied to kernel points.

Point convolution networks. Some very recent works also

defined explicit convolution kernels for points, but KPConv

stands out with unique design choices.

Pointwise CNN [14] locates the kernel weights with

voxel bins, and thus lacks flexibility like grid networks.

Furthermore, their normalization strategy burdens their net-

work with unnecessary computations, while KPConv sub-

sampling strategy alleviates both varying densities and com-

putational cost.

SpiderCNN [44] defines its kernel as a family of poly-

nomial functions applied with a different weight for each

neighbor. The weight applied to a neighbor depends on the

neighbor’s distance-wise order, making the filters spatially

inconsistent. By contrast, KPConv weights are located in

space and its result is invariant to point order.

Flex-convolution [10] uses linear functions to model its

kernel, which could limit its representative power. It also

uses KNN, which is not robust to varying densities as dis-

cussed above.

PCNN [2] design is the closest to KPConv. Its definition

also uses points to carry kernel weights, and a correlation

function. However, this design is not scalable because it

does not use any form of neighborhood, making the convo-

lution computations quadratic on the number of points. In

addition, it uses a Gaussian correlation where KPConv uses

a simpler linear correlation, which helps gradient backprop-

agation when learning deformations [7].

We show that KPConv networks outperform all compa-

rable networks in the experiments section. Furthermore, to

the best of our knowledge, none of the previous works ex-

perimented a spatially deformable point convolution.

3. Kernel Point Convolution

3.1. A Kernel Function Defined by Points

Like previous works, KPConv can be formulated with

the general definition of a point convolution (Eq. 1), in-

spired by image convolutions. For the sake of clarity, we

call xi and fi the points from P ∈ R
N×3 and their cor-

responding features from F ∈ R
N×D. The general point

convolution of F by a kernel g at a point x ∈ R
3 is defined

as:

(F ∗ g)(x) =
∑

xi∈Nx

g(xi − x)fi (1)

We stand with [13] advising radius neighborhoods to

ensure robustness to varying densities, therefore, Nx ={
xi ∈ P ‖xi − x‖ 6 r

}
with r ∈ R being the chosen

radius. In addition, [37] showed that hand-crafted 3D point

features offer a better representation when computed with

radius neighborhoods than with KNN. We believe that hav-

ing a consistent spherical domain for the function g helps

the network to learn meaningful representations.

The crucial part in Eq. 1 is the definition of the ker-

nel function g, which is where KPConv singularity lies. g

takes the neighbors positions centered on x as input. We

call them yi = xi − x in the following. As our neighbor-

hoods are defined by a radius r, the domain of definition

of g is the ball B3
r =

{
y ∈ R

3 | ‖y‖ 6 r
}

. Like image

convolution kernels (see Figure 2 for a detailed compari-

son between image convolution and KPConv), we want g

to apply different weights to different areas inside this do-

main. There are many ways to define areas in 3D space,

and points are the most intuitive as features are also local-

6413



ized by them. Let {x̃k | k < K} ⊂ B3
r be the kernel points

and {Wk | k < K} ⊂ R
Din×Dout be the associated weight

matrices that map features from dimension Din to Dout.

We define the kernel function g for any point yi ∈ B3
r as :

g(yi) =
∑

k<K

h (yi, x̃k)Wk (2)

where h is the correlation between x̃k and yi, that should

be higher when x̃k is closer to yi. Inspired by the bilinear

interpolation in [7], we use the linear correlation:

h (yi, x̃k) = max

(
0, 1−

‖yi − x̃k‖

σ

)
(3)

where σ is the influence distance of the kernel points, and

will be chosen according to the input density (see Section

3.3). Compared to a gaussian correlation, which is used by

[2], linear correlation is a simpler representation. We advo-

cate this simpler correlation to ease gradient backpropaga-

tion when learning kernel deformations. A parallel can be

drawn with rectified linear unit, which is the most popular

activation function for deep neural networks, thanks to its

efficiency for gradient backpropagation.

3.2. Rigid or Deformable Kernel

Kernel point positions are critical to the convolution op-

erator. Our rigid kernels in particular need to be arranged

regularly to be efficient. As we claimed that one of the KP-

Conv strengths is its flexibility, we need to find a regular

disposition for any K. We chose to place the kernel points

by solving an optimization problem where each point ap-

plies a repulsive force on the others. The points are con-

strained to stay in the sphere with an attractive force, and

one of them is constrained to be at the center. We detail

this process and show some regular dispositions in the sup-

plementary material. Eventually, the surrounding points are

rescaled to an average radius of 1.5σ, ensuring a small over-

lap between each kernel point area of influence and a good

space coverage.

With properly initialized kernels, the rigid version of KP-

Conv is extremely efficient, in particular when given a large

enough K to cover the spherical domain of g. However it

is possible to increase its capacity by learning the kernel

point positions. The kernel function g is indeed differen-

tiable with respect to x̃k, which means they are learnable

parameters. We could consider learning one global set of

{x̃k} for each convolution layer, but it would not bring more

descriptive power than a fixed regular disposition. Instead

the network generates a set of K shifts ∆(x) for every con-

volution location x ∈ R
3 like [7] and define deformable

KPConv as:

(F ∗ g)(x) =
∑

xi∈Nx

gdeform(x− xi,∆(x))fi (4)

Figure 3. Deformable KPConv illustrated on 2D points.

gdeform(yi,∆(x)) =
∑

k<K

h (yi, x̃k +∆k(x))Wk (5)

We define the offsets ∆k(x) as the output of a rigid KP-

Conv mapping Din input features to 3K values, as shown

in Figure 3. During training, the network learns the rigid

kernel generating the shifts and the deformable kernel gen-

erating the output features simultaneously, but the learning

rate of the first one is set to 0.1 times the global network

learning rate.

Unfortunately, this straightforward adaptation of image

deformable convolutions does not fit point clouds. In prac-

tice, the kernel points end up being pulled away from the

input points. These kernel points are lost by the network,

because the gradients of their shifts ∆k(x) are null when

no neighbors are in their influence range. More details on

these “lost” kernel points are given in the supplementary. To

tackle this behaviour, we propose a “fitting” regularization

loss which penalizes the distance between a kernel point and

its closest neighbor among the input neighbors. In addition,

we also add a “repulsive” regularization loss between all

pair off kernel points when their influence area overlap, so

that they do not collapse together. As a whole our regular-

ization loss for all convolution locations x ∈ R
3 is:

Lreg =
∑

x

Lfit(x) + Lrep(x) (6)

Lfit(x) =
∑

k<K

min
yi

(
‖yi − (x̃k +∆k(x))‖

σ

)2

(7)

Lrep(x) =
∑

k<K

∑

l 6=k

h (x̃k +∆k(x), x̃l +∆l(x))
2

(8)

With this loss, the network generates shifts that fit the

local geometry of the input point cloud. We show this effect

in the supplementary material.

3.3. Kernel Point Network Layers

This section elucidates how we effectively put the KP-

Conv theory into practice. For further details, we have re-

leased our code using Tensorflow library.
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Subsampling to deal with varying densities. As explained

in the introduction, we use a subsampling strategy to control

the density of input points at each layer. To ensure a spatial

consistency of the point sampling locations, we favor grid

subsampling. Thus, the support points of each layer, carry-

ing the features locations, are chosen as barycenters of the

original input points contained in all non-empty grid cells.

Pooling layer. To create architectures with multiple layer

scales, we need to reduce the number of points progres-

sively. As we already have a grid subsampling, we dou-

ble the cell size at every pooling layer, along with the other

related parameters, incrementally increasing the receptive

field of KPConv. The features pooled at each new location

can either be obtained by a max-pooling or a KPConv. We

use the latter in our architectures and call it “strided KP-

Conv”, by analogy to the image strided convolution.

KPConv layer. Our convolution layer takes as input the

points P ∈ R
N×3, their corresponding features F ∈

R
N×Din , and the matrix of neighborhood indices N ∈

[[1, N ]]
N ′×nmax . N ′ is the number of locations where the

neighborhoods are computed, which can be different from

N (in the case of “strided” KPConv). The neighborhood

matrix is forced to have the size of the biggest neighbor-

hood nmax. Because most of the neighborhoods comprise

less than nmax neighbors, the matrix N thus contains un-

used elements. We call them shadow neighbors, and they

are ignored during the convolution computations.

Network parameters. Each layer j has a cell size dlj from

which we infer other parameters. The kernel points influ-

ence distance is set as equal to σj = Σ× dlj . For rigid KP-

Conv, the convolution radius is automatically set to 2.5σj

given that the average kernel point radius is 1.5σj . For de-

formable KPConv, the convolution radius can be chosen as

rj = ρ × dlj . Σ and ρ are proportional coefficients set for

the whole network. Unless stated otherwise, we will use the

following set of parameters, chosen by cross validation, for

all experiments: K = 15, Σ = 1.0 and ρ = 5.0. The first

subsampling cell size dl0 will depend on the dataset and, as

stated above, dlj+1 = 2 ∗ dlj .

3.4. Kernel Point Network Architectures

Combining analogy with successful image networks and

empirical studies, we designed two network architectures

for the classification and the segmentation tasks. Diagrams

detailing both architectures are available in the supplemen-

tary material.

KP-CNN is a 5-layer classification convolutional network.

Each layer contains two convolutional blocks, the first one

being strided except for the first layer. Our convolutional

blocks are designed like bottleneck ResNet blocks [12] with

a KPConv replacing the image convolution, batch normal-

ization and leaky ReLu activation. After the last layer, the

features are aggregated by a global average pooling and pro-

cessed by the fully connected and softmax layers like in an

image CNN. For the results with deformable KPConv, we

only use deformable kernels in the last 5 KPConv blocks

(see architecture details in the supplementary material).

KP-FCNN is a fully convolutional network for segmenta-

tion. The encoder part is the same as in KP-CNN, and the

decoder part uses nearest upsampling to get the final point-

wise features. Skip links are used to pass the features be-

tween intermediate layers of the encoder and the decoder.

Those features are concatenated to the upsampled ones and

processed by a unary convolution, which is the equivalent of

a 1×1 convolution in image or a shared MLP in PointNet. It

is possible to replace the nearest upsampling operation by a

KPConv, in the same way as the strided KPConv, but it does

not lead to a significant improvement of the performances.

4. Experiments

4.1. 3D Shape Classification and Segmentation

Data. First, we evaluate our networks on two common

model datasets. We use ModelNet40 [43] for classification

and ShapenetPart [45] for part segmentation. ModelNet40

contains 12,311 meshed CAD models from 40 categories.

ShapenetPart is a collection of 16,681 point clouds from

16 categories, each with 2-6 part labels. For benchmark-

ing purpose, we use data provided by [26]. In both cases,

we follow standard train/test splits and rescale objects to fit

them into a unit sphere (and consider units to be meters for

the rest of this experiment). We ignore normals because

they are only available for artificial data.

Classification task. We set the first subsampling grid size

to dl0 = 2cm. We do not add any feature as input; each

input point is assigned a constant feature equal to 1, as op-

posed to empty space which can be considered as 0. This

constant feature encodes the geometry of the input points.

Like [2], our augmentation procedure consists of scaling,

flipping and perturbing the points. In this setup, we are able

to process 2.9 batches of 16 clouds per second on an Nvidia

Titan Xp. Because of our subsampling strategy, the input

point clouds do not all have the same number of points,

which is not a problem as our networks accept variable input

point cloud size. On average, a ModelNet40 object point

cloud comprises 6,800 points in our framework. The other

training parameters are detailed in the supplementary mate-

rial, along with the architecture details. We also include the

number of parameters and the training/inference speeds for

both rigid and deformable KPConv.

As shown on Table 1, our networks outperform other

state-of-the-art methods using only points (we do not take

into account methods using normals as additional input).

We also notice that rigid KPConv performances are slightly

better. We suspect that it can be explained by the task sim-

plicity. If deformable kernels add more descriptive power,
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ModelNet40 ShapeNetPart

Methods OA mcIoU mIoU

SPLATNet [33] - 83.7 85.4
SGPN [41] - 82.8 85.8
3DmFV-Net [9] 91.6 81.0 84.3
SynSpecCNN [46] - 82.0 84.7
RSNet [15] - 81.4 84.9
SpecGCN [39] 91.5 - 85.4
PointNet++ [26] 90.7 81.9 85.1
SO-Net [18] 90.9 81.0 84.9
PCNN by Ext [2] 92.3 81.8 85.1
SpiderCNN [44] 90.5 82.4 85.3
MCConv [13] 90.9 - 85.9
FlexConv [10] 90.2 84.7 85.0
PointCNN [19] 92.2 84.6 86.1
DGCNN [42] 92.2 85.0 84.7
SubSparseCNN [9] - 83.3 86.0

KPConv rigid 92.9 85.0 86.2
KPConv deform 92.7 85.1 86.4

Table 1. 3D Shape Classification and Segmentation results. For

generalizability to real data, we only consider scores obtained

without shape normals on ModelNet40 dataset. The metrics are

overall accuracy (OA) for Modelnet40, class average IoU (mcIoU)

and instance average IoU (mIoU) for ShapeNetPart.

they also increase the overall network complexity, which

can disturb the convergence or lead to overfitting on sim-

pler tasks like this shape classification.

Segmentation task. For this task, we use KP-FCNN ar-

chitecture with the same parameters as in the classification

task, adding the positions (x, y, z) as additional features to

the constant 1, and using the same augmentation procedure.

We train a single network with multiple heads to segment

the parts of each object class. The clouds are smaller (2,300

points on average), and we can process 4.1 batches of 16

shapes per second. Table 1 shows the instance average, and

the class average mIoU. We detail each class mIoU in the

supplementary material. KP-FCNN outperforms all other

algorithms, including those using additional inputs like im-

ages or normals. Shape segmentation is a more difficult task

than shape classification, and we see that KPConv has better

performances with deformable kernels.

4.2. 3D Scene Segmentation

Data. Our second experiment shows how our segmenta-

tion architecture generalizes to real indoor and outdoor data.

To this end, we chose to test our network on 4 datasets of

different natures. Scannet [6], for indoor cluttered scenes,

S3DIS [1], for indoor large spaces, Semantic3D [11], for

outdoor fixed scans, and Paris-Lille-3D [30], for outdoor

mobile scans. Scannet contains 1,513 small training scenes

and 100 test scenes for online benchmarking, all annotated

with 20 semantic classes. S3DIS covers six large-scale in-

door areas from three different buildings for a total of 273

million points annotated with 13 classes. Like [36], we ad-

vocate the use of Area-5 as test scene to better measure the

generalization ability of our method. Semantic3D is an on-

line benchmark comprising several fixed lidar scans of dif-

ferent outdoor scenes. More than 4 billion points are an-

notated with 8 classes in this dataset, but they mostly cover

ground, building or vegetation and there are fewer object

instances than in the other datasets. We favor the reduced-8

challenge because it is less biased by the objects close to the

scanner. Paris-Lille-3D contains more than 2km of streets

in 4 different cities and is also an online benchmark. The

160 million points of this dataset are annotated with 10 se-

mantic classes.

Pipeline for real scene segmentation. The 3D scenes in

these datasets are too big to be segmented as a whole. Our

KP-FCNN architecture is used to segment small subclouds

contained in spheres. At training, the spheres are picked

randomly in the scenes. At testing, we pick spheres reg-

ularly in the point clouds but ensure each point is tested

multiple times by different sphere locations. As in a vot-

ing scheme on model datasets, the predicted probabilities

for each point are averaged. When datasets are colorized,

we use the three color channels as features. We still keep

the constant 1 feature to ensure black/dark points are not ig-

nored. To our convolution, a point with all features equal

to zero is equivalent to empty space. The input sphere ra-

dius is chosen as 50 × dl0 (in accordance to Modelnet40

experiment).

Results. Because outdoor objects are larger than indoor ob-

jects, we use dl0 = 6cm on Semantic3D and Paris-Lille-

3D, and dl0 = 4cm on Scannet and S3DIS. As shown in

Table 2, our architecture ranks second on Scannet and out-

performs all other segmentation architectures on the other

datasets. Compared to other point convolution architectures

[2, 19, 40], KPConv performances exceed previous scores

by 19 mIoU points on Scannet and 9 mIoU points on S3DIS.

SubSparseCNN score on Scannet was not reported in their

original paper [9], so it is hard to compare without knowing

their experimental setup. We can notice that, in the same ex-

perimental setup on ShapeNetPart segmentation, KPConv

outperformed SubSparseCNN by nearly 2 mIoU points.

Among these 4 datasets, KPConv deformable kernels

improved the results on Paris-Lille-3D and S3DIS while the

rigid version was better on Scannet and Semantic3D. If we

follow our assumption, we can explain the lower scores on

Semantic3D by the lack of diversity in this dataset. Indeed,

despite comprising 15 scenes and 4 billion points, it con-

tains a majority of ground, building and vegetation points

and a few real objects like car or pedestrians. Although

this is not the case of Scannet, which comprises more than

1,500 scenes with various objects and shapes, our validation
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Methods Scannet Sem3D S3DIS PL3D

Pointnet [25] - - 41.1 -

Pointnet++ [26] 33.9 - - -

SnapNet [4] - 59.1 - -

SPLATNet [33] 39.3 - - -

SegCloud [36] - 61.3 48.9 -

RF MSSF [37] - 62.7 49.8 56.3
Eff3DConv [48] - - 51.8 -

TangentConv [35] 43.8 - 52.6 -

MSDVN [29] - 65.3 54.7 66.9
RSNet [15] - - 56.5 -

FCPN [27] 44.7 - - -

PointCNN [19] 45.8 - 57.3 -

PCNN [2] 49.8 - - -

SPGraph [16] - 73.2 58.0 -

ParamConv [40] - - 58.3 -

SubSparseCNN [9] 72.5 - - -

KPConv rigid 68.6 74.6 65.4 72.3
KPConv deform 68.4 73.1 67.1 75.9

Table 2. 3D scene segmentation scores (mIoU). Scannet, Se-

mantic3D and Paris-Lille-3D (PL3D) scores are taken from their

respective online benchmarks (reduced-8 challenge for Seman-

tic3D). S3DIS scores are given for Area-5 (see supplementary ma-

terial for k-fold).

studies are not reflected by the test scores on this bench-

mark. We found that the deformable KPConv outperformed

its rigid counterpart on several different validation sets (see

Section 4.3). As a conclusion, these results show that the

descriptive power of deformable KPConv is useful to the

network on large and diverse datasets. We believe KP-

Conv could thrive on larger datasets because its kernel com-

bines a strong descriptive power (compared to other simpler

representations, like the linear kernels of [10]), and great

learnability (the weights of MLP convolutions like [19, 40]

are more complex to learn). An illustration of segmented

scenes on Semantic3D and S3DIS is shown in Figure 4.

More results visualizations are provided in the supplemen-

tary material.

4.3. Ablation Study

We conduct an ablation study to support our claim that

deformable KPConv has a stronger descriptive power than

rigid KPConv. The idea is to impede the capabilities of the

network, in order to reveal the real potential of deformable

kernels. We use Scannet dataset (same parameters as be-

fore) and use the official validation set, because the test set

cannot be used for such evaluations. As depicted in Figure

5, the deformable KPConv only loses 1.5% mIoU when re-

stricted to 4 kernel points. In the same configuration, the

rigid KPConv loses 3.5% mIoU.

As stated in Section 4.2, we can also see that deformable

Figure 4. Outdoor and Indoor scenes, respectively from Seman-

tic3D and S3DIS, classified by KP-FCNN with deformable ker-

nels.

KPConv performs better than rigid KPConv with 15 kernel

points. Although it is not the case on the test set, we tried

different validation sets that confirmed the superior perfor-

mances of deformable KPConv. This is not surprising as we

obtained the same results on S3DIS. Deformable KPConv

seem to thrive on indoor datasets, which offer more diver-

sity than outdoor datasets. To understand why, we need to

go beyond numbers and see what is effectively learned by

the two versions of KPConv.

4.4. Learned Features and Effective Receptive Field

To achieve a deeper understanding of KPConv, we offer

two insights of the learning mechanisms.

Learned features. Our first idea was to visualize the fea-

tures learned by our network. In this experiment, we trained

KP-CNN on ModelNet40 with rigid KPConv. We added

random rotation augmentations around vertical axis to in-

crease the input shape diversity. Then we visualize each

learned feature by coloring the points according to their

level of activation for this features. In Figure 6, we chose

input point clouds maximizing the activation for different

features at the first and third layer. For a cleaner display, we

Figure 5. Ablation study on Scannet validation set. Evolution of

the mIoU when reducing the number of kernel points.
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Figure 6. Low and high level features learned in KP-CNN. Each

feature is displayed on 2 input point clouds taken from Model-

Net40. High activations are in red and low activations in blue.

projected the activations from the layer subsampled points

to the original input points. We observe that, in its first layer,

the network is able to learn low-level features like verti-

cal/horizontal planes (a/b), linear structures (c), or corners

(d). In the later layers, the network detects more complex

shapes like small buttresses (e), balls (f), cones (g), or stairs

(h). However, it is difficult to see a difference between rigid

and deformable KPConv. This tool is very useful to un-

derstand what KPConv can learn in general, but we need

another one to compare the two versions.

Effective Receptive Field. To apprehend the differ-

ences between the representations learned by rigid and de-

formable KPConv, we can compute its Effective Receptive

Field (ERF) [21] at different locations. The ERF is a mea-

sure of the influence that each input point has on the result

of a KPConv layer at a particular location. It is computed

as the gradient of KPConv responses at this particular lo-

cation with respect to the input point features. As we can

see in Figure 7, the ERF varies depending on the object it

is centered on. We see that rigid KPConv ERF has a rel-

atively consistent range on every type of object, whereas

deformable KPConv ERF seems to adapt to the object size.

Indeed, it covers the whole bed, and concentrates more on

the chair that on the surrounding ground. When centered on

a flat surface, it also seems to ignore most of it and reach for

Figure 7. KPConv ERF at layer 4 of KP-FCNN, trained on Scan-

net. The green dots represent the ERF centers. ERF values are

merged with scene colors as red intensity. The more red a point is,

the more influence it has on the green point features.

further details in the scene. This adaptive behavior shows

that deformable KPConv improves the network ability to

adapt to the geometry of the scene objects, and explains the

better performances on indoor datasets.

5. Conclusion

In this work, we propose KPConv, a convolution that op-

erates on point clouds. KPConv takes radius neighborhoods

as input and processes them with weights spatially located

by a small set of kernel points. We define a deformable

version of this convolution operator that learns local shifts

effectively deforming the convolution kernels to make them

fit the point cloud geometry. Depending on the diversity

of the datasets, or the chosen network configuration, de-

formable and rigid KPConv are both valuable, and our net-

works brought new state-of-the-art performances for nearly

every tested dataset. We release our source code, hoping

to help further research on point cloud convolutional archi-

tectures. Beyond the proposed classification and segmenta-

tion networks, KPConv can be used in any other application

addressed by CNNs. We believe that deformable convolu-

tions can thrive in larger datasets or challenging tasks such

as object detection, lidar flow computation, or point cloud

completion.
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