
Video Classification with Channel-Separated Convolutional Networks

Du Tran Heng Wang Lorenzo Torresani Matt Feiszli

Facebook AI

{trandu,hengwang,torresani,mdf}@fb.com

Abstract

Group convolution has been shown to offer great compu-

tational savings in various 2D convolutional architectures

for image classification. It is natural to ask: 1) if group con-

volution can help to alleviate the high computational cost

of video classification networks; 2) what factors matter the

most in 3D group convolutional networks; and 3) what are

good computation/accuracy trade-offs with 3D group con-

volutional networks.

This paper studies the effects of different design choices

in 3D group convolutional networks for video classifica-

tion. We empirically demonstrate that the amount of chan-

nel interactions plays an important role in the accuracy of

3D group convolutional networks. Our experiments suggest

two main findings. First, it is a good practice to factor-

ize 3D convolutions by separating channel interactions and

spatiotemporal interactions as this leads to improved accu-

racy and lower computational cost. Second, 3D channel-

separated convolutions provide a form of regularization,

yielding lower training accuracy but higher test accuracy

compared to 3D convolutions. These two empirical findings

lead us to design an architecture – Channel-Separated Con-

volutional Network (CSN) – which is simple, efficient, yet

accurate. On Sports1M and Kinetics, our CSNs are com-

parable with or better than the state-of-the-art while being

2-3 times more efficient.

1. Introduction

Video classification has witnessed much good progress

in recent years. Most of the accuracy gains have come

from the introduction of new powerful architectures [3, 30,

23, 37, 35]. However, many of these architectures are

built on expensive 3D spatiotemporal convolutions. Fur-

thermore, these convolutions are typically computed across

all the channels in each layer. 3D CNNs have complexity

O(CTHW ) as opposed to the cost of O(CHW ) of 2D

CNNs, where T denotes the number of frames, H,W the

spatial dimensions and C the number of channels. For both

foundational and practical reasons, it is natural to ask which

parameters in these large 4D kernels matter the most.

Kernel factorizations have been applied in several set-

tings to reduce compute and improve accuracy. For ex-

ample, several recent video architectures factor 3D con-

volution in space and time: examples include P3D [23],

R(2+1)D [30], and S3D [37]. In these architectures, a 3D

convolution is replaced with a 2D convolution (in space)

followed by a 1D convolution (in time). This factoriza-

tion can be leveraged to increase accuracy and/or to reduce

computation. In the still-image domain, separable convolu-

tion [7] is used to factorize the convolution of 2D k × k fil-

ters into a pointwise 1×1 convolution followed by a depth-

wise k × k convolution. When the number of channels is

large compared to k2, which is usually the case, this reduces

FLOPs by ∼ k2 for images. For the case of 3D video ker-

nels, the FLOP reduction is even more dramatic: ∼ k3.

Inspired by the accuracy gains and good computational

savings demonstrated by 2D separable convolutions in im-

age classification [7, 17, 39], this paper proposes a set of ar-

chitectures for video classification – 3D Channel-Separated

Networks (CSN) – in which all convolutional operations

are separated into either pointwise 1×1×1 or depthwise

3×3×3 convolutions. Our experiments reveal the impor-

tance of channel interaction in the design of CSNs. In par-

ticular, we show that excellent accuracy/computational cost

balances can be obtained with CSNs by leveraging chan-

nel separation to reduce FLOPs and parameters as long as

high values of channel interaction are retained. We propose

two factorizations, which we call interaction-reduced and

interaction-preserved. Compared to 3D CNNs, both our

interaction-reduced and interaction-preserved CSNs pro-

vide higher accuracy and FLOP savings of about 2.5-3×

when there is enough channel interaction. We experimen-

tally show that the channel factorization in CSNs acts as a

regularizer, leading to a higher training error but better gen-

eralization. Finally, we show that our proposed CSNs out-

perform or are comparable with the current state-of-the art

methods on Sports1M and Kinetics while being 2–3 times

faster.

15552



2. Related Work

Group convolution. Group convolution was adopted in

AlexNet [20] as a way to overcome GPU memory lim-

itations. Depthwise convolution was introduced in Mo-

bileNet [17] as an attempt to optimize model size and com-

putational cost for mobile applications. Chollet [7] built an

extreme version of Inception [28] based on 2D depthwise

convolution, named Xception, where the Inception block

was redesigned to include multiple separable convolutions.

Concurrently, Xie et al. proposed ResNeXt [36] by equip-

ping ResNet [16] bottleneck blocks with groupwise convo-

lution. Further architecture improvements have also been

made for mobile applications. ShuffleNet [39] further re-

duced the computational cost of the bottleneck block with

both depthwise and group convolution. MobileNetV2 [25]

improved MobileNet [17] by switching from a VGG-style

to a ResNet-style network, and introducing a “reverted bot-

tleneck” block. All of these architectures are based on 2D

CNNs and are applied to image classification while our

work focuses on 3D group CNNs for video classification.

Video classification. In the last few years, video classi-

fication has seen a major paradigm shift, which involved

moving from hand-designed features [21, 8, 24, 31] to

deep network approaches that learn features and classify

end-to-end [29, 18, 26, 11, 33, 34, 12]. This transforma-

tion was enabled by the introduction of large-scale video

datasets [18, 19] and massively parallel computing hard-

ware, i.e., GPU. Carreira and Zisserman [3] recently pro-

posed to inflate 2D convolutional networks pre-trained on

images to 3D for video classification. Wang et al. [35] pro-

posed non-local neural networks to capture long-range de-

pendencies in videos. ARTNet [32] decouples spatial and

temporal modeling into two parallel branches. Similarly,

3D convolutions can also be decomposed into a Pseudo-3D

convolutional block as in P3D [23] or factorized convolu-

tions as in R(2+1)D [30] or S3D [37]. 3D group convolution

was also applied to video classification in ResNeXt [15] and

Multi-Fiber Networks [5] (MFNet).

Among previous approaches, our work is most closely

related to the following architectures. First, our CSNs

are similar to Xception [7] in the idea of using channel-

separated convolutions. Xception factorizes 2D convolu-

tion in channel and space for object classification, while our

CSNs factorize 3D convolution in channel and space-time

for action recognition. In addition, Xception uses simple

blocks, while our CSNs use bottleneck blocks. The variant

ir-CSN of our model shares similarities with ResNeXt [36]

and its 3D version [15] in the use of bottleneck block with

group/depthwise convolution. The main difference is that

ResNext [36, 15] uses group convolution in its 3×3×3 lay-

ers with a fixed group size (e.g., g = 32), while our ir-CSN

uses depthwise convolutions in all 3×3×3 layers which

makes our architecture fully channel-separated. As we will

a) conv b) group conv c) depthwise conv

input 

channel

output 

channel

Figure 1. Group convolution. Convolutional filters can be parti-

tioned into groups with each filter receiving input from channels

only within its group. (a) A conventional convolution, which has

only one group. (b) A group convolution with 2 groups. (c) A

depthwise convolution where the number of groups matches the

number of input/output filters, i.e., each group contains only one

channel.

show in section 4.2, making our network fully channel-

separated helps not only to reduce a significant amount of

compute, but also to improve model accuracy by better reg-

ularization. We emphasize that our contribution includes

not only the design of CSN architectures, but also a system-

atic empirical study of the role of channel interactions in the

accuracy of CSNs.

3. Channel-Separated Convolutional Networks

In this section, we discuss the concept of 3D channel-

separated networks. Since channel-separated networks use

group convolution as their main building block, we first pro-

vide some background about group convolution.

3.1. Background

Group convolution. Conventional convolution is imple-

mented with dense connections, i.e., each convolutional fil-

ter receives input from all channels of its previous layer, as

in Figure 1(a). However, in order to reduce the computa-

tional cost and model size, these connections can be sparsi-

fied by grouping convolutional filters into subsets. Filters in

a subset receive signal from only channels within its group

(see Figure 1(b)). Depthwise convolution is the extreme

version of group convolution where the number of groups

is equal to the number of input and output channels (see

figure 1(c)). Xception [7] and MobileNet [17] were among

the first networks to use depthwise convolutions. Figure 1

presents an illustration of conventional, group, and depth-

wise convolutional layers for the case of 4 input channels

and 4 output channels.

Counting FLOPs, parameters, and interactions. Divid-

ing a conventional convolutional filter into G groups re-

duces compute and parameter count by a factor of G. These

reductions occur because each filter in a group receives in-

put from only a fraction 1/G of the channels from the pre-

vious layer. In other words, channel grouping restricts fea-

ture interaction: only channels within a group can inter-

act. If multiple group convolutional layers are stacked di-

rectly on top of each other, this feature segregation is further

5553



amplified since each channel becomes a function of small

channel-subsets in all preceding layers. So, while group

convolution saves compute and parameters, it also reduces

feature interactions.

We propose to quantify the amount of channel interac-

tion as the number of pairs of two input channels that are

connected through any output filter. If the convolutional

layer has Cin channels and G groups, each filter is con-

nected to Cin/G input channels. Therefore each filter will

have
(Cin

G

2

)

interacting feature pairs. According to this defi-

nition, the example convolutions in Figure 1(a)-(c) will have

24, 4, and 0 channel interaction pairs, respectively.

Consider a 3D convolutional layer with spatiotemporal

convolutional filters of size k×k×k and G groups, Cin in-

put channels, and Cout output channels. Let THW be the

total number of voxels in the spatiotemporal tensor pro-

vided as input to the layer. Then, the number of parameters,

FLOPs (floating-point operations), and number of channel

interactions can be measured as:

#parameters = Cout ·
Cin

G
· k3 (1)

#FLOPs = Cout ·
Cin

G
· k3 · THW (2)

#interactions = Cout ·

(

Cin

G

2

)

(3)

Recall that
(

n

2

)

= n(n−1)
2 = O

(

n2
)

. We note that while

FLOPs and number of parameters are commonly used to

characterize a layer, the “amount” of channel interaction is

typically overlooked. Our study will reveal the importance

of this factor.

3.2. Channel Separation

We define channel-separated convolutional networks

(CSN) as 3D CNNs in which all convolutional layers (ex-

cept for conv1) are either 1×1×1 conventional convo-

lutions or k×k×k depthwise convolutions (where, typi-

cally, k = 3). Conventional convolutional networks model

channel interactions and local interactions (i.e., spatial or

spatiotemporal) jointly in their 3D convolutions. Instead,

channel-separated networks decompose these two types

of interactions into two distinct layers: 1×1×1 conven-

tional convolutions for channel interaction (but no local

interaction) and k×k×k depthwise convolutions for local

spatiotemporal interactions (but not channel interaction).

Channel separation may be applied to any k×k×k tradi-

tional convolution by decomposing it into a 1×1×1 convo-

lution and a depthwise k×k×k convolution.

We introduce the term “channel-separated” to highlight

the importance of channel interaction; we also point out

that the existing term “depth-separable” is only a good de-

scription when applied to tensors with two spatial dimen-

sions and one channel dimension. We note that channel-

separated networks have been proposed in Xception [7] and

MobileNet [17] for image classification. In video classifi-

cation, separated convolutions have been used in P3D [23],

R(2+1)D [30], and S3D [37], but to decompose 3D convo-

lutions into separate temporal and spatial convolutions. The

network architectures presented in this work are designed

to separate channel interactions from spatiotemporal inter-

actions.

3.3. Example: Channel­Separated Bottleneck
Block

Figure 2 presents two ways of factorizing a 3D bot-

tleneck block using channel-separated convolutional net-

works. Figure 2(a) presents a standard 3D bottleneck block,

while Figure 2(b) and 2(c) present interaction-preserved and

interaction-reduced channel-separated bottleneck blocks,

respectively.

Interaction-preserved channel-separated bottleneck

block is obtained from the standard bottleneck block (Fig-

ure 2(a) by replacing the 3×3×3 convolution in (a) with

a 1×1×1 traditional convolution and a 3×3×3 depthwise

convolution (shown in Figure 2(b)). This block reduces

parameters and FLOPs of the traditional 3×3×3 convo-

lution significantly, but preserves all channel interactions

via a newly-added 1×1×1 convolution. We call this an

interaction-preserved channel-separated bottleneck block

and the resulting architecture an interaction-preserved

channel-separated network (ip-CSN).

Interaction-reduced channel-separated bottleneck

block is derived from the preserved bottleneck block by

removing the extra 1×1×1 convolution. This yields the

depthwise bottleneck block shown in Figure 2(c). Note

that the initial and final 1×1×1 convolutions (usually inter-

preted respectively as projecting into a lower-dimensional

subspace and then projecting back to the original dimen-

sionality) are now the only mechanism left for channel

interactions. This implies that the complete block shown in

(c) has a reduced number of channel interactions compared

with those shown in (a) or (b). We call this design an

interaction-reduced channel-separated bottleneck block

and the resulting architecture an interaction-reduced

channel-separated network (ir-CSN).

3.4. Channel Interactions in Convolutional Blocks

The interaction-preserving and interaction-reducing

blocks in section 3.3 are just two architectures in a large

spectrum. In this subsection we present a number of convo-

lutional block designs, obtained by progressively increasing

the amount of grouping. The blocks differ in terms of com-

pute cost, parameter count and, more importantly, channel

interactions.

Group convolution applied to ResNet blocks. Figure 3(a)

5554



1x1x1

3x3x3(dw)

1x1x1

1x1x1

3x3x3

1x1x1

1x1x1

3x3x3(dw)

1x1x1

1x1x1

a) b) c)

Figure 2. Standard vs. channel-separated convolutional blocks.

(a) A standard ResNet bottleneck block. (b) An interaction-

preserved bottleneck block: a bottleneck block where the 3×3×3

convolution in (a) is replaced by a 1×1×1 standard convolution

and a 3×3×3 depthwise convolution (shown in dashed box). (c)

An interaction-reduced bottleneck block, a bottleneck block where

the 3×3×3 convolution in (a) is replaced with a depthwise convo-

lution (shown in dashed box). We note that channel interaction is

preserved in (b) by the 1×1×1 convolution, while (c) lost all of

the channel interaction in its 3×3×3 convolution after factoriza-

tion. Batch norm and ReLU are used after each convolution layer.

For simplicity, we omit the skip connections.

a) simple b) simple-G c) simple-D

3x3x3

3x3x3

3x3x3(gc)

3x3x3(gc)

1x1x1

3x3x3(dw)

3x3x3(dw)

Figure 3. ResNet simple block transformed by group convo-

lution. (a) Simple block: a standard ResNet simple block with

two 3×3×3 convolutional layers. (b) Simple-G block: a ResNet

simple block with two 3×3×3 group convolutional layers. (c)

Simple-D block: a ResNet simple block with two 3×3×3 depth-

wise convolutional layers with an optional 1×1×1 convolutional

layer (shown in dashed box) added when increasing number of

filters is needed. Batch norm and ReLU are used after each con-

volution layer. For simplicity, we omit the skip connections.

presents a ResNet [16] simple block consisting of two

3×3×3 convolutional layers. Figure 3(b) shows the simple-

G block, where the 3×3×3 layers now use grouped convo-

lution. Likewise, Figure 3(c) presents simple-D, with two

depthwise layers. Because depthwise convolution requires

the same number of input and output channels, we option-

ally add a 1×1×1 convolutional layer (shown in the dashed

rectangle) in blocks that change the number of channels.

Figure 4(a) presents a ResNet bottleneck block con-

sisting of two 1×1×1 and one 3×3×3 convolutional lay-

ers. Figures 4(b-c) present bottleneck-G and bottleneck-

D where the 3×3×3 convolutions are grouped and depth-

wise, respectively. If we further apply group convolution

to the two 1×1×1 convolutional layers, the block becomes

1x1x1

3x3x3

1x1x1

1x1x1(gc)

3x3x3(dw)

1x1x1(gc)

a) bottleneck

1x1x1

1x1x1

3x3x3(dw)

1x1x1

1x1x1

3x3x3(gc)

b) bottleneck-G c) bottleneck-D d) bottleneck-DG

Figure 4. ResNet bottleneck block transformed by group con-

volution. (a) A standard ResNet bottleneck block. (b) Bottleneck-

G: a ResNet bottleneck block with a 3×3×3 group convolutional

layer. (c) Bottleneck-D: a bottleneck block with a 3×3×3 depth-

wise convolution (previously named as ir-CSN, the new name of

Bottleneck-D is used here for simplicity and analogy with other

blocks). (d) Bottleneck-DG: a ResNet bottleneck block with a

3×3×3 depthwise convolution and two 1×1×1 group convolu-

tions. We note that from (a) to (d), we gradually apply group

convolution to the 3×3×3 convolutional layer and then the two

1×1×1 convolutional layers. Batch norm and ReLU are used af-

ter each convolution layer. For simplicity, in the illustration we

omit to show skip connections.

a bottleneck-DG, as illustrated in Figure 4(d). In all cases,

the 3×3×3 convolutional layers always have the same num-

ber of input and output channels.

There are some deliberate analogies to existing archi-

tectures here. First, bottleneck-G (Figure 4(b)) is exactly

a ResNeXt block [36], and bottleneck-D is its depthwise

variant. Bottleneck-DG (Figure 4(d)) resembles the Shuf-

fleNet block [39], without the channel shuffle and without

the downsampling projection by average pooling and con-

catenation. The progression from simple to simple-D is

similar to moving from ResNet to Xception (though Xcep-

tion has many more 1×1×1 convolutions). We omit certain

architecture-specific features in order to better understand

the role of grouping and channel interactions.

4. Ablation Experiment

This empirical study will allow us to cast some light

on the important factors in the performance of channel-

separated network and will lead us to two main findings:

1. We will empirically demonstrate that within the fam-

ily of architectures we consider, similar depth and sim-

ilar amount of channel interaction implies similar ac-

curacy. In particular, the interaction-preserving blocks

reduce compute significantly but preserve channel in-

teractions, with only a slight loss in accuracy for shal-

low networks and an increase in accuracy for deeper

networks.

2. In traditional 3×3×3 convolutions all feature maps in-

teract with each other. For deeper networks, we show

5555



layer name output size ResNet3D-simple ResNet3D-bottleneck

conv1 T×112×112 3×7×7, 64, stride 1×2×2

pool1 T×56×56 max, 1×3×3, stride 1×2×2

conv2 x T×56×56

[

3×3×3, 64
3×3×3, 64

]

×b1





1×1×1, 256
3×3×3, 64
1×1×1, 256



×b1

conv3 x T

2×28×28

[

3×3×3, 128
3×3×3, 128

]

×b2





1×1×1, 512
3×3×3, 128
1×1×1, 512



×b2

conv4 x T

4×14×14

[

3×3×3, 256
3×3×3, 256

]

×b3





1×1×1, 1024
3×3×3, 256
1×1×1, 1024



×b3

conv5 x T

8×7×7

[

3×3×3, 512
3×3×3, 512

]

×b4





1×1×1, 2048
3×3×3, 512
1×1×1, 2048



×b4

pool5 1×1×1 spatiotemporal avg pool, fc layer with softmax

Table 1. ResNet3D architectures considered in our experi-

ments. Convolutional residual blocks are shown in brackets, next

to the number of times each block is repeated in the stack. The di-

mensions given for filters and outputs are time, height, and width,

in this order. b1,...,4 are number of blocks implemented at conv2 x,

conv3 x, conv4 x, conv5 x, respectively. The series of convolu-

tions culminates with a global spatiotemporal pooling layer that

yields a 512- or 2048-dimensional feature vector. This vector is

fed to a fully-connected layer that outputs the class probabilities

through a softmax.

that this causes overfitting.

4.1. Experimental setup

Dataset. We use Kinetics-400 [19] for the ablation experi-

ments in this section. Kinetics is a standard benchmark for

action recognition in videos. It contains about 260K videos

of 400 different human action categories. We use the train-

ing split (240K videos) for training and the validation split

(20K videos) for evaluating different models.

Base architecture. We use ResNet3D, presented in Table 1,

as our base architecture for most of our ablation experi-

ments in this section. More specifically, our model takes

clips with a size of T×224×224 where T = 8 is the num-

ber of frames, 224 is the height and width of the cropped

frame. Two spatial downsampling layers (1×2×2) are ap-

plied at conv1 and at pool1, and three spatiotemporal

downsampling (2×2×2) are applied at conv3 1, conv4 1

and conv5 1 via convolutional striding. A global spa-

tiotemporal average pooling with kernel size T

8×7×7 is ap-

plied to the final convolutional tensor, followed by a fully-

connected (fc) layer performing the final classification.

Data augmentation. We use both spatial and temporal

jittering for augmentation. Specifically, video frames are

scaled such that the shorter edge of the frames becomes

s while we maintain the frame original aspect ratio. Dur-

ing training, s is uniformly sampled between 256 and 320.

Each clip is then generated by randomly cropping windows

of size 224×224. Temporal jittering is also applied during

training by randomly selecting a starting frame and decod-

ing T frames. For the ablation experiments in this section

we train and evaluate models with clips of 8 frames (T = 8)

by skipping every other frame (all videos are pre-processed

to 30fps, so the newly-formed clips are effectively at 15fps).

Training. We train our models with synchronous dis-

tributed SGD on GPU clusters using caffe2 [2] (with 16 ma-

chines, each having 4 GPUs). We use a mini-batch of 8 clips

per GPU, thus making a total mini-batch of 512 clips. Fol-

lowing [30], we set epoch size to 1M clips due to temporal

jitterring augmentation even though the number of training

examples is only about 240K. Training is done in 45 epochs

where we use model warming-up [14] in the first 10 epochs

and the remaining 35 epochs will follow the half-cosine pe-

riod learning rate schedule as in [10]. The initial learning

rate is set to 0.01 per GPU (equivalent to 0.64 for 64 GPUs).

Testing. We report clip top-1 accuracy and video top-1 ac-

curacy. For video top-1, we use center crops of 10 clips uni-

formly sampled from the video and average these 10 clip-

predictions to obtain the final video prediction.

4.2. Reducing FLOPs, preserving interactions

In this ablation, we use CSNs to vary both FLOPs

and channel interactions. Within this architectural family,

channel interactions are a good predictor of performance,

whereas FLOPs are not. In particular, FLOPs can be re-

duced significantly while preserving interaction count.

Table 2 presents results of our interaction-reduced CSNs

(ir-CSNs) and interaction-preserved CSNs (ip-CSNs) and

compare them with the ResNet3D baseline using different

number of layers. In the shallow network setting (with 26

layers), both the ir-CSN and the ip-CSN have lower ac-

curacy than ResNet3D. The ir-CSN provides a computa-

tional savings of 3.6x but causes a 2.9% drop in accuracy.

The ip-CSN yields a saving of 2.9x in FLOPs with a much

smaller drop in accuracy (0.7%). We note that all of the

shallow models have very low count of channel interac-

tions: ResNet3D and ip-CSN have about 0.42 giga-pairs

(0.42 × 109 pairs), while ir-CSN has only 0.27 giga-pairs

(about 64% of the original). This observation suggests that

shallow instances of ResNet3D benefit from their extra pa-

rameters, but the preservation of channel interactions re-

duces the gap for ip-CSN.

Conversely, in deeper settings both ir-CSNs and ip-CSNs

outperform ResNet3D (by about 0.9 − 1.4%). Further-

more, the accuracy gap between ir-CSN and ip-CSN be-

comes smaller. We attribute this gap shrinking to the fact

that, in the 50-layer and 101-layer configurations, ir-CSN

has nearly the same number of channel interactions as ip-

CSN since most interactions stem from the 1×1×1 layers.

One may hypothesize that ip-CSN outperforms ResNet3D

and ir-CSN because it has more nonlinearities (ReLU). To

answer this question, we trained ip-CSNs without ReLUs

between the 1×1×1 and the 3×3×3 layers and we observed

5556



model depth video@1 FLOPs params interactions

(%) ×10
9 ×10

6 ×10
9

ResNet3D 26 65.3 14.3 20.4 0.42

ir-CSN 26 62.4 4.0 1.7 0.27

ip-CSN 26 64.6 5.0 2.4 0.42

ResNet3D 50 69.4 29.5 46.9 5.68

ir-CSN 50 70.3 10.6 13.1 5.42

ip-CSN 50 70.8 11.9 14.3 5.68

ResNet3D 101 70.6 44.7 85.9 8.67

ir-CSN 101 71.3 14.1 22.1 8.27

ip-CSN 101 71.8 15.9 24.5 8.67

Table 2. Channel-Separated Networks vs. ResNet3D. In the 26-

layer configuration, the accuracy of ir-CSN is 2.9% lower than that

of the ResNet3D baseline. But ip-CSN, which preserves channel

interactions, is nearly on par with the baseline (the drop is only

0.7%). In the the 50- and 101-layer configurations, both ir-CSN

and ip-CSN outperform ResNet3D while reducing parameters and

FLOPs. ip-CSN consistently outperforms ir-CSN.

no notable difference in accuracy. We can conclude that

traditional 3×3×3 convolutions contain many parameters

which can be removed without an accuracy penalty in the

deeper models. We further investigate this next.

We also experimented with a space-time decomposition

of the 3D filters [23, 30, 37] in ir-CSN-50. This model ob-

tains 69.7% on Kinetics validation (vs. 70.3% of vanilla ir-

CSN-50) while requiring more memory and having roughly

the same GFLOPs as ir-CSN. The small accuracy drop may

be due to the fact that CSN 3D filters are already channel-

factorized and the space-time decomposition may limit ex-

cessively their already constrained modeling ability.

4.3. What makes CSNs outperform ResNet3D?

In section 4.2 we found that both ir-CSNs and ip-CSNs

outperform the ResNet3D baseline when there are enough

channel interactions, while having fewer parameters and

greatly reducing FLOPs. It is natural to ask: what makes

CSNs more accurate? Figure 5 provides a useful insight

to answer this question. The plot shows the evolution of

the training errors of ip-CSN and ResNet3D, both with 101

layers. Compared to ResNet3D, ip-CSN has higher train-

ing errors but lower testing error (see validation accuracy

shown in Table 2). This suggests that the channel separa-

tion in CSN regularizes the model and prevents overfitting.

4.4. The effects of different blocks in group convo­
lutional networks

Here we start from our base architecture (shown in Ta-

ble 1) then ablatively replace the convolutional blocks with

those presented in section 3.4. Again we find that channel

interaction plays a critical role in understanding the results.

Naming convention. Since the ablation in this section

will be considering several different convolutional blocks,

0 10 20 30 40 50

epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
rr

o
r

ResNet3D-101 train

ip-CSN-101 train

Figure 5. Training error as a function of training iterations for

ip-CSN-101 and ResNet3D-101 on Kinetics. ip-CSN has higher

training error, but lower testing error (compare validation accura-

cies in Table 2). This suggests that the channel separation provides

a beneficial regularization, combatting overfitting.

Model block config name

ResNet3D-18 simple [2, 2, 2, 2] simple-8

ResNet3D-50 bottleneck [3, 4, 6, 3] bottleneck-16

Table 3. Naming convention. We name architectures by block

name followed by the total number of blocks (see last column).

Only two block names are given in this table. More blocks are

presented in section 3.4.

to simplify the presentation, we name each architecture by

block type (as presented in section 3.4) and total number of

blocks, as shown in the last column of Table 3.

Figure 6 presents the results of our ablation on convo-

lutional blocks. It shows the video top-1 accuracy on the

Kinetics validation set vs the model computational cost (#

FLOPs). We note that, in this experiment, we use our base

architecture with two different numbers of blocks (8 and

16) and just vary the type of convolutional block and num-

ber of groups to study the tradeoffs. Figure 6(a) presents

our ablation experiment with simple-X-8 and bottleneck-

X-8 architectures (where X can be none, G, or D, or even

DG in the case of bottleneck block). Similarly, Figure 6(b)

presents our ablation experiment with simple-X-16 and

bottleneck-X-16 architectures. We can observe the compu-

tation/accuracy effects of the group convolution transforma-

tion. Reading each curve from right to left (i.e. in decreas-

ing accuracy), we see simple-X transforming from sim-

ple block to simple-G (with increasing number of groups),

then to simple-D block. For bottleneck-X, reading right to

left shows bottleneck block, then transforms to bottleneck-

G (with increasing groups), bottleneck-D, then finally to

bottleneck-DG (again with increasing groups).

While the general downward trend is expected as we de-

crease parameters and FLOPs, the shape of the simple and

bottleneck curves is quite different. The simple-X mod-

els degrade smoothly, whereas bottleneck-X stays relatively

flat (particularly bottleneck-16, which actually increases

slightly as we decrease FLOPs) before dropping sharply.

In order to better understand the different behaviors of

5557



a) b)

0 5 10 15 20 25 30 35 40

GFLOPs per clip

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

A
c
c
u

ra
c
y simple-X-16

bottleneck-X-16

simple

simple-G

simple-D

bottleneck

bottleneck-G

bottleneck-D

bottleneck-DG

0 5 10 15 20 25

GFLOPs per clip

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

A
c
c
u

ra
c
y simple-X-8

bottleneck-X-8

simple

simple-G

simple-D

bottleneck

bottleneck-G

bottleneck-D

bottleneck-DG

Figure 6. ResNet3D accuracy/computation tradeoff by transforming group convolutional blocks. Video top-1 accuracy on the Kinetics

validation set against computation cost (# FLOPs) for a ResNet3D with different convolutional block designs. (a) Group convolution

transformation applied to simple and bottleneck blocks with shallow architectures with 8 blocks. (b) Group convolution transformation

applied to simple and bottleneck blocks with deep architectures with 16 blocks. The bottleneck-D block (marked with green starts) gives

the best accuracy tradeoff among the tested block designs. Base architectures are marked with black hexagrams. Best viewed in color.

the simple-X-Y and bottleneck-X-Y models (blue vs. red

curves) in Figure 6 and the reasons behind the turning points

of bottleneck-D block (green start markers in Figure 6), we

plot the performance of all these models according to an-

other view: accuracy vs channel interactions (Figure 7).

As shown in Figure 7, the number of channel interactions

in simple-X-Y models (blue squares and red diamonds)

drops quadratically when group convolution is applied to

their 3×3×3 layers. In contrast, the number of channel in-

teractions in bottleneck-X-Y models (green circles and pur-

ple triangles) drops marginally when group convolution is

applied to their 3×3×3 since they still have many 1×1×1

layers (this can be seen in the presence of two marker clus-

ters which are circled in red: the first cluster includes pur-

ple triangles near the top-right corner and the other one in-

cludes green circles near the center of the figure). The chan-

nel interaction in bottleneck-X-Y starts to drop significantly

when group convolution is applied to their 1×1×1 layers,

and causes the model sharp drop in accuracy. This fact ex-

plains well why there is no turning point in simple-X-Y

curves and also why there are turning points in bottleneck-

X-Y curves. It also confirms the important role of channel

interactions in group convolutional networks.

Bottleneck-D block (also known as ir-CSN) provides the

best computation/accuracy tradeoff. For simple blocks,

increasing the number of groups causes a continuous drop

in accuracy. However, in the case of the bottleneck block

(i.e. bottleneck-X-Y) the accuracy curve remains almost flat

as we increase the number of groups until arriving at the

bottleneck-D block, at which point the accuracy degrades

dramatically when the block is turned into a bottleneck-DG

(group convolution applied to 1×1×1 layers). We conclude

that a bottleneck-D block (or ir-CSN) gives the best com-

putation/accuracy tradeoff in this family of ResNet-style

blocks, due to its high channel-interaction count.

10
1

10
2

10
3

10
4

Mega-pairs

45

50

55

60

65

70

75

A
c
c
u
ra

c
y
 (

%
)

simple-X-8

bottleneck-X-8

simple-X-16

bottleneck-X-16

Figure 7. Accuracy vs. channel interactions. Plotting the Ki-

netics validation accuracy of different models with respect to their

total number of channel interactions. Channel interactions are pre-

sented on a log scale for better viewing. Best viewed in color.

5. Comparison with the State-of-the-Art

Datasets. We evaluate our CSNs on Sports1M [18] and

Kinetics-400 [19]. Sports1M is a large-scale action recog-

nition dataset containing 1.1 million videos from 487 sport

action classes. For Sports1M, we use the public train and

test splits provided with the dataset. For Kinetics, we use

the train split for training and the validation set for testing.

Training. Differently from our ablation experiments, here

we train our CSNs with 32-frame clip inputs (T = 32) with

a sampling rate of 2 (skipping every other frame) following

the practice described in [30]. All the other training settings

such as data augmentation and optimization parameters are

the same as those described in our previous section.

Testing. For Sports1M, we uniformly sample 10 clips per

video, scale the shorter edge to 256 (keeping aspect ratio),

and use only the center crop of 224×224 per clip for infer-

ence. We average the softmax predictions of these 10 crops

5558



Method input video@1 video@5 GFLOPs×crops

C3D [29] RGB 61.1 85.2 N/A

P3D [23] RGB 66.4 87.4 N/A

Conv Pool [38] RGB+OF 71.7 90.4 N/A

R(2+1)D [30] RGB 73.0 91.5 152×N/A

R(2+1)D [30] RGB+OF 73.3 91.9 305×N/A

ir-CSN-101 RGB 74.8 92.6 56.5×10

ip-CSN-101 RGB 74.9 92.6 63.6×10

ir-CSN-152 RGB 75.5 92.7 74.0×10

ip-CSN-152 RGB 75.5 92.8 83.3×10

Table 4. Comparison with state-of-the-art architectures on

Sports1M. Our CSNs with 101 or 152 layers outperform all the

previous models by good margins while being 2-4x faster.

for video prediction. On Kinetics, since the 30 crops eval-

uation in [35] is widely adopted, we follow this setup for a

fair comparison with previous approaches.

Results on Sports1M. Table 4 compares results of our

CSNs with those of previous methods on Sports1M. Our

ir-CSN-152 and ip-CSN-152 outperform C3D [29] by

14.4%, P3D [23] by 9.1%, Conv Pool [38] by 3.8%, and

R(2+1)D [30] by 2.2% on video top-1 accuracy while be-

ing 2-4x faster than R(2+1)D. Our ir-CSN-101, even with

a smaller number of FLOPs, still outperforms all previ-

ous work by good margins. On large-scale benchmarks

like Sports1M, the difference between ir-CSN and ip-CSN

is very small. The added benefit of ir-CSN is that it has

smaller GFLOPs, especially in deeper settings where the

number of channel interactions is similar to that of ip-CSN.

This is consistent with the observation from our ablation.

Results on Kinetics. We train our CSN models on Kinet-

ics and compare them with current state-of-the-art methods.

In addition to training from scratch, we also finetune our

CSNs with weights initialized from models pre-trained on

Sports1M. For a fair comparison, we compare our CSNs

with the methods that use only RGB as input. Table 5

presents the results. Our ip-CSN-152, even when trained

from scratch, outperforms all of the previous models, ex-

cept for SlowFast [10]. Our ip-CSN-152, pre-trained on

Sports1M outperforms I3D [3], R(2+1)D [30], and S3D-

G [37] by 8.1%, 4.9%, and 4.5%, respectively. It also

outperforms recent work: A2-Net [4] by 4.6%, Global-

reasoning networks [6] by 3.1%. We note that our ip-CSN-

152 achieves higher accuracy than both I3D with Non-local

Networks (NL) [35] and SlowFast [10] (+1.5% and +0.3%)

while being also faster (3.3x and 2x, respectively). Our ip-

CSN-152 is still 0.6% lower than SlowFast augmented with

Non-Local Networks. Finally, recent work [13] has shown

that R(2+1)D can achieve strong performance when pre-

trained on a large-scale weakly-supervised dataset. We pre-

train/finetune ir-CSN-152 on the same dataset and compare

it with R(2+1)D-152 (the last two rows of Table 5). In this

large-scale setup, ir-CSN-152 outperforms R(2+1)D-152 by

Method pretrain vi@1 vi@5 GFLOPs×crops

ResNeXt [15] none 65.1 85.7 N/A

ARTNet(d) [32] none 69.2 88.3 24×250

I3D [3] ImageNet 71.1 89.3 108×N/A

TSM [22] ImageNet 72.5 90.7 65×N/A

MFNet [5] ImageNet 72.8 90.4 11×N/A

Inception-ResNet [1] ImageNet 73.0 90.9 N/A

R(2+1)D-34 [30] Sports1M 74.3 91.4 152×N/A

A
2-Net [4] ImageNet 74.6 91.5 41×N/A

S3D-G [37] ImageNet 74.7 93.4 71×N/A

D3D [27] ImageNet 75.9 N/A N/A

GloRe [6] ImageNet 76.1 N/A 55×N/A

I3D+NL [35] ImageNet 77.7 93.3 359×30

SlowFast [10] none 78.9 93.5 213×30

SlowFast+NL [10] none 79.8 93.9 234×30

ir-CSN-101 none 76.2 92.2 73.8×30

ip-CSN-101 none 76.7 92.3 83.0×30

ir-CSN-152 none 76.8 92.5 96.7×30

ip-CSN-152 none 77.8 92.8 108.8×30

ir-CSN-101 Sports1M 78.1 93.4 73.8×30

ip-CSN-101 Sports1M 78.5 93.5 83.0×30

ir-CSN-152 Sports1M 79.0 93.5 96.7×30

ip-CSN-152 Sports1M 79.2 93.8 108.8×30

R(2+1)D-152* [13] IG-65M 81.3 95.1 329×30

ir-CSN-152* IG-65M 82.6 95.3 96.7×30

Table 5. Comparison with state-of-the-art architectures on Ki-

netics. Accuracy is measured on the Kinetics validation set. For

fair evaluation, the comparison is restricted to models trained on

RGB input. Our ir-CSN-152 is better than or comparable with

previous models while being multiple times faster. *Models lever-

aging large-scale pre-training, thus not comparable with others.

1.3% in video top-1 accuracy while being 3.4x faster.

6. Conclusion

We have presented Channel-Separated Convolutional

Networks (CSN) as a way of factorizing 3D convolutions.

The proposed CSN-based factorization not only helps to

significantly reduce the computational cost, but also im-

proves the accuracy when there are enough channel inter-

actions in the networks. Our proposed architecture, ir- and

ip-CSN, significantly outperform existing methods and ob-

tains state-of-the-art accuracy on two major benchmarks:

Sports1M and Kinetics. The model is also multiple times

faster than current competing networks. We have made

code and pre-trained models publicly available [9].

Acknowledgements. We thank Kaiming He for insightful

discussions and Haoqi Fan for help in improving our train-

ing framework.

5559



References

[1] Yunlong Bian, Chuang Gan, Xiao Liu, Fu Li, Xiang Long,

Yandong Li, Heng Qi, Jie Zhou, Shilei Wen, and Yuan-

qing Lin. Revisiting the effectiveness of off-the-shelf tempo-

ral modeling approaches for large-scale video classification.

CoRR, abs/1708.03805, 2017. 8

[2] Caffe2-Team. Caffe2: A new lightweight, modular, and scal-

able deep learning framework. https://caffe2.ai/. 5

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In CVPR,

2017. 1, 2, 8

[4] Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng

Yan, and Jiashi Feng. Aˆ2-nets: Double attention networks.

In NeuIPS, pages 350–359, 2018. 8

[5] Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng

Yan, and Jiashi Feng. Multi-fiber networks for video recog-

nition. In ECCV, 2018. 2, 8

[6] Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Shuicheng

Yan, Jiashi Feng, and Yannis Kalantidis. Graph-based global

reasoning networks. In CVPR, 2019. 8

[7] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In CVPR, 2017. 1, 2, 3

[8] Piotr Dollar, Vincent Rabaud, Garrison Cottrell, and Serge

Belongie. Behavior recognition via sparse spatio-temporal

features. In Proc. ICCV VS-PETS, 2005. 2

[9] Facebook. Video model zoo. https://github.com/

facebookresearch/VMZ, 2018. 8

[10] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and

Kaiming He. Slowfast networks for video recognition. In

ICCV, 2019. 5, 8

[11] Christoph Feichtenhofer, Axel Pinz, and Richard P. Wildes.

Spatiotemporal residual networks for video action recogni-

tion. In NIPS, 2016. 2

[12] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.

Convolutional two-stream network fusion for video action

recognition. In CVPR, 2016. 2

[13] Deepti Ghadiyaram, Matt Feiszli, Du Tran, Xueting Yan,

Heng Wang, and Dhruv Mahajan. Large-scale weakly-

supervised pre-training for video action recognition. In

CVPR, 2019. 8

[14] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large mini-

batch sgd: training imagenet in 1 hour. arXiv preprint

arXiv:1706.02677, 2017. 5

[15] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can

spatiotemporal 3d cnns retrace the history of 2d cnns and

imagenet? In CVPR, 2018. 2, 8

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 2, 4

[17] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. CoRR,

abs/1704.04861, 2017. 1, 2, 3

[18] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas

Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video

classification with convolutional neural networks. In CVPR,

2014. 2, 7

[19] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,

Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,

Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman,

and Andrew Zisserman. The kinetics human action video

dataset. CoRR, abs/1705.06950, 2017. 2, 5, 7

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.

Imagenet classification with deep convolutional neural net-

works. In NIPS, 2012. 2

[21] Ivan Laptev and Tony Lindeberg. Space-time interest points.

In ICCV, 2003. 2

[22] Ji Lin, Chuang Gan, and Song Han. Temporal shift module

for efficient video understanding. CoRR, abs/1811.08383,

2018. 8

[23] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-

temporal representation with pseudo-3d residual networks.

In ICCV, 2017. 1, 2, 3, 6, 8

[24] Sreemanananth Sadanand and Jason Corso. Action bank:

A high-level representation of activity in video. In CVPR,

2012. 2

[25] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey

Zhmoginov, and Liang-Chieh Chen. Inverted residuals and

linear bottlenecks: Mobile networks for classification, detec-

tion and segmentation. CoRR, abs/1801.04381, 2018. 2

[26] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In

NIPS, 2014. 2

[27] Jonathan C. Stroud, David A. Ross, Chen Sun, Jia Deng,

and Rahul Sukthankar. D3D: distilled 3d networks for video

action recognition. CoRR, abs/1812.08249, 2018. 8

[28] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, 2015. 2

[29] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with

3d convolutional networks. In ICCV, 2015. 2, 8

[30] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann

LeCun, and Manohar Paluri. A closer look at spatiotemporal

convolutions for action recognition. In CVPR, 2018. 1, 2, 3,

5, 6, 7, 8

[31] Heng Wang and Cordelia Schmid. Action recognition with

improved trajectories. In ICCV, 2013. 2

[32] Limin Wang, Wei Li, Wen Li, and Luc Van Gool.

Appearance-and-relation networks for video classification.

In CVPR, 2018. 2, 8

[33] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua

Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment

networks: Towards good practices for deep action recogni-

tion. In ECCV, 2016. 2

[34] Xiaolong Wang, Ali Farhadi, and Abhinav Gupta. Actions ˜

transformations. In CVPR, 2016. 2

[35] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In CVPR, 2018. 1, 2,

8

5560



[36] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In CVPR, 2017. 2, 4

[37] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and

Kevin Murphy. Rethinking spatiotemporal feature learning

for video understanding. In ECCV, 2018. 1, 2, 3, 6, 8

[38] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vi-

jayanarasimhan, Oriol Vinyals, Rajat Monga, and George

Toderici. Beyond short snippets: Deep networks for video

classification. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4694–4702,

2015. 8

[39] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

ShuffleNet: An extremely efficient convolutional neural net-

work for mobile devices. CoRR, abs/1707.01083, 2017. 1,

2, 4

5561


