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Abstract parameters in these large 4D kernels matter the most.

Group convolution has been shown to offer great compu-
tational savings in various 2D convolutional architectures
forimage classification. It is natural to ask: 1) if group con-
volution can help to alleviate the high computational cost
of video classification networks; 2) what factors matter the
most in 3D group convolutional networks; and 3) what are
good computation/accuracy trade-offs with 3D group con-
volutional networks.

This paper studies the effects of different design choices
in 3D group convolutional networks for video classifica-
tion. We empirically demonstrate that the amount of chan-
nel interactions plays an important role in the accuracy of
3D group convolutional networks. Our experiments suggest
two main findings. First, it is a good practice to factor-
ize 3D convolutions by separating channel interactions and
spatiotemporal interactions as this leads to improved accu-
racy and lower computational cost. Second, 3D channel-
separated convolutions provide a form of regularization,
vielding lower training accuracy but higher test accuracy
compared to 3D convolutions. These two empirical findings
lead us to design an architecture — Channel-Separated Con-
volutional Network (CSN) — which is simple, efficient, yet
accurate. On SportsIM and Kinetics, our CSNs are com-
parable with or better than the state-of-the-art while being
2-3 times more efficient.

1. Introduction

Video classification has witnessed much good progress
in recent years. Most of the accuracy gains have come
from the introduction of new powerful architectures [3, 30,

, 37, 35]. However, many of these architectures are
built on expensive 3D spatiotemporal convolutions. Fur-
thermore, these convolutions are typically computed across
all the channels in each layer. 3D CNNs have complexity
O(CTHW) as opposed to the cost of O(CHW) of 2D
CNNs, where T' denotes the number of frames, H, W the
spatial dimensions and C' the number of channels. For both
foundational and practical reasons, it is natural to ask which

Kernel factorizations have been applied in several set-
tings to reduce compute and improve accuracy. For ex-
ample, several recent video architectures factor 3D con-
volution in space and time: examples include P3D [23],
R(2+1)D [30], and S3D [37]. In these architectures, a 3D
convolution is replaced with a 2D convolution (in space)
followed by a 1D convolution (in time). This factoriza-
tion can be leveraged to increase accuracy and/or to reduce
computation. In the still-image domain, separable convolu-
tion [7] is used to factorize the convolution of 2D k x k fil-
ters into a pointwise 1 x 1 convolution followed by a depth-
wise k x k convolution. When the number of channels is
large compared to k2, which is usually the case, this reduces
FLOPs by ~ k? for images. For the case of 3D video ker-
nels, the FLOP reduction is even more dramatic: ~ k3.

Inspired by the accuracy gains and good computational
savings demonstrated by 2D separable convolutions in im-
age classification [7, 17, 39], this paper proposes a set of ar-
chitectures for video classification — 3D Channel-Separated
Networks (CSN) — in which all convolutional operations
are separated into either pointwise 1x1x1 or depthwise
3x3x3 convolutions. Our experiments reveal the impor-
tance of channel interaction in the design of CSNs. In par-
ticular, we show that excellent accuracy/computational cost
balances can be obtained with CSNs by leveraging chan-
nel separation to reduce FLOPs and parameters as long as
high values of channel interaction are retained. We propose
two factorizations, which we call interaction-reduced and
interaction-preserved. Compared to 3D CNNs, both our
interaction-reduced and interaction-preserved CSNs pro-
vide higher accuracy and FLOP savings of about 2.5-3x
when there is enough channel interaction. We experimen-
tally show that the channel factorization in CSNs acts as a
regularizer, leading to a higher training error but better gen-
eralization. Finally, we show that our proposed CSNs out-
perform or are comparable with the current state-of-the art
methods on Sports1M and Kinetics while being 2-3 times
faster.
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2. Related Work

Group convolution. Group convolution was adopted in
AlexNet [20] as a way to overcome GPU memory lim-
itations. Depthwise convolution was introduced in Mo-
bileNet [17] as an attempt to optimize model size and com-
putational cost for mobile applications. Chollet [7] built an
extreme version of Inception [28] based on 2D depthwise
convolution, named Xception, where the Inception block
was redesigned to include multiple separable convolutions.
Concurrently, Xie et al. proposed ResNeXt [36] by equip-
ping ResNet [16] bottleneck blocks with groupwise convo-
lution. Further architecture improvements have also been
made for mobile applications. ShuffleNet [39] further re-
duced the computational cost of the bottleneck block with
both depthwise and group convolution. MobileNetV2 [25]
improved MobileNet [17] by switching from a VGG-style
to a ResNet-style network, and introducing a “reverted bot-
tleneck” block. All of these architectures are based on 2D
CNNs and are applied to image classification while our
work focuses on 3D group CNNss for video classification.
Video classification. In the last few years, video classi-
fication has seen a major paradigm shift, which involved
moving from hand-designed features [21, 8, 24, 31] to
deep network approaches that learn features and classify
end-to-end [29, 18, 26, 11, 33, 34, 12]. This transforma-
tion was enabled by the introduction of large-scale video
datasets [18, 19] and massively parallel computing hard-
ware, i.e., GPU. Carreira and Zisserman [3] recently pro-
posed to inflate 2D convolutional networks pre-trained on
images to 3D for video classification. Wang et al. [35] pro-
posed non-local neural networks to capture long-range de-
pendencies in videos. ARTNet [32] decouples spatial and
temporal modeling into two parallel branches. Similarly,
3D convolutions can also be decomposed into a Pseudo-3D
convolutional block as in P3D [23] or factorized convolu-
tions as in R(2+1)D [30] or S3D [37]. 3D group convolution
was also applied to video classification in ResNeXt [15] and
Multi-Fiber Networks [5] (MFNet).

Among previous approaches, our work is most closely
related to the following architectures. First, our CSNs
are similar to Xception [7] in the idea of using channel-
separated convolutions. Xception factorizes 2D convolu-
tion in channel and space for object classification, while our
CSNss factorize 3D convolution in channel and space-time
for action recognition. In addition, Xception uses simple
blocks, while our CSNs use bottleneck blocks. The variant
ir-CSN of our model shares similarities with ResNeXt [36]
and its 3D version [15] in the use of bottleneck block with
group/depthwise convolution. The main difference is that
ResNext [36, 15] uses group convolution in its 3x3x 3 lay-
ers with a fixed group size (e.g., g = 32), while our ir-CSN
uses depthwise convolutions in all 3x3x3 layers which
makes our architecture fully channel-separated. As we will
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Figure 1. Group convolution. Convolutional filters can be parti-
tioned into groups with each filter receiving input from channels
only within its group. (a) A conventional convolution, which has
only one group. (b) A group convolution with 2 groups. (c) A
depthwise convolution where the number of groups matches the
number of input/output filters, i.e., each group contains only one
channel.

show in section 4.2, making our network fully channel-
separated helps not only to reduce a significant amount of
compute, but also to improve model accuracy by better reg-
ularization. We emphasize that our contribution includes
not only the design of CSN architectures, but also a system-
atic empirical study of the role of channel interactions in the
accuracy of CSNs.

3. Channel-Separated Convolutional Networks

In this section, we discuss the concept of 3D channel-
separated networks. Since channel-separated networks use
group convolution as their main building block, we first pro-
vide some background about group convolution.

3.1. Background

Group convolution. Conventional convolution is imple-
mented with dense connections, i.e., each convolutional fil-
ter receives input from all channels of its previous layer, as
in Figure 1(a). However, in order to reduce the computa-
tional cost and model size, these connections can be sparsi-
fied by grouping convolutional filters into subsets. Filters in
a subset receive signal from only channels within its group
(see Figure 1(b)). Depthwise convolution is the extreme
version of group convolution where the number of groups
is equal to the number of input and output channels (see
figure 1(c)). Xception [7] and MobileNet [17] were among
the first networks to use depthwise convolutions. Figure 1
presents an illustration of conventional, group, and depth-
wise convolutional layers for the case of 4 input channels
and 4 output channels.

Counting FLOPs, parameters, and interactions. Divid-
ing a conventional convolutional filter into G groups re-
duces compute and parameter count by a factor of GG. These
reductions occur because each filter in a group receives in-
put from only a fraction 1/G of the channels from the pre-
vious layer. In other words, channel grouping restricts fea-
ture interaction: only channels within a group can inter-
act. If multiple group convolutional layers are stacked di-
rectly on top of each other, this feature segregation is further
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amplified since each channel becomes a function of small
channel-subsets in all preceding layers. So, while group
convolution saves compute and parameters, it also reduces
feature interactions.

We propose to quantify the amount of channel interac-
tion as the number of pairs of two input channels that are
connected through any output filter. If the convolutional
layer has Cj, channels and G groups, each filter is con-
nected to Cj,, /G input channels. Therefore each filter will

in

have (?) interacting feature pairs. According to this defi-
nition, the example convolutions in Figure 1(a)-(c) will have
24, 4, and 0 channel interaction pairs, respectively.

Consider a 3D convolutional layer with spatiotemporal
convolutional filters of size kxkxk and G groups, C},, in-
put channels, and C,,,; output channels. Let THW be the
total number of voxels in the spatiotemporal tensor pro-
vided as input to the layer. Then, the number of parameters,
FLOPs (floating-point operations), and number of channel
interactions can be measured as:

Q

#parameters = Coyt - é" K3 (D)

#FLOPs = Cout- (’;;“ K-THW  (2)
Cin

#interactions = Coys - ( (2; > (3)

Recall that (5) = ”(%_1) = O (n?). We note that while
FLOPs and number of parameters are commonly used to
characterize a layer, the “amount” of channel interaction is
typically overlooked. Our study will reveal the importance
of this factor.

3.2. Channel Separation

We define channel-separated convolutional networks
(CSN) as 3D CNNs in which all convolutional layers (ex-
cept for convl) are either 1x1x1 conventional convo-
lutions or kxkxk depthwise convolutions (where, typi-
cally, & = 3). Conventional convolutional networks model
channel interactions and local interactions (i.e., spatial or
spatiotemporal) jointly in their 3D convolutions. Instead,
channel-separated networks decompose these two types
of interactions into two distinct layers: 1x1x1 conven-
tional convolutions for channel interaction (but no local
interaction) and kxkxk depthwise convolutions for local
spatiotemporal interactions (but not channel interaction).
Channel separation may be applied to any kxkxk tradi-
tional convolution by decomposing it into a 1 x1x 1 convo-
lution and a depthwise kx k x k convolution.

We introduce the term ‘“channel-separated” to highlight
the importance of channel interaction; we also point out
that the existing term “depth-separable” is only a good de-
scription when applied to tensors with two spatial dimen-

sions and one channel dimension. We note that channel-
separated networks have been proposed in Xception [7] and
MobileNet [17] for image classification. In video classifi-
cation, separated convolutions have been used in P3D [23],
R(2+1)D [30], and S3D [37], but to decompose 3D convo-
lutions into separate temporal and spatial convolutions. The
network architectures presented in this work are designed
to separate channel interactions from spatiotemporal inter-
actions.

3.3. Example:
Block

Channel-Separated Bottleneck

Figure 2 presents two ways of factorizing a 3D bot-
tleneck block using channel-separated convolutional net-
works. Figure 2(a) presents a standard 3D bottleneck block,
while Figure 2(b) and 2(c) present interaction-preserved and
interaction-reduced channel-separated bottleneck blocks,
respectively.

Interaction-preserved channel-separated bottleneck
block is obtained from the standard bottleneck block (Fig-
ure 2(a) by replacing the 3x3x3 convolution in (a) with
a I x1x1 traditional convolution and a 3x3x3 depthwise
convolution (shown in Figure 2(b)). This block reduces
parameters and FLOPs of the traditional 3x3x3 convo-
lution significantly, but preserves all channel interactions
via a newly-added 1x1x1 convolution. We call this an
interaction-preserved channel-separated bottleneck block
and the resulting architecture an interaction-preserved
channel-separated network (ip-CSN).

Interaction-reduced channel-separated bottleneck
block is derived from the preserved bottleneck block by
removing the extra 1x1x1 convolution. This yields the
depthwise bottleneck block shown in Figure 2(c). Note
that the initial and final 1x1x1 convolutions (usually inter-
preted respectively as projecting into a lower-dimensional
subspace and then projecting back to the original dimen-
sionality) are now the only mechanism left for channel
interactions. This implies that the complete block shown in
(c) has a reduced number of channel interactions compared
with those shown in (a) or (b). We call this design an
interaction-reduced channel-separated bottleneck block
and the resulting architecture an interaction-reduced
channel-separated network (ir-CSN).

3.4. Channel Interactions in Convolutional Blocks

The interaction-preserving and interaction-reducing
blocks in section 3.3 are just two architectures in a large
spectrum. In this subsection we present a number of convo-
lutional block designs, obtained by progressively increasing
the amount of grouping. The blocks differ in terms of com-
pute cost, parameter count and, more importantly, channel
interactions.

Group convolution applied to ResNet blocks. Figure 3(a)
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Figure 2. Standard vs. channel-separated convolutional blocks.
(a) A standard ResNet bottleneck block. (b) An interaction-
preserved bottleneck block: a bottleneck block where the 3x3x3
convolution in (a) is replaced by a 1x1x1 standard convolution
and a 3x3x3 depthwise convolution (shown in dashed box). (c)
An interaction-reduced bottleneck block, a bottleneck block where
the 33 %3 convolution in (a) is replaced with a depthwise convo-
lution (shown in dashed box). We note that channel interaction is
preserved in (b) by the 1x1x1 convolution, while (c) lost all of
the channel interaction in its 3x3x3 convolution after factoriza-
tion. Batch norm and ReLU are used after each convolution layer.
For simplicity, we omit the skip connections.

LX)

[ 3x3x3 | [3x3x3(g0)| [3x3x3(dw)|
2 2

| 3x3x3 | |3x3x3(gc)| |3x3x3(dw)|

a) simple b) simple-G c) simple-D

Figure 3. ResNet simple block transformed by group convo-
lution. (a) Simple block: a standard ResNet simple block with
two 3x3x3 convolutional layers. (b) Simple-G block: a ResNet
simple block with two 3x3x3 group convolutional layers. (c)
Simple-D block: a ResNet simple block with two 3x3x3 depth-
wise convolutional layers with an optional 1x1x1 convolutional
layer (shown in dashed box) added when increasing number of
filters is needed. Batch norm and ReLU are used after each con-
volution layer. For simplicity, we omit the skip connections.

presents a ResNet [16] simple block consisting of two
3x3x3 convolutional layers. Figure 3(b) shows the simple-
G block, where the 3x3x3 layers now use grouped convo-
lution. Likewise, Figure 3(c) presents simple-D, with two
depthwise layers. Because depthwise convolution requires
the same number of input and output channels, we option-
ally add a 1 x1x1 convolutional layer (shown in the dashed
rectangle) in blocks that change the number of channels.
Figure 4(a) presents a ResNet bottleneck block con-
sisting of two 1x1x1 and one 3x3x3 convolutional lay-
ers. Figures 4(b-c) present bottleneck-G and bottleneck-
D where the 3x3x3 convolutions are grouped and depth-
wise, respectively. If we further apply group convolution
to the two 1x1x1 convolutional layers, the block becomes

/ / / v

[ o | [ oxa | [ waxa | [ 1xaxigo]
v Y

I 3x3x3 I | 3x3x3(gc) | |3x3x3(dw)| |3x3x3(dw)|
Y 2

[ o | [ waa | [ waxa | [1xaxiigo) |

v v v \

a) bottleneck b) bottleneck-G ¢) bottleneck-D d) bottleneck-DG

Figure 4. ResNet bottleneck block transformed by group con-
volution. (a) A standard ResNet bottleneck block. (b) Bottleneck-
G: a ResNet bottleneck block with a 3x3x3 group convolutional
layer. (c) Bottleneck-D: a bottleneck block with a 3x3x3 depth-
wise convolution (previously named as ir-CSN, the new name of
Bottleneck-D is used here for simplicity and analogy with other
blocks). (d) Bottleneck-DG: a ResNet bottleneck block with a
3x3x3 depthwise convolution and two 1x1x1 group convolu-
tions. We note that from (a) to (d), we gradually apply group
convolution to the 3x3x3 convolutional layer and then the two
1x1x1 convolutional layers. Batch norm and ReLU are used af-
ter each convolution layer. For simplicity, in the illustration we
omit to show skip connections.

a bottleneck-DG, as illustrated in Figure 4(d). In all cases,
the 3 x3 %3 convolutional layers always have the same num-
ber of input and output channels.

There are some deliberate analogies to existing archi-
tectures here. First, bottleneck-G (Figure 4(b)) is exactly
a ResNeXt block [36], and bottleneck-D is its depthwise
variant. Bottleneck-DG (Figure 4(d)) resembles the Shuf-
fleNet block [39], without the channel shuffle and without
the downsampling projection by average pooling and con-
catenation. The progression from simple to simple-D is
similar to moving from ResNet to Xception (though Xcep-
tion has many more 1x1x 1 convolutions). We omit certain
architecture-specific features in order to better understand
the role of grouping and channel interactions.

4. Ablation Experiment

This empirical study will allow us to cast some light
on the important factors in the performance of channel-
separated network and will lead us to two main findings:

1. We will empirically demonstrate that within the fam-
ily of architectures we consider, similar depth and sim-
ilar amount of channel interaction implies similar ac-
curacy. In particular, the interaction-preserving blocks
reduce compute significantly but preserve channel in-
teractions, with only a slight loss in accuracy for shal-
low networks and an increase in accuracy for deeper
networks.

2. In traditional 3x3x3 convolutions all feature maps in-
teract with each other. For deeper networks, we show
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layer name | output size ResNet3D-simple ‘ ResNet3D-bottleneck
convl Tx112x112 3xTx7, 64, stride 1 x2x2
pooll Tx56x56 max, 1 x3x3, stride 1 x2x2
1x1x1, 256
conv2.x | Tx56x56 [ gxgxg, 23 } by | | 3x3x3,64 |xb
I, 1x1x1,256
r 1 1x1x1, 512
conv3x | Txagxag || X320 0 11 353x3, 128 | xby
2 3x3x3,128
- - Ix1x1,512
r ; I1x1x1, 1024
. )
conv4_x %x14><l4 gigig 3;2 X b3 3x3x%3,256 | xbs
- ’ - Ix1x1, 1024
- - 1x1x1, 2048
conv5_x %x7><7 iigi;ég x by 3%x3%x3,512 | xby
. 2R 1x1x1, 2048
pool5 Ix1x1 spatiotemporal avg pool, fc layer with softmax

Table 1. ResNet3D architectures considered in our experi-
ments. Convolutional residual blocks are shown in brackets, next
to the number of times each block is repeated in the stack. The di-
mensions given for filters and outputs are time, height, and width,
in this order. b1 ,... 4 are number of blocks implemented at conv2_x,
conv3_x, conv4_x, conv5_x, respectively. The series of convolu-
tions culminates with a global spatiotemporal pooling layer that
yields a 512- or 2048-dimensional feature vector. This vector is
fed to a fully-connected layer that outputs the class probabilities
through a softmax.

that this causes overfitting.

4.1. Experimental setup

Dataset. We use Kinetics-400 [19] for the ablation experi-
ments in this section. Kinetics is a standard benchmark for
action recognition in videos. It contains about 260K videos
of 400 different human action categories. We use the train-
ing split (240K videos) for training and the validation split
(20K videos) for evaluating different models.

Base architecture. We use ResNet3D, presented in Table 1,
as our base architecture for most of our ablation experi-
ments in this section. More specifically, our model takes
clips with a size of Tx224x224 where T' = 8§ is the num-
ber of frames, 224 is the height and width of the cropped
frame. Two spatial downsampling layers (1x2x2) are ap-
plied at convl and at pooll, and three spatiotemporal
downsampling (2x2x2) are applied at conv3_1, conv4_1
and conv5_1 via convolutional striding. A global spa-
tiotemporal average pooling with kernel size % x7x7 is ap-
plied to the final convolutional tensor, followed by a fully-
connected (fc) layer performing the final classification.
Data augmentation. We use both spatial and temporal
jittering for augmentation. Specifically, video frames are
scaled such that the shorter edge of the frames becomes
s while we maintain the frame original aspect ratio. Dur-
ing training, s is uniformly sampled between 256 and 320.
Each clip is then generated by randomly cropping windows
of size 224x224. Temporal jittering is also applied during
training by randomly selecting a starting frame and decod-

ing T' frames. For the ablation experiments in this section
we train and evaluate models with clips of 8 frames (7" = 8)
by skipping every other frame (all videos are pre-processed
to 30fps, so the newly-formed clips are effectively at 15fps).
Training. We train our models with synchronous dis-
tributed SGD on GPU clusters using caffe2 [2] (with 16 ma-
chines, each having 4 GPUs). We use a mini-batch of 8 clips
per GPU, thus making a total mini-batch of 512 clips. Fol-
lowing [30], we set epoch size to 1M clips due to temporal
jitterring augmentation even though the number of training
examples is only about 240K. Training is done in 45 epochs
where we use model warming-up [ 4] in the first 10 epochs
and the remaining 35 epochs will follow the half-cosine pe-
riod learning rate schedule as in [10]. The initial learning
rate is set to 0.01 per GPU (equivalent to 0.64 for 64 GPUs).
Testing. We report clip top-1 accuracy and video top-1 ac-
curacy. For video top-1, we use center crops of 10 clips uni-
formly sampled from the video and average these 10 clip-
predictions to obtain the final video prediction.

4.2. Reducing FLOPs, preserving interactions

In this ablation, we use CSNs to vary both FLOPs
and channel interactions. Within this architectural family,
channel interactions are a good predictor of performance,
whereas FLOPs are not. In particular, FLOPs can be re-
duced significantly while preserving interaction count.

Table 2 presents results of our interaction-reduced CSNs
(ir-CSNs) and interaction-preserved CSNs (ip-CSNs) and
compare them with the ResNet3D baseline using different
number of layers. In the shallow network setting (with 26
layers), both the ir-CSN and the ip-CSN have lower ac-
curacy than ResNet3D. The ir-CSN provides a computa-
tional savings of 3.6x but causes a 2.9% drop in accuracy.
The ip-CSN yields a saving of 2.9x in FLOPs with a much
smaller drop in accuracy (0.7%). We note that all of the
shallow models have very low count of channel interac-
tions: ResNet3D and ip-CSN have about 0.42 giga-pairs
(0.42 x 10? pairs), while ir-CSN has only 0.27 giga-pairs
(about 64% of the original). This observation suggests that
shallow instances of ResNet3D benefit from their extra pa-
rameters, but the preservation of channel interactions re-
duces the gap for ip-CSN.

Conversely, in deeper settings both ir-CSNs and ip-CSNs
outperform ResNet3D (by about 0.9 — 1.4%). Further-
more, the accuracy gap between ir-CSN and ip-CSN be-
comes smaller. We attribute this gap shrinking to the fact
that, in the 50-layer and 101-layer configurations, ir-CSN
has nearly the same number of channel interactions as ip-
CSN since most interactions stem from the 1x1x1 layers.
One may hypothesize that ip-CSN outperforms ResNet3D
and ir-CSN because it has more nonlinearities (ReLU). To
answer this question, we trained ip-CSNs without ReLUs
between the 1x1x 1 and the 3x3x3 layers and we observed
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model |depth | video@1 | FLOPs | params | interactions

(%) x10° | x10° x10°
ResNet3D | 26 65.3 14.3 20.4 0.42
ir-CSN 26 62.4 4.0 1.7 0.27
ip-CSN 26 64.6 5.0 24 0.42
ResNet3D | 50 69.4 29.5 46.9 5.68
ir-CSN 50 70.3 10.6 13.1 5.42
ip-CSN 50 70.8 11.9 14.3 5.68
ResNet3D | 101 70.6 44.7 85.9 8.67
ir-CSN 101 71.3 14.1 22.1 8.27
ip-CSN | 101 71.8 159 24.5 8.67

Table 2. Channel-Separated Networks vs. ResNet3D. In the 26-
layer configuration, the accuracy of ir-CSN is 2.9% lower than that
of the ResNet3D baseline. But ip-CSN, which preserves channel
interactions, is nearly on par with the baseline (the drop is only
0.7%). In the the 50- and 101-layer configurations, both ir-CSN
and ip-CSN outperform ResNet3D while reducing parameters and
FLOPs. ip-CSN consistently outperforms ir-CSN.

no notable difference in accuracy. We can conclude that
traditional 3x3x3 convolutions contain many parameters
which can be removed without an accuracy penalty in the
deeper models. We further investigate this next.

We also experimented with a space-time decomposition
of the 3D filters [23, 30, 37] in ir-CSN-50. This model ob-
tains 69.7% on Kinetics validation (vs. 70.3% of vanilla ir-
CSN-50) while requiring more memory and having roughly
the same GFLOPs as ir-CSN. The small accuracy drop may
be due to the fact that CSN 3D filters are already channel-
factorized and the space-time decomposition may limit ex-
cessively their already constrained modeling ability.

4.3. What makes CSNs outperform ResNet3D?

In section 4.2 we found that both ir-CSNs and ip-CSNs
outperform the ResNet3D baseline when there are enough
channel interactions, while having fewer parameters and
greatly reducing FLOPs. It is natural to ask: what makes
CSNs more accurate? Figure 5 provides a useful insight
to answer this question. The plot shows the evolution of
the training errors of ip-CSN and ResNet3D, both with 101
layers. Compared to ResNet3D, ip-CSN has higher train-
ing errors but lower testing error (see validation accuracy
shown in Table 2). This suggests that the channel separa-
tion in CSN regularizes the model and prevents overfitting.

4.4. The effects of different blocks in group convo-
lutional networks

Here we start from our base architecture (shown in Ta-
ble 1) then ablatively replace the convolutional blocks with
those presented in section 3.4. Again we find that channel
interaction plays a critical role in understanding the results.
Naming convention. Since the ablation in this section
will be considering several different convolutional blocks,

ResNet3D-101 train
——ip-CSN-101 train

0 10 20 30 40 50
epoch

Figure 5. Training error as a function of training iterations for
ip-CSN-101 and ResNet3D-101 on Kinetics. ip-CSN has higher
training error, but lower testing error (compare validation accura-
cies in Table 2). This suggests that the channel separation provides
a beneficial regularization, combatting overfitting.

Model block config name
ResNet3D-18 | simple |[2,2,2, 2] simple-8
ResNet3D-50 | bottleneck | [3, 4, 6, 3] | bottleneck-16

Table 3. Naming convention. We name architectures by block
name followed by the total number of blocks (see last column).
Only two block names are given in this table. More blocks are
presented in section 3.4.

to simplify the presentation, we name each architecture by
block type (as presented in section 3.4) and total number of
blocks, as shown in the last column of Table 3.

Figure 6 presents the results of our ablation on convo-
lutional blocks. It shows the video top-1 accuracy on the
Kinetics validation set vs the model computational cost (#
FLOPs). We note that, in this experiment, we use our base
architecture with two different numbers of blocks (8 and
16) and just vary the type of convolutional block and num-
ber of groups to study the tradeoffs. Figure 6(a) presents
our ablation experiment with simple-X-8 and bottleneck-
X-8 architectures (where X can be none, G, or D, or even
DG in the case of bottleneck block). Similarly, Figure 6(b)
presents our ablation experiment with simple-X-16 and
bottleneck-X-16 architectures. We can observe the compu-
tation/accuracy effects of the group convolution transforma-
tion. Reading each curve from right to left (i.e. in decreas-
ing accuracy), we see simple-X transforming from sim-
ple block to simple-G (with increasing number of groups),
then to simple-D block. For bottleneck-X, reading right to
left shows bottleneck block, then transforms to bottleneck-
G (with increasing groups), bottleneck-D, then finally to
bottleneck-DG (again with increasing groups).

While the general downward trend is expected as we de-
crease parameters and FLOPs, the shape of the simple and
bottleneck curves is quite different. The simple-X mod-
els degrade smoothly, whereas bottleneck-X stays relatively
flat (particularly bottleneck-16, which actually increases
slightly as we decrease FLOPs) before dropping sharply.

In order to better understand the different behaviors of
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Figure 6. ResNet3D accuracy/computation tradeoff by transforming group convolutional blocks. Video top-1 accuracy on the Kinetics
validation set against computation cost (# FLOPs) for a ResNet3D with different convolutional block designs. (a) Group convolution
transformation applied to simple and bottleneck blocks with shallow architectures with 8 blocks. (b) Group convolution transformation
applied to simple and bottleneck blocks with deep architectures with 16 blocks. The bottleneck-D block (marked with green starts) gives
the best accuracy tradeoff among the tested block designs. Base architectures are marked with black hexagrams. Best viewed in color.

the simple-X-Y and bottleneck-X-Y models (blue vs. red
curves) in Figure 6 and the reasons behind the turning points
of bottleneck-D block (green start markers in Figure 6), we
plot the performance of all these models according to an-
other view: accuracy vs channel interactions (Figure 7).

As shown in Figure 7, the number of channel interactions
in simple-X-Y models (blue squares and red diamonds)
drops quadratically when group convolution is applied to
their 3x3x3 layers. In contrast, the number of channel in-
teractions in bottleneck-X-Y models (green circles and pur-
ple triangles) drops marginally when group convolution is
applied to their 3x3x3 since they still have many 1x1x1
layers (this can be seen in the presence of two marker clus-
ters which are circled in red: the first cluster includes pur-
ple triangles near the top-right corner and the other one in-
cludes green circles near the center of the figure). The chan-
nel interaction in bottleneck-X-Y starts to drop significantly
when group convolution is applied to their 1x1x1 layers,
and causes the model sharp drop in accuracy. This fact ex-
plains well why there is no turning point in simple-X-Y
curves and also why there are turning points in bottleneck-
X-Y curves. It also confirms the important role of channel
interactions in group convolutional networks.
Bottleneck-D block (also known as ir-CSN) provides the
best computation/accuracy tradeoff. For simple blocks,
increasing the number of groups causes a continuous drop
in accuracy. However, in the case of the bottleneck block
(i.e. bottleneck-X-Y) the accuracy curve remains almost flat
as we increase the number of groups until arriving at the
bottleneck-D block, at which point the accuracy degrades
dramatically when the block is turned into a bottleneck-DG
(group convolution applied to 1x1x 1 layers). We conclude
that a bottleneck-D block (or ir-CSN) gives the best com-
putation/accuracy tradeoff in this family of ResNet-style
blocks, due to its high channel-interaction count.
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Figure 7. Accuracy vs. channel interactions. Plotting the Ki-

netics validation accuracy of different models with respect to their

total number of channel interactions. Channel interactions are pre-

sented on a log scale for better viewing. Best viewed in color.

5. Comparison with the State-of-the-Art

Datasets. We evaluate our CSNs on Sports1M [18] and
Kinetics-400 [19]. Sports1M is a large-scale action recog-
nition dataset containing 1.1 million videos from 487 sport
action classes. For Sports1M, we use the public train and
test splits provided with the dataset. For Kinetics, we use
the train split for training and the validation set for testing.
Training. Differently from our ablation experiments, here
we train our CSNs with 32-frame clip inputs (' = 32) with
a sampling rate of 2 (skipping every other frame) following
the practice described in [30]. All the other training settings
such as data augmentation and optimization parameters are
the same as those described in our previous section.
Testing. For Sports1M, we uniformly sample 10 clips per
video, scale the shorter edge to 256 (keeping aspect ratio),
and use only the center crop of 224 x224 per clip for infer-
ence. We average the softmax predictions of these 10 crops
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Method input | video@1 | video@S5 | GFLOPs x crops

C3D [29] RGB 61.1 85.2 N/A

P3D [23] RGB 66.4 87.4 N/A

Conv Pool [38] | RGB+OF 71.7 90.4 N/A
RQ2+1)D [30] | RGB 73.0 91.5 152xN/A
RQ2+1)D [30] |RGB+OF| 73.3 91.9 305 xN/A
ir-CSN-101 RGB 74.8 92.6 56.5x10
ip-CSN-101 RGB 74.9 92.6 63.6x10
ir-CSN-152 RGB 75.5 92.7 74.0x10
ip-CSN-152 RGB 75.5 92.8 83.3x10

Table 4. Comparison with state-of-the-art architectures on
Sports1M. Our CSNs with 101 or 152 layers outperform all the
previous models by good margins while being 2-4x faster.

for video prediction. On Kinetics, since the 30 crops eval-
uation in [35] is widely adopted, we follow this setup for a
fair comparison with previous approaches.

Results on Sports1M. Table 4 compares results of our
CSNs with those of previous methods on SportsIM. Our
ir-CSN-152 and ip-CSN-152 outperform C3D [29] by
14.4%, P3D [23] by 9.1%, Conv Pool [38] by 3.8%, and
R(2+1)D [30] by 2.2% on video top-1 accuracy while be-
ing 2-4x faster than R(2+1)D. Our ir-CSN-101, even with
a smaller number of FLOPs, still outperforms all previ-
ous work by good margins. On large-scale benchmarks
like Sports1M, the difference between ir-CSN and ip-CSN
is very small. The added benefit of ir-CSN is that it has
smaller GFLOPs, especially in deeper settings where the
number of channel interactions is similar to that of ip-CSN.
This is consistent with the observation from our ablation.
Results on Kinetics. We train our CSN models on Kinet-
ics and compare them with current state-of-the-art methods.
In addition to training from scratch, we also finetune our
CSNs with weights initialized from models pre-trained on
Sports1M. For a fair comparison, we compare our CSNs
with the methods that use only RGB as input. Table 5
presents the results. Our ip-CSN-152, even when trained
from scratch, outperforms all of the previous models, ex-
cept for SlowFast [10]. Our ip-CSN-152, pre-trained on
Sports1M outperforms 13D [3], R(2+1)D [30], and S3D-
G [37] by 8.1%, 4.9%, and 4.5%, respectively. It also
outperforms recent work: A2-Net [4] by 4.6%, Global-
reasoning networks [6] by 3.1%. We note that our ip-CSN-
152 achieves higher accuracy than both I3D with Non-local
Networks (NL) [35] and SlowFast [10] (+1.5% and +0.3%)
while being also faster (3.3x and 2x, respectively). Our ip-
CSN-152 is still 0.6% lower than SlowFast augmented with
Non-Local Networks. Finally, recent work [13] has shown
that R(2+1)D can achieve strong performance when pre-
trained on a large-scale weakly-supervised dataset. We pre-
train/finetune ir-CSN-152 on the same dataset and compare
it with R(2+1)D-152 (the last two rows of Table 5). In this
large-scale setup, ir-CSN-152 outperforms R(2+1)D-152 by

Method pretrain | vi@1 | vi@S5 | GFLOPs x crops
ResNeXt [15] none 65.1 | 85.7 N/A
ARTNet(d) [32] none 69.2 | 88.3 24 %250

13D [ ] ImageNet 71.1 89.3 108 xN/A
TSM [22] ImageNet | 72.5 | 90.7 65xN/A
MFNet [5] ImageNet | 72.8 | 90.4 11xN/A
Inception-ResNet [ 1] | ImageNet | 73.0 | 90.9 N/A
R(2+1)D-34 [30] | sSportsiM | 74.3 | 91.4 152xN/A
A®-Net [4] ImageNet | 74.6 | 91.5 | 41xN/A
S3D-G [37] ImageNet | 74.7 | 93.4 71 xN/A
D3D [27] ImageNet | 75.9 | N/A N/A
GloRe [6] ImageNet | 76.1 | N/A 55xN/A
I3D+NL [35] ImageNet | 77.7 | 93.3 359x%30
SlowFast [10] none 78.9 | 93.5 213x30
SlowFast+NL [10] none 79.8 | 93.9 234 %30
ir-CSN-101 none 76.2 | 92.2 73.8%30
ip-CSN-101 none 76.7 | 92.3 83.0x30
ir-CSN-152 none 76.8 | 92.5 96.7x30
ip-CSN-152 none 77.8 | 92.8 108.8 %30
ir-CSN-101 SportsiM | 78.1 | 93.4 73.8%30
ip-CSN-101 SportsiIM | 78.5 | 93.5 83.0x30
ir-CSN-152 SportsiM | 79.0 | 93.5 96.7x30
ip-CSN-152 SportsiM | 79.2 | 93.8 108.8x30
RQ2+1)D-152* [13] | IG-65M | 81.3 | 95.1 329x30
ir-CSN-152* 1G-65M | 82.6 | 95.3 96.7%x30

Table 5. Comparison with state-of-the-art architectures on Ki-
netics. Accuracy is measured on the Kinetics validation set. For
fair evaluation, the comparison is restricted to models trained on
RGB input. Our ir-CSN-152 is better than or comparable with
previous models while being multiple times faster. *Models lever-
aging large-scale pre-training, thus not comparable with others.

1.3% in video top-1 accuracy while being 3.4x faster.

6. Conclusion

We have presented Channel-Separated Convolutional
Networks (CSN) as a way of factorizing 3D convolutions.
The proposed CSN-based factorization not only helps to
significantly reduce the computational cost, but also im-
proves the accuracy when there are enough channel inter-
actions in the networks. Our proposed architecture, ir- and
ip-CSN, significantly outperform existing methods and ob-
tains state-of-the-art accuracy on two major benchmarks:
Sports1M and Kinetics. The model is also multiple times
faster than current competing networks. We have made
code and pre-trained models publicly available [9].

Acknowledgements. We thank Kaiming He for insightful
discussions and Haoqi Fan for help in improving our train-
ing framework.
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