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Abstract

In this work we propose a model that can manipulate in-

dividual visual attributes of objects in a real scene using ex-

amples of how respective attribute manipulations affect the

output of a simulation. As an example, we train our model

to manipulate the expression of a human face using nonpho-

torealistic 3D renders of a face with varied expression. Our

model manages to preserve all other visual attributes of a

real face, such as head orientation, even though this and

other attributes are not labeled in either real or synthetic

domain. Since our model learns to manipulate a specific

property in isolation using only “synthetic demonstrations”

of such manipulations without explicitly provided labels, it

can be applied to shape, texture, lighting, and other proper-

ties that are difficult to measure or represent as real-valued

vectors. We measure the degree to which our model pre-

serves other attributes of a real image when a single spe-

cific attribute is manipulated. We use digit datasets to an-

alyze how discrepancy in attribute distributions affects the

performance of our model, and demonstrate results in a far

more difficult setting: learning to manipulate real human

faces using nonphotorealistic 3D renders.

1. Introduction

Recent unsupervised image-to-image translation mod-

els [16, 23, 28] demonstrated an outstanding ability to learn

semantic correspondences between images from visually

distinct domains. Using these models is especially fruitful

for domains that lack large labeled datasets since converting

an output of an existing simulation to an image that closely

resembles the real domain gives rise to a virtually infinite

source of labeled training data. Unfortunately, since these

models receive no supervision relating the semantic struc-

ture of two domains, latent encodings of visual attributes

are strongly entangled and can not be manipulated inde-

pendently. For example, CycleGAN [28] can not be easily

used to extract mouth expression from a synthetically ren-

dered face image and “apply” it to an image of a real per-
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(b) At test time we want to perform this manipulation 
with synthetic references on real images.

 

rotation

(a) At train time we receive demonstrations of a manipulation 
in the synthetic domain and examples of real images. 
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Figure 1: Problem statement: we want to manipulate real

images using demonstrations of respective manipulations

performed in a simulation, e.g. to change mouth expres-

sion in real images using demonstrations of mouth expres-

sion manipulation in nonphotorealistic face 3D renders, or

to relight real faces from examples of relighted synthetic

faces, or to rotate hand-written digits using rotated type-

written digits. The proposed PuppetGAN model correctly

manipulates real images and uses only unlabeled real im-

ages and synthetic demonstrations during training. Video:

http://bit.ly/iccv19_pupgan.
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disentangled embeddings

mouthhead yaw,
gaze, etc. discarded discarded 

E E E E

GB GA

mouthhead yaw,
gaze, etc. discarded discarded 

Figure 2: PuppetGAN overview: we train a domain-agnostic encoder (E), a decoder for the real domain (GA) and a

decoder for the synthetic domain (GB) to disentangle the the attribute we would like to control in real images (the “attribute

of interest” - AoI - mouth expression in this example), and all other attributes (head orientation, gaze direction, microphone

position in this example) that are not labeled or even not present (e.g. microphone) in the synthetic domain. Our model is

trained on demonstrations of how the AoI is manipulated in synthetic images and individual examples of real images. At test

time, a real image can be manipulated with a synthetic reference input by applying a real decoder to the attribute embedding

of the reference image (green capsule) combined with the remaining embedding part (purple capsule) of the real input.

we crop the face
use synthetic image
to manipulate mouth
and insert it back

(a) mouth manipulation in 300-VW (b) relighting faces from YaleB

Figure 3: More examples with other identities are provided in the supplementary. (a) When trained on face crops from a single

300-VW [24] video, PuppetGAN learns to manipulate mouth expression while preserving head orientation, gaze orientation,

expression, etc. so well that directly “pasting” the manipulated image crop back into the frame without any stitching yields

realistically manipulated images without noticeable head orientation or lighting artifacts (chin stitching artifacts area are

unavoidable unless an external stitching algorithm is used); the video demonstration is available in the supplementary and

at http://bit.ly/iccv19_pupgan. (b) When trained on face crops of all subjects from YaleB [6] combined into a

single domain, PuppetGAN learns to properly apply lighting (AoI) from a synthetic reference image and correctly preserves

subjects’ identities without any identity labels; lighting of the original real image has little to no effect on the output.
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son since all attributes (face orientation, expression, light-

ing) are entangled. The lack of such control limits usage of

image-to-image translation methods in many areas where

manipulation of individual attributes is required, but vast

labeled dataset can not be collected for each possible input

domain, including augmented reality, virtual avatars, or se-

mantic video post-processing.

Several methods have been proposed to enable users to

exert attribute-level control over the generated data, but

these methods either require a precise model (i.e. precise

simulations) of the target domain [27] or detailed attribute

labels and suitable means of training a label estimator for

both domains [2, 17]. Building such estimators is not an

easy task when the desired attribute(s) are difficult to mea-

sure or even represent numerically as inputs to a neural

model, such as global illumination, texture, or shape. Un-

supervised cross-domain disentanglement methods [10, 14]

on the other hand, do not provide means for specifying

which of the shared “content” attributes should be altered.

To overcome these limitations, we propose

“PuppetGAN,” a deep model for targeted and controlled

modification of natural images that requires neither explicit

attribute labels nor a precise simulation of the real domain.

To enable control over a specific attribute in real images

PuppetGAN only requires examples (“synthetic demon-

strations”) of how the desired attribute manipulation affects

the output of a crude simulation. It uses these synthetic

demonstrations to supervise attribute disentanglement in

the synthetic domain and extends this disentanglement

to the real domain by specifying which attributes are

supposed to be preserved by multiple consecutive attribute

manipulations. We quantitatively evaluate how well our

model can preserve other attributes of the input when a

single attribute is manipulated. In this work we:

1. Introduce a new challenging “cross-domain image ma-

nipulation by demonstration” task: manipulate a spe-

cific attribute of a real image via a synthetic reference

image using only examples of real images and demon-

strations of the desired attribute manipulation in a syn-

thetic domain at train time in the presence of a signif-

icant domain shift both in the domain appearance and

attribute distributions.

2. Propose a model that enables controlled manipulation

of a specific attribute and correctly preserves other at-

tributes of the real input. We are first to propose a

model that enables this level of control under such data

constraints at train time.

3. Propose both proof-of-concept (digits) and realistic

(faces and face renders) dataset pairs and a set of met-

rics for this task. We are first to quantitatively evaluate

the effects of cross-domain disentanglement on values

of other (non-manipulated) attributes of images.

attribute

labels for
single-domain cross-domain

single domain

Mathieu et al. [21],

Cycle-VAE [8],

Szabó et al. [26]

E-CDRD [17],

DiDA [2],

PuppetGAN

both domains — UFDN [15]

unsupervised

InfoGAN [4],

β-VAE [9],

β-TCVAE [3]

DRIT [14],

MUNIT [10]

Table 1: Some of existing disentanglement methods that en-

able controlled manipulation of real images.

2. Related work

Model-based Approaches. Thanks to recent advances

in differentiable graphics pipelines [19], generative neural

models [7], and high-quality morphable models [22], great

strides have been made in controlled neural image manipu-

lation. For example, the work of Thies et al. [27] proposed

a way to perform photo-realistic face expression manipula-

tion and reenactment that cannot be reliably detected even

by trained individuals. Unfortunately, methods like these

rely on precise parametric models of the target domain and

accurate fitting of these parametric models to input data: in

order to manipulate a single property of an input, all other

properties (such as head pose, lighting and facial expres-

sion in case of face manipulation) have to be estimated from

an image and passed to a generative model together with

a modified attribute to essentially “rerender” a new image

from scratch. This approach enables visually superb image

manipulation, but requires a detailed domain model capa-

ble of precisely modeling all aspects of the domain and re-

rendering any input image from a vector of its attributes - it

is a challenging task, and its solution often does not gener-

alize to other domains. Our model merely requires a crude

domain model, does not require any parameter estimation

from an input image, and therefore can be applied in many

more contexts, achieving a good trade-off between image

fidelity and costs associated with building a highly special-

ized domain model.

Single-Domain Disentanglement. One alternative to

full domain simulation is learning a representation of the

domain in which the property of interest and other proper-

ties could be manipulated independently - a so-called “dis-

entangled representation”. We summarized several kinds of

disentanglement methods that enable such control over real

images using simulated examples in Table 1. Supervised

single-domain disentanglement methods require either ex-

plicit or weak (pairwise similarity) labels [8, 21, 26] for

real images - a much stronger data requirement than the one

we consider. As discussed in the seminal work of Math-

ieu et al. [21] on disentangling representations using adver-
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sarial learning and partial attribute labels and later explored

in more details by Szabó et al. [26] and Harsh Jha et al. [8],

there are always degenerate solutions that satisfy proposed

constraints, but cheat by ignoring one component of the

embedding and hiding information in the other, we discuss

steps we undertook to combat these solutions in the model

and experiment sections.

Unsupervised single-domain methods [3, 4, 9] enable vi-

sually impressive manipulation of image properties without

any attribute labels, but do not provide the means to select

a specific property that we want to control a priori - the

end user is left to the mercy of the model that might not

necessarily disentangle the specific property he or she is in-

terested in.

Unsupervised Cross-Domain Disentanglement. Re-

cently proposed unsupervised cross-domain disentangle-

ment methods [10, 14] focus on disentangling domain-

specific properties (often corresponding to the “style” of

the domain) from those shared by both domains (“con-

tent”), therefore providing tools for manipulating the ap-

pearance of a particular image while preserving the under-

lying structure in a completely unsupervised fashion. Our

approach, however, can disentangle and independently ma-

nipulate a single specific “content” attribute (e.g. face ex-

pression) even if other “content” attributes (e.g. head orien-

tation, lighting) significantly vary in both real and synthetic

domains, therefore enabling much finer control over the re-

sulting image.

Supervised Cross-Domain Disentanglement. In the

presence of the second domain, one intuitive way of ad-

dressing the visual discrepancy between the two is to treat

the domain label as just another attribute [15] and perform

disentanglement on the resulting single large partially la-

beled domain. This approach enables interpolation between

domains, and training conditional generative models using

labels from a single domain, but does not provide means

for manipulation of existing images across domains, unless

explicit labels in both domains are provided. Recent pa-

pers [2, 17] suggested using explicit categorical labels to

train explicit attribute classifiers on the synthetic domain

and adapt it to the real domain; the resulting classifier is

used to (either jointly or in stages) disentangle embeddings

of real images. These works showed promising results in

manipulating categorical attributes of images to augment

existing dataset (like face attributes in CelebA [18] or class

label in MNIST), but neither of these methods was specif-

ically designed for or tested for their ability to preserve

other attributes of an image: if we disentangle the size of

a digit from its class for the purpose of, effectively, gen-

erating more target training samples for classification, we

do not care whether the size is preserved when we manip-

ulate the digit class, since that would still yield a correctly

“pseudo-labeled” sample from the real domain. Therefore,

high classification accuracies of adapted attribute classifiers

(reported in these papers) do not guarantee the quality of

disentanglement and the ability of these models to preserve

unlabeled attributes of the input. Moreover, these methods

require explicit labels making them not applicable to a wide

range of attributes that are hard to express as categorical la-

bels (shape, texture, lighting). In this work, we specifically

focus on manipulating individual attributes of images using

demonstrations from another domain, in the presence of a

significant domain shift (both visual and in terms of dis-

tributions of attribute values) and explicitly quantitatively

evaluate the ability of our model to preserve all attributes

other the one we manipulated.

3. Method

In this section, we formally introduce our data con-

straints, define a disentangled encoder and domain decoders

used in the loss, and describe a set of constraints that en-

sure proper disentanglement of synthetic images and ex-

tension of this disentanglement to a real domain. We find

“must be equal” notation more concise for our purposes,

i.e. y = f(x) ∀(x, y) ∈ D in constraint definitions below

corresponds to the
∑

(x,y)∈D ||y−f(x)|| penalty in the loss.

Setup. Consider having access to individual real images

a ∈ XA, and triplets of synthetic images (b1, b2, b3) ∈ XB

such that (b1, b3) share the attribute of interest (AoI - the at-

tribute that we want to control in real images), whereas the

pair (b2, b3) shares all other attributes present in the syn-

thetic domain. See the top right corner of Figure 4 for an

example of inputs fed into the network to learn to control

mouth expression (AoI) in real faces using crude face ren-

ders.

Model. The learned image representation consists of

two real-valued vectors eattr and erest denoted as green and

purple capsules in Figures 2 and 4. We introduce domain-

agnostic encoders for the attribute of interest Eattr and all

other attributes Erest, and two domain-specific decoders

GA, GB for the real and synthetic domains respectively:

Eattr : (x) 7→ eattr, GA : (eattr, erest) 7→ xa

Erest : (x) 7→ erest, GB : (eattr, erest) 7→ xb.

To simplify the loss definitions below, we introduce the

domain-specific “attribute combination operator” that takes

a pair of images (x, y), each from either of two domains,

combines embeddings of these images, and decodes them

as an image in the specified domain K:

CK(x, y) , GK

(

Eattr(x), Erest(y)
)

, K ∈ {A,B}.

Losses. We would like CK(x, y) to have the AoI of x

and all other attributes of y, but we can not enforce this di-

rectly as we did not introduce any explicit labels. Instead we

jointly minimize the weighted sum of L1-penalties for vio-

lating the following constraints illustrated in Figure 4 with
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disentangled embeddings

(b) disentanglement loss(a) reconstruction loss (c) cycle loss   (d) attribute cycle loss

generated images

inputs
attribute
of interest

all other 
attributes

a
real

realistic synthetic

discarded 
embedding

b
synth real 

decoder
synthetic 
decoder

shared 
encoder

An example input for the mouth attribute
Le

ge
nd

:

loss

;

mouth 
expression

head yaw, 
gaze, etc.

Figure 4: Supervised losses jointly optimized during the training of the PuppetGAN. When combined, these losses ensure

that the “attribute embedding” (green capsule) affects only the attribute of interest (AoI) in generated images and that the

“rest embedding” (purple capsule) does not affect the AoI in generated images. When trained, manipulation of AoI in real

images can be performed by replacing their attribute embedding components. Unsupervised (GAN) losses are not shown

in this picture. An example at the top right corner illustrates sample images fed into the network to disentangle mouth

expression (AoI) from other face attributes in real faces. Section 3 provides more details on the intuition behind these losses.

A colorblind-friendly version is available in the supplementary. Best viewed in color.

respect to all parameters of both encoders and decoders:

(a) the reconstruction constraint ensures that encoder-

decoder pairs actually learn representations of respec-

tive domains

x = CK(x, x) ∀x ∈ XK , ∀K ∈ {A,B}

(b) the disentanglement constraint ensures correct disen-

tanglement of synthetic images by the shared encoder

and the decoder for the synthetic domain

b3 = CB(b1, b2) ∀(b1, b2, b3) ∈ XB

(c) the cycle constraint was shown [28] to improve seman-

tic consistency in visual correspondences learned by

unsupervised image-to-image translation models

a = CA(b̃c, b̃c), where b̃c = CB(a, a)

b = CB(ãc, ãc), where ãc = CA(b, b)

∀a ∈ XA ∀b ∈ XB

(d) the pair of attribute cycle constraints prevents shared

encoders and the real decoder GA from converging to

a degenerate solution - decoding the entire real image

from a single embedding and completely ignoring the

other part. The first “attribute cycle constraint” (the

left column in Figure 4d) ensures that the first argu-

ment of CA is not discarded:

b3 = CB(ã, b2), where ã = CA(b1, a)

∀a ∈ XA, ∀(b1, b2, b3) ∈ XB .

The only thing that is important about ã as the first

argument of CB is its attribute value, so CA must not

discard the attribute value of its first argument b1, since

otherwise reconstruction of b3 would become impossi-

ble. The “rest” component of a should not influence

the estimate of b3 since it only affects the “rest” com-

ponent of ã that is discarded by later application of CB .

To ensure that the second “rest embedding” argument

of CA is not always discarded, the second attribute cy-

cle constraint (the right column in Figure 4d)

a = CA(b̃, a), where b̃ = CB(a, b)

∀a ∈ XA, b ∈ XB

penalizes CA if it ignores its second argument since

the “rest” of a is not recorded in b̃ and therefore can be

obtained by CA only from its second argument.
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The proposed method can be easily extended to disen-

tangle multiple attributes at once using separate encoders

and example triplets for each attribute. For example, to dis-

entangle two attributes p and q using encoders E
p
attr, E

q
attr

and synthetic triplets (bp1, b
p
2, b

p
3), (b

q
1, b

q
2, b

q
3) where (bp2, b

p
3)

share all other attributes except p (including q), and vice

versa, the disentanglement constraint should look like:

b
p
3 = GB(E

p
attr(b

p
1), E

q
attr(b

p
2), Erest(b

p
2))

b
q
3 = GB(E

p
attr(b

q
2), E

q
attr(b

q
1), Erest(b

q
2)).

In addition to supervised losses described above we ap-

ply unsupervised adversarial LS-GAN [20] losses to all

generated images. Discriminators DK(x′) and attribute

combination operators CK(x, y) are trained in an adversar-

ial fashion so that any combination of embeddings extracted

from images x, y from either of two domains and decoded

via either real or synthetic decoder GK looks like a reason-

able sample from the respective domain. Other technical

implementation details are provided in the supplementary.

4. Experiments and Results

Setup. We evaluated the ability of our model to disen-

tangle and manipulate individual attributes of real images

using synthetic demonstrations in multiple different settings

illustrated in Figures 3 and 5.

1. Size and rotation of real digits from MNIST and USPS

were manipulated using a synthetic dataset of typewritten

digits rendered using a sans-serif Roboto font.

2. Mouth expression in human face crops from the VW-300

[24] dataset was manipulated using synthetic face renders

with varying face orientation and expression, but same

identity and lighting, obtained using Basel parametric face

model [12, 11] with the global illumination prior [5].

3. Global illumination (spherical harmonics) in female

synthetic face renders was manipulated using male renders

with different head orientation and expression.

4. Direction and power of the light source in real faces from

the YaleB [6] dataset were manipulated using synthetic 3D

face renders with varying lighting and identities (but con-

stant expression and head orientation).

We used visually similar digit dataset pairs to investigate

how discrepancy in attribute distributions affects the per-

formance of the model, e.g. how it would perform if syn-

thetic digits looked similar to real digits, but were much

smaller then real ones or rotated differently. In face manip-

ulation experiments we used a much more visually distinct

synthetic domain. In VW-300 experiments we treated each

identity as a separate domain, so the model had to learn to

preserve head orientation and expression of the real input;

we used the same set of 3D face renders across all real iden-

tities. In the experiment on reapplying environmental light-

ing to synthetic faces, expression and head orientation of

the input had to be preserved. In the lighting manipulation

experiment on the YaleB dataset, we used a single large real

domain with face crops of many individuals with different

lighting setups each having the same face orientation across

the dataset, so the model had to learn to disentangle and

preserve the identity of the real input.

Metrics. In order to quantitatively evaluate the perfor-

mance of our model on digits we evaluated Pearson corre-

lation (r) between measured attribute values in inputs and

generated images. We measured the rotation and size of

both input and generated digit images using image mo-

ments, and trained a LeNet [13] to predict digit class at-

tribute. Below we define metrics reported in Table 2. The

AoI measurements in images generated by an “ideal” model

should strongly correlate with the AoI measurements in re-

spective synthetic inputs (r
syn
attr ↑ - the arrow direction indi-

cates if larger or smaller values of this metric is “better”),

and the measurement of other attributes should strongly cor-

relate with those in real inputs (Acc - accuracy of preserving

the digit class label - higher is better), and no other correla-

tions should be present (r
syn
rest lower is better). For example,

in digit rotation experiments we would like the rotation of

the generated digit to be strongly correlated with the rota-

tion of the synthetic input and uncorrelated with other at-

tributes of the synthetic input (size, class label, etc.); we

want the opposite for real inputs. Also, if we use a different

synthetic input with the same AoI value (and random non-

AoI values) there should be no change in pixel intensities in

the generated output (small variance Vrest). Optimal values

of these metrics are often unachievable in practice since at-

tributes of real images are not independent, e.g. inclination

of real digits is naturally coupled with their class label (sev-

ens are more inclined then twos), so preserving the class

label of the real input inevitably leads to non-zero correla-

tion between rotation measurements in real and generated

images. We also estimated discrepancy in attribute distri-

butions by computing Jensen-Shannon divergence between

optimal [25] kernel density estimators of respective attribute

measurements between real and synthetic images (J syn) as

well as real and generated images (Jgen). In order to quan-

titatively evaluate to what extent proposed disentanglement

losses improve the quality of attribute manipulation, we re-

port same metrics for an analogous model without disentan-

glement losses that translates all attributes of the synthetic

input to the real domain (CycleGAN).

Hyperparameters. We did not change any hyperparam-

eters across tasks, the model performed well with the initial

“reasonable” choice of parameters listed in the supplemen-

tary. As all adversarial methods, our model is sensitive to

the choice of generator and discriminator learning rates.

Results. The proposed model successfully learned to

disentangle the attribute of interest (AoI) and enabled iso-

lated manipulation of this attribute using embeddings of
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(c) spherical harmonic lighting (d) light direction and intensity in YaleB (e) distributions of attribute values

P(rot) P(size)

(b) size of scaled MNIST digits

(a) rotation of MNIST digits

Synthetic input Real input

(i)

(ii)

(iii)

Figure 5: (a-d) The PuppetGAN model correctly transfers synthetic AoI onto real images and completely ignores other

attributes of synthetic inputs. (ii) For example, in the digit rotation experiment, when a synthetic input with same rotation

but different size and class label (e.g. smaller “eight” instead of bigger “four”) is passed through the model, the outputs do

not change. (iii) Our model is robust to synthetic inputs with AoI (rotation) beyond the range observed during training - it

“saturates” on synthetic outliers. (e) The distribution of attributes is monotonically remapped to match the real domain.

(b) C-VAE

+ rest                                 

Random
style

Style

Content

(a) MUNIT applied to mouth expression in VW-300

(d) MUNIT

(c) DiDA

(e) Cycle-Consistent VAE

        attr

=

Rotation Size

Figure 6: Related methods (only DiDA is directly comparable) (a) MUNIT disentangled mouth expression from head

orientation, but style spaces of two domains are not aligned, so controlled mouth manipulation is not possible; (b) Cycle-

Consistent VAE is not suited for large domains shift; (c) DiDA converged to degenerate solutions that used only one input;

(d) MUNIT disentangled stroke from other attributes (i.e. did not isolate rotation or size from the class label); (e) Cycle-

Consistent VAE was able to extract information only from real inputs that looked “synthetic enough”.
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Model

Disentanglement Quality Input Domain Discrepancy

Size Rotation Size Rot

Acc ↑ r
syn
attr ↑ r

syn
rest ↓ Vrest ↓ Acc ↑ r

syn
attr ↑ r

syn
rest ↓ Vrest ↓ J

syn
attr J

syn
rest J

syn
attr J

syn
rest

PuppetGAN 0.73 0.85 0.02 0.02 0.97 0.40 0.11 0.01

0.27 0.78 0.05 2.20

CycleGAN [28] 0.10 0.28 0.06 0.28 0.11 0.54 0.37 0.33

DiDA [2] 0.71 0.18 0.09 0.02 0.86 0.04 0.35 0.02

MUNIT [10] 0.96 0.06 0.09 0.01 1.00 0.00 0.15 0.01

Cycle-VAE [8] 0.17 0.92 0.16 0.01 0.29 0.45 0.10 0.01

PuppetGAN† 0.64 0.28 0.07 0.01 0.10 0.06 0.04 0.01 0.90 0.92 0.06 108

Table 2: Rotation and scaling of MNIST digits (Figures 5-6). Our model exhibits a higher precision of attribute manipulation. We measure

how well models preserve the class labels of real inputs (Acc), AoI of synthetic inputs r
synth
attr , and ignore non-AoI of synthetic inputs r

synth
rest .

We investigate how increased discrepancy between sizes of synthetic and real digits (meaning higher J
syn
attr for size and J

syn
rest for rotation)

affects the performance of our model (PuppetGAN†). Arrows ↑↓ indicate if higher or lower values are better, good results are underscored.

synthetic images in all considered experiment settings:

1. In the digit rotation experiment (Figure 5a), generated

images had the class label, size and style of the respective

real input and rotation of the respective synthetic input, and

did not change if either class or size of the synthetic (Figure

5(ii)), or rotation of the real input changed. Attributes were

properly disentangled in all face manipulation experiments

(Figure 3ab, 5cd), e.g. in the YaleB experiment “original”

lighting of real faces and identities of synthetic faces did not

affect the output, whereas identities of real faces and light-

ing of synthetic faces were properly preserved and com-

bined. For the VW-300 domain with face crops partially

occluded by a microphone, the proposed model preserved

size and position of the microphone, and properly manipu-

lated images with the partially occluded mouth, even though

this attribute was not modeled by the simulation.

2. Larger discrepancy between attribute distributions in two

domains (PuppetGAN† in Table 2) leads to poorer attribute

disentanglement, e.g. if synthetic digits are much smaller

than real, or much less size variation is present in the real

MNIST, or much less rotation in USPS (Figure 7). For mod-

erate discrepancies in attribute distributions, AoI in gener-

ated images followed the distribution of AoI in the real do-

main (Figure 5e, Table 4). If during evaluation the property

of interest in a synthetic input was beyond values observed

during training, model’s outputs “saturated” (Figure 5(iii)).

3. Ablation study results (Table 3) and the visual inspection

of generated images suggest that domain-agnostic encoders

help to semantically align embeddings of attributes across

domains. Image level GAN losses improve “interchange-

ability” of embedding components from different domains.

Learned representations are highly excessive, so even ba-

sic properties such as “digit rotation” required double-digit

embedding sizes. Attribute cycle losses together with pixel-

level instance noise in attribute and disentanglement losses

improved convergence speed, stability, and the resilience of

the model to degenerate solutions [1].

Comparison to Related Methods. To our knowledge,

only E-CDRD [17] and DiDA [2] considered similar in-

put constraints at train time (both use explicit labels). We

could not obtain any implementation of E-CDRD, and since

authors focused on different applications (domain adapta-

tion for digit classification, manipulation of photos using

sketches), their reported results are not comparable with

ours. While MUNIT [10] (unsupervised cross-domain) and

Cycle-Consistent VAE [8] (single-domain) methods have

input constraints incompatible with ours, we investigated

how they perform, respectively, without attribute supervi-

sion and in the presence of the domain shift. Quantitative

evaluation (Table 2) supports our explanations of qualitative

results (Figures 5-6). Proposed losses greatly improve the

quality of isolated attribute manipulation over both cross-

domain non-disentangled (CycleGAN), cross-domain dis-

entangled (DiDA, MUNIT), and single-domain disentan-

gled (Cycle-VAE) baselines. More specifically, MUNIT

disentangled the wrong attribute (stroke) and DiDA con-

verged to degenerate solutions that ignored synthetic AoI

- both have low r
syn
attr . The Cycle-VAE disentangled cor-

rect attributes of digits (high r
syn
attr ), but due to the domain

shift failed to preserve class labels of real inputs (low Acc).

Figure 6a shows that MUNIT disentangled face orientation

as “content” and mouth expression as “style”, as random

style vectors appear to mostly influence the mouth. Unfor-

tunately, style embedding spaces of two domains are not

semantically aligned, so controlled manipulation of specific

attributes (e.g. mouth) across domains is not possible. The

available implementation of DiDA made it very difficult to

apply it to faces. Cycle-Consistent VAE learned great dis-

entangled representations and enabled controlled manipu-

lation of synthetic images, but, like in digits experiments,

failed to encode and generate plausible real faces because

domains looked too different (Figure 6b).

5. Conclusion

In this paper, we present a novel task of “cross-domain

image manipulation by demonstration” and a model that ex-

cels in this task on a variety of realistic and proof-of-concept

datasets. Our approach enables controlled manipulation of

real images using crude simulations, and therefore can im-

mediately benefit practitioners that already have imprecise

models of their problem domains by enabling controlled

manipulation of real data using existing imprecise models.
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