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Abstract

Deep learning techniques for point cloud data have

demonstrated great potentials in solving classical problems

in 3D computer vision such as 3D object classification and

segmentation. Several recent 3D object classification meth-

ods have reported state-of-the-art performance on CAD

model datasets such as ModelNet40 with high accuracy

(∼92%). Despite such impressive results, in this paper, we ar-

gue that object classification is still a challenging task when

objects are framed with real-world settings. To prove this,

we introduce ScanObjectNN, a new real-world point cloud

object dataset based on scanned indoor scene data. From

our comprehensive benchmark, we show that our dataset

poses great challenges to existing point cloud classification

techniques as objects from real-world scans are often clut-

tered with background and/or are partial due to occlusions.

We identify three key open problems for point cloud object

classification, and propose new point cloud classification

neural networks that achieve state-of-the-art performance on

classifying objects with cluttered background. Our dataset

and code are publicly available in our project page 1.

1. Introduction

The task of understanding our real world has achieved

a great leap in recent years. The rise of powerful compu-

tational resources such as GPUs and the availability of 3D

data from depth sensors have accelerated the fast-growing

field of 3D deep learning. Among various 3D data represen-

tations, point clouds are widely used in computer graphics

and computer vision thanks to their simplicity. Recent works

have shown great promises in solving classical scene un-

derstanding problems with point clouds such as 3D object

classification and segmentation.

However, the current progress on classification with 3D

point clouds has witnessed a trend of performance satura-

tion. For example, many recent object classification methods

have reported very high accuracies in 2018, and the trend

of bringing the accuracy towards perfection is still ongoing.

1https://hkust-vgd.github.io/scanobjectnn/

This phenomenon inspires us to raise a question on whether

problems such as 3D object classification have been totally

solved, and to think about how to move forward.

To answer this question, we perform a benchmark of ex-

isting point cloud object classification techniques with both

synthetic and real-world data. For synthetic objects, we use

ModelNet40 [43], the most popular dataset in point cloud

object classification that contains about 10,000 CAD models.

To support the investigation of object classification meth-

ods on real-world data, we introduce ScanObjectNN, a new

point cloud object dataset from the state-of-the-art scene

mesh datasets SceneNN [19] and ScanNet [9]. Based on

the initial instance segmentation from the scene datasets, we

manually filter and select objects for 15 common categories,

and further enrich the dataset by considering additional ob-

ject perturbations.

Our study shows that while the accuracy with CAD data

is reaching perfection, learning to classify a real-world ob-

ject dataset is still a very challenging task. By analyzing

the benchmark results, we identify three open issues that

are worth to further explore for future researches. First,

classification models trained on synthetic data often do not

generalize well to real-world data such as point clouds recon-

structed from RGB-D scans [19, 9], and vice versa. Second,

challenging in-context and partial observations of real-world

objects are common due to occlusions and reconstruction

errors; for example, they can be found in window-based ob-

ject detectors [38] in many robotics or autonomous vehicle

applications. Finally, how to handle background effectively

when they appear together with objects due to clutter in the

real-world scenes.

As our dataset opens up opportunities to tackle such open

problems in real-world object classification, we also present

a new method for point cloud object classification that can

improve upon the state-of-the-art results on our dataset by

jointly learning the classification and segmentation tasks in

a single neural network.

In summary, we make the following contributions:

• A new object dataset from meshes of scanned real-world

scene for training and testing point cloud classification,

11588



• A comprehensive benchmark of existing object classifica-

tion techniques on synthetic and real-world point cloud

data,

• A new network architecture that is able to classify objects

observed in a real-world setting by a joint learning of

classification and segmentation.

2. Related Works

In this paper, we focus on object classification with point

cloud data, which has advanced greatly in the past few years.

We briefly discuss the related works and their datasets, below.

Object Classification on Point Clouds. Early attempts to

classifying point clouds were developed by adapting ideas

from deep learning on images, e.g., using multiple view im-

ages [39, 48, 46, 22], or applying convolutions on 3D voxel

grids [27, 43]. While it seems natural to extend the convolu-

tion operations from 2D to 3D, it is shown that performing

convolutions on a point cloud is not a trivial task [30, 49].

The difficulty stems from the fact that a point cloud has no

well-defined order of points on which convolutions can be

performed. Qi et al. [30] addressed this problem by learning

global features of point clouds using a symmetric function

that is invariant to the order of points. Alternatively, some

other methods proposed to learn local features from convo-

lutions, e.g., [32, 25, 20, 42, 44, 18, 2, 24, 33, 11] or from

autoencoders [45]. There are also methods jointly learning

features from point clouds and multi-view projections [47].

It is also possible to treat point clouds and views as se-

quences [26, 17, 15], or to use unsupervised learning [16].

Recent works demonstrate very competitive and com-

pelling performances on standard datasets. For example, the

gap between state-of-the-art methods such as SpecGCN [41],

SpiderCNN [44], DGCNN [42], PointCNN [25] is less than

1% on ModelNet40 dataset [43]. In the online leaderboard

maintained by the authors of ModelNet40, the accuracy of

the object classification task is reaching perfection, with

92% for point cloud methods [25, 42, 44, 26].

Object Datasets. There are a limited number of datasets

that can be used to train and test 3D object classification

methods. ModelNet40 was originally developed by Wu et

al. [43] for learning a convolutional deep-belief network

to model 3D shapes represented in voxel grids. Objects

in ModelNet40 are CAD models of 40 common categories

such as airplane, motorbike, chair and table, to name a few.

This dataset has been a common benchmark for point cloud

object classification [30]. ShapeNet [7] is an alternative

large-scale dataset of 3D CAD shapes with approximately

51, 000 objects in 55 categories. However, this set is usually

used for benchmarking part segmentation.

So far, object classification on ModelNet40 is done with

the assumption that objects are clean, complete, and free

from any background noise. Unfortunately, this assumption

is not often held in practice. It is common to see incomplete

(partial) objects due to the imperfection of 3D reconstruction.

In addition, objects in real-world settings are often scanned

when being placed in a scene, which makes them appear in a

clutter, and thus may be attached with background elements.

A potential treatment is to remove such background using

human annotators [28]. However, this solution is tedious,

prone to errors, and subjective to the experience of annota-

tors. Other works synthesize challenges on CAD data by

introducing noise simulated by Gaussians [4, 12] or created

with a parametic model [6] to mimic real world scenarios.

Recently, the trend of sim2real [3] also aims to bridge the

gap between synthetic and real data.

Prior to our work, there are also a few datasets of real-

world object scans [10, 8, 5] but most are small in scale and

are not suitable for training object classification networks,

which often have thousands of parameters. For example, in

robotics, Sydney urban objects dataset [10] contains only 631

objects of 26 categories captured by a LiDAR camera, which

is mainly used for evaluation [27, 2] but not for training.

Some datasets [36, 5] are captured in controlled environment

which might greatly differ from real-world scenes. Choi et

al. [8] proposed a dataset of more than 10,000 object scans in

the real world. However, not all of their scans can be success-

fully reconstructed; the online repository by the authors also

provided only about 400 reconstructed objects. RGB-D and

3D scene meshes datasets [19, 9, 1, 37, 34] have more objects

that are reconstructed along with the scenes, but such ob-

jects are often considered in a scene segmentation or object

detection task, and not under an object classification setup.

RGBD-to-CAD object classification challenge [21, 29] pro-

vides an object dataset that mixes CAD models and real-

world scans. Its goal is to classify RGB-D objects such that a

retrieval can be done to find similar CAD models. However,

several categories are ambiguous, and objects are supposed

to be well segmented before classification. ScanNet [9] has a

benchmark on 3D object classification with partially scanned

objects. However, this dataset is designed for volume-based

object classification [31], and there are quite few techniques

that report their results with this data.

3. Benchmark Data

Our goal is to quantitatively analyze the performances of

existing object classification methods on point clouds. We

split our task into two parts: benchmarking with synthetic

data and with real-world data.

3.1. Synthetic Data  ModelNet40

For synthetic data, we experiment with the well-known

ModelNet40 dataset [43]. This set is a collection of CAD

models with 40 object categories. The dataset includes 9,840

objects for training and 2,468 objects for testing. The ob-

jects in ModelNet40 are synthetic, and thus are complete,
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Bag Bed Bin

Box Cabinets Chair

Desk Display Door

Pillow Shelves Sink

Sofa Table Toilet

Figure 1. Sample objects from our dataset.

well-segmented, and noise-free. In this experiment, we use

the uniformly dense point cloud variant as preprocessed by

Qi et al. [30]. Each point cloud is randomly sampled to

1024 points as input to the networks unless otherwise stated.

The point clouds are centered at zero, and we use local co-

ordinates (x, y, z) normalized to [−1, 1] as point attributes.

We follow the default train/test split, and use the default

parameters as in the original implementations of the meth-

ods. Our benchmark is performed with a NVIDIA Tesla

P100 GPU. We re-trained PointNet [30], PointNet++ [32],

PointCNN [25], Dynamic Graph CNN (DGCNN) [42], 3D

modified Fisher Vector (3DmFV) [2], and SpiderCNN [44].

For remaining methods, we provided the results reported in

the original papers. We additionally report each method’s

best performance when provided with additional informa-

tion such as point normals. The results are shown in Table 1.

It can be observed that the performance of recent methods

is becoming incremental, and fluctuates around 92%. This

saturating score inspires us to revisit the object classification

problem: Can classification methods trained on ModelNet40

perform well on real-world data? Or is there still room for

more research problems to be explored?

3.2. RealWorld Data  ScanObjectNN

Objects obtained from real-world 3D scans are signifi-

cantly different from CAD models due to the presence of

background noise and the non-uniform density due to holes

from incomplete scans/reconstructions and occlusions. This

situation is often seen in sliding window-based object detec-

Method Avg. Class Overall

Accuracy Accuracy

ECC [35] 83.2 87.4

PointNet [30] 86.2 89.2

DeepSets [49] - 90.0

Flex-Convolution [14] - 90.2

Kd-Net [23] 88.5 90.6 (91.8 *)

PointNet++ [32] 87.8 90.7 (91.9 w/ normal)

SO-Net [24] 87.3 90.9 (93.4 w/ normal)

KCNet [33] - 91

3DmFV [2] 86.3 91.4

SpecGCN [41] - 91.5 (92.1 w/ normal)

SpiderCNN [44] 86.8 90.0 (92.4 w/ normal)

DGCNN [42] 90.2 92.2

PointCNN [25] 88.8 92.5

Table 1. Baseline results on ModelNet40 dataset for point cloud

classification. Inputs are point coordinates, unless otherwise stated;

* denotes the use of more input points (32K).

tion [38] in which a window may enclose an object of interest

partially and also include background elements within the

window. Due to these properties, applying existing point

cloud classification methods to real-world data may not pro-

duce the same good results as CAD models.

3.2.1 Data Collection

To study this potential issue, we build a real-world object

dataset based on two popular scene meshes datasets: Sce-

neNN [19] and ScanNet [9]. SceneNN has 100 annotated
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Class Bag Bed Bin Box Cabinet Chair Desk Display Door Pillow Shelf Sink Sofa Table Toilet

#Objects 78 135 201 127 347 395 149 181 221 105 267 118 254 242 82

Table 2. Classes and objects in our dataset.

scenes with highly cluttered objects while ScanNet has a

larger collection of 1513 indoor scenes. From a total of

more than 1600 scenes from SceneNN and ScanNet, we

selected 700 unique scenes. We then manually examined

each object, fixed inconsistent labels, and discard objects

that are ambiguous, have low reconstruction quality, have

unknown labels, are too sparse, and have too few instances

to form a category for training. During categorization, we

also took into account inter-class balancing to avoid any bias

potentially coming from classes with more samples.

The results are 2902 objects that are categorized into 15

categories. The raw objects are represented by a list of points

with global and local coordinates, normals, colors attributes

and semantic labelsOther works synthesize challenges on

CAD data by introducing noise simulated by Gaussians [4,

12] or created with a parametic model [6]. Recently, the

trend of sim2real [3] also aims to bridge the gap between

synthetic and real data. As in the experiment with synthetic

data, we sample all raw objects to 1024 points as input to the

networks and all methods were trained using only the local

(x, y, z) coordinates. We will make our dataset publicly

available for future research. Table 2 summarizes classes

and objects in our dataset.

3.2.2 Data Enrichment

Based on the selected objects, we construct several variants

that represent different levels of difficulty of our dataset. This

allows us to explore the robustness of existing classification

methods in more extreme real-world scenarios.

Vanilla. The first variant is referred to as OBJ ONLY

which includes only ground truth segmented objects ex-

tracted from the scene meshes datasets. This variant has

the closest form analogous to its CAD counterpart, and is

used to investigate the robustness of classification methods

to noisy objects with deformed geometric shape and non-

uniform surface density. Sample objects of this variant are

shown in Figure 2(a).

Background. The previous variant assumes that an ob-

ject can be accurately segmented before being classified.

However, in real-world scans, objects are often presented

in under-segmentation situations, i.e., background elements

or parts of nearby objects are included, and accurate anno-

tations for such under-segmentations are also not always

available. Those background elements may provide the con-

text where objects belong to, and thus would become a good

hint for object classification, e.g., laptops often sit on desks.

However, they may also introduce distractions which corrupt

(a) Objects only. (b) Objects with background.

Figure 2. Example objects from our dataset.

the classification, e.g., a pen may be under-segmented with a

table where it sits on and thus could be considered as a part

of the table rather than a separate object. To study these fac-

tors, we introduce a variant of our dataset where objects are

attached with background data (OBJ BG). We determine

such background by using the ground truth axis-aligned ob-

ject bounding boxes. Specifically, given a bounding box, all

points in the box are extracted to form an object. Sample

objects with background are shown in Figure 2(b).

Perturbed. The given bounding boxes from the ground-

truth tightly enclose the objects. However, in real-world

scenarios bounding boxes may over- or under-cover, or even

split objects. For example, in object detection techniques

such as R-CNN [13], object category has to be predicted

from a rough bounding box that localizes a candidate ob-

ject. To simulate this challenge, we extend our dataset by

translating, rotating (about the gravity axis), and scaling the

ground truth bounding boxes before extracting the geometry

in the box. We name the variants of these perturbations with

a common prefix PB.

The perturbations introduce various degrees of back-

ground and partiality to objects. In this work, we use four

perturbation variants in the increasing order of difficulty:

PB T25, PB T25 R, PB T50 R, and PB T50 RS. Suffix

T25 and T50 denote translation that randomly shifts the

bounding box up to 25% and 50% of its size from the box

centroid along each world axis. Suffix R and S denotes

rotation and scaling. Each perturbation variant contains five

random samples for each original object, resulting in up to

14, 510 perturbed objects in total. Since perturbation might

introduce invalid objects, e.g., objects that are almost com-

pletely out of the bounding box of interest, we perform an

additional check after perturbation by ensuring that at least

50% of the original object points remain in the bounding

box. Objects that do not satisfy this condition are discarded.

Sample point clouds of these variants are shown in Figure 3.

More details about perturbing objects can be found in our

supplementary material.
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(a) OBJ_BG (b) PB_T25 (c) PB_T25_R (d) PB_T50_R (e) PB_T50_RS

Figure 3. An object in different perturbation variants.

4. Benchmark on ScanObjectNN

For a clearer picture of the maturity of point cloud-based

object classification, we benchmark several representative

methods on our dataset. We aim to identify the limitations

of current works on real-world data. We choose 3DmFV [2],

PointNet [30], SpiderCNN [44], PointNet++ [32], DGCNN

[42] and PointCNN[25] as our representative works.

4.1. Training on ModelNet40

We first study the case when training is done on Model-

Net40 and testing is done on ScanObjectNN. Since objects

in ModelNet40 are standalone with no background objects,

we also removed background in all our variants for fair eval-

uations. Furthermore, we only evaluated the current methods

on 11 (out of 15) common classes between ModelNet40 and

our dataset. Please refer to the supplementary material for

the details on these common classes.

Evaluation results are reported in Table 3. These results

show that the current techniques trained on CAD models

are not able to generalize to real-world data; all techniques

achieved less than 50% of accuracy. This is expected and is

because of the fact that real-world objects and CAD objects

are significantly different in their geometry. Real-world

objects are often incomplete and partial due to construction

errors and occlusions; their surfaces have low-frequency

noise; object boundaries are inaccurate. These are in contrast

to CAD objects, which are often clean and noise-free. We

also found that the harder the data is (i.e. more noise and

partiality), the lower the performance is, and this is consistent

for all techniques. In other words, knowledge learned from

synthetic objects in ModelNet40 is not well transferable

and/or applicable to real-world data.

4.2. Training on ScanObjectNN

In this experiment, we train and test the techniques on

ScanObjectNN to demonstrate training on datasets with real-

world properties should improve the performance in clas-

sifying real-world objects. We also analyze how different

perturbations can affect the classification performance. We

randomly split our dataset into two subsets: training (80%)

and test (20%) set. We ensure that the training and test sets

contain objects from different scenes so that similar objects

do not occur in the same set, e.g. same types of chairs can be

found in the same room. We report the performance of all the

techniques on the hardest split in Table 4. Full performances

on all splits are provided in our supplementary material.

O
B
J

O
N

LY

PB
T25

PB
T25

R

PB
T50

R

PB
T50

R
S

3DmFV [2] 30.9 28.4 27.2 24.5 24.9

PointNet [30] 42.3 37.6 35.3 32.1 31.1

SpiderCNN [44] 44.2 37.7 34.5 31.7 30.9

PointNet++ [32] 43.6 37.8 37.2 33.3 32.0

DGCNN [42] 49.3 42.4 40.3 36.6 36.8

PointCNN [25] 32.2 28.7 28.1 26.4 24.6

Table 3. Overall accuracy in % on our dataset when training was

done on ModelNet40. Note that for a fair comparison, background

has been removed in all variants. The results show that training on

CAD models and testing on real-world data is challenging. Most

methods do not generalize well in this test.

O
B
J

O
N

LY

O
B
J

B
G

PB
T25

PB
T25

R

PB
T50

R

PB
T50

R
S

3DmFV [2] 73.8 68.2 67.1 67.4 63.5 63.0

PointNet [30] 79.2 73.3 73.5 72.7 68.2 68.2

SpiderCNN [44] 79.5 77.1 78.1 77.7 73.8 73.7

PointNet++ [32] 84.3 82.3 82.7 81.4 79.1 77.9

DGCNN [42] 86.2 82.8 83.3 81.5 80.0 78.1

PointCNN [25] 85.5 86.1 83.6 82.5 78.5 78.5

Table 4. Overall accuracy in % when training and testing were done

on ScanObjectNN. The training and testing are done on the same

variant. With real-world data, the more background and partiality

are introduced, the more challenging the classification task is.

For fair comparisons, we kept the same data augmenta-

tion process in all the methods (e.g., random rotation and

per-point jitter). We trained the methods to convergence

rather than selecting the best performance on the test set.

Vanilla. The 2nd column in Table 4 shows the overall

performance of existing methods when trained on the

simplest variant of our dataset (OBJ ONLY). This clearly

shows that the classification accuracy increased significantly

when training and testing are both done using ScanOb-

jectNN versus when training is done using ModelNet40

(Table 3 Column 2). However, we also notice an observable

performance drop comparing to the pure synthetic setting

in Table 1. This gives an important message: point cloud

classification on real-world data is still open, a dataset

with real-world properties can help, but further research is

necessary to regain the high performance as in synthetic

setting. In the following, we investigate the performance

change in different types of perturbations in our dataset.

Background. As shown in Table 4 Columns 3-7,

background makes strong impact to the classification

performance of all methods. Specifically, except PointCNN

[25], all methods performed worse on OBJ BG compared

with OBJ ONLY. It can be explained by the fact that
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Ours ModelNet40

w/o BG w/ BG w/o BG w/ BG

3DmFV [2] 69.8 63.0 54.1 51.5

PointNet [30] 74.4 68.2 60.4 50.9

SpiderCNN [44] 76.9 73.7 52.7 46.6

PointNet++ [32] 80.2 77.9 55.0 47.4

DGCNN [42] 81.5 78.1 58.7 54.7

PointCNN [25] 80.8 78.5 38.1 49.2

Table 5. Overall accuracy in % when training on our hardest variant

PB T50 RS, with and without background (BG) points. Testing is

done on the same variant of our dataset, and on ModelNet40. The

second header indicates the results corresponding to the training

set. The results show that (1) background impacts negatively to

the classification performance, and (2) training on our real-world

objects generalizes to CAD evaluation better than the opposite case.
(a) (b) (c)

(d) (e) (f)

Figure 4. Confusion matrices of (a) 3DmFV [2], (b) PointNet [30],

(c) SpiderCNN [44], (d) PointNet++ [32], (e) DGCNN [42] and (f)

PointCNN [25] on our hardest PB T50 RS. This shows that there

are no major ambiguity issues among object classes in our dataset.

background elements could distract the learning in existing

methods by confusing between foreground and background

points. To further confirm the negative effect of having

background objects, we conduct a control experiment using

the hardest perturbation variant, i.e., PB T50 RS. Table 5

shows the overall accuracy of all existing models decrease

when trained and tested with the presence of background.

Perturbation. Table 4 also shows the impact of pertur-

bations to the classification performance (compared with

Column 2). In this result, we observe that translation and

rotation both make the classification performance decrease

significantly, especially with larger perturbations that

introduce more background and partiality. Scale further

degrades the performance by a small gap. Figure 4 illustrates

the confusion matrices of all methods on our hardest variant

PB T50 RS. It can be seen that there are no major ambiguity

issues in our categories, and our dataset is challenging due

to the high variations in real-world data.

Generalization to CAD Data. While it is shown that net-

works trained on synthetic data generalizes poorly to our

dataset (Table 3), the reverse is not true. Here we tested the

generalization capability of existing methods when trained
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Figure 5. Part segmentation on the chair category. From top to

bottom: part prediction, ground truth in 2048 points, and high-

resolution ground truth from original point clouds.

on ScanObjectNN. In this experiment, all methods were

trained on our PB T50 RS (with and without background)

and tested on ModelNet40. The results in the last two

columns in Table 5 clearly show that existing methods could

generalize better when they were trained on real-world data

(compared with the results in Table 3). Performance on indi-

vidual classes are presented in Table 6. As shown in Table 6,

lower accuracies are achieved on classes such as bed, cabinet,

and desk, where complete structures are never observed in

real scans because these objects are often situated adjacent

to walls or near corners of rooms. Therefore, we advocate

using real-world data in training object classification because

the generalization is shown to be much better.

4.3. Part Annotation on RealWorld Data

We further support part-based annotation in our dataset.

So far, point cloud classification methods only evaluate part

segmentation task on ShapeNet [40]. However, there has

been no publicly available dataset for part segmentation

on real-world data despite the availability of scene meshes

datasets [19, 9]. We close this gap with our dataset, which

will be released for future research. Figure 5 shows a visual-

ization of part segmentation on our data. Table 7 and Table 8

provide a baseline part segmentation evaluation on our data.

Using these part annotations may also improve partial object

classification in the future.

4.4. Discussion

Our quantitative evaluations show that performing object

classification on real-world data is challenging. The state-of-

the-art methods in our benchmark have up to 78.5% accuracy

on our hardest variant (PB T50 RS). The benchmark also

helps us recognize the following open problems:

Background is expected to provide context information but

also introduce noise. It is desirable to have an approach that

can distinguish foreground from background to effectively

exploit context information in the classification task.

Object partiality, caused by low reconstruction quality or
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cabinet chair desk display door shelf table bed sink sofa toilet

3DmFV [2] 20.8 67.1 8.1 75.0 75.0 86.0 97.0 10.0 50.0 21.0 64.0

PointNet [30] 2.8 72.1 43.0 83.0 100.0 98.0 93.0 4.0 35.0 23.0 26.0

SpiderCNN [44] 17.9 54.3 17.4 86.0 90.0 90.0 88.0 7.0 40.0 32.0 14.0

PointNet++ [32] 18.9 71.4 12.8 94.0 45.0 79.0 88.0 2.0 45.0 14.0 35.0

DGCNN [42] 47.2 75.7 11.6 94.0 85.0 83.0 100.0 9.0 45.0 42.0 12.0

PointCNN [25] 42.5 77.9 24.4 76.0 20.0 92.0 76.0 4.0 35.0 24.0 19.0

Table 6. Per class average accuracy in % on ModelNet40 when training was done on our PB T50 RS. Low accuracies are highlighted.

O
B
J

B
G

PB
T25

PB
T25

R

PB
T50

R

PB
T50

R
S

PointNet [30] 81.3 83.1 82.2 79.9 78.8

PointNet++ [32] 80.3 85.4 84.1 81.3 82.8

Table 7. Overall accuracy in % of part segmentation of chairs in the

different variants of ScanObjectNN.

background seat back base arm

PointNet [30] 81.4 81.8 86.7 52.5 40.5

PointNet++ [32] 81.9 87.7 89.2 62.3 64.6

Table 8. Per part average accuracy in % of chairs in our hardest

variant PB T50 RS.

inaccurate object proposals, also needs to be addressed. Part

segmentation techniques [30, 25] could help to describe par-

tial objects.

Generalization between CAD models and real-world scans

needs more investigations. In general, we found that training

on real-world data and testing on CADs can generalize better

than the opposite case. It could be explained that real-world

data have more variations including background and par-

tiality as discussed above. However, CAD models are still

important because real-world scans are seldom complete and

noise free. Bridging this domain gap could be an important

research direction.

To facilitate future work, in the next sections, we propose

ideas and baseline solutions.

5. Background-aware Classification Network

We propose here a simple deep network to handle the

occurrence of background in point clouds obtained from

real scans; this is one of the open problems we raised in

the previous section. An issue with existing point cloud

classification networks is the lack of capability to distinguish

between foreground and background points. In other words,

existing methods take point clouds as a whole and directly

calculate features for classification. This issue stems from

the design of these networks and also from the simplicity of

available training datasets, e.g., ModelNet40.

To tackle this issue, our idea is to make the network aware

of the presence of background by adding a segmentation-

guided branch to the classification network. The segmenta-

tion branch predicts an object mask that separates the fore-

ground from the background. Note that the mask can be

easily obtained from our training data since our objects are

originally from scene instance segmentation datasets [19, 9].

5.1. Network Architecture

Our background-aware (BGA) model is built on top of

PointNet++ [32] (BGA-PN++). Our network is depicted in

Figure 6. In particular, we use three levels of set abstractions

from the PointNet++ to extract point cloud global features.

Global features are then passed through three fully connected

layers to produce object classification score. Dropout is

also used in a similar manner with the original PointNet++

architecture. Three PointNet feature propagation modules

are then employed to compute object masks in segmentation.

The feature vector just before the last fully connected layer

for the classification score is used as the input to the first

PointNet feature propagation modules, making the predicted

object mask driven by the classification output. We trained

both branches jointly. The loss function is the sum of the

classification and segmentation loss, which can be written

as Ltotal = Lclass + λLseg where Lclass and Lseg are both

cross entropy losses between the predicted and ground-truth

class labels and object masks, respectively. We set λ = 0.5
in our experiments.

Joint learning for both classification and segmentation

with the use of object masks allows the network to be aware

of relevant points (i.e., acknowledge the presence of back-

ground points). In addition, using classification prediction

as a prior to segmentation guides the network to learn ob-

ject masks that are consistent with the true shape of desired

object classes. As to be detailed in our experiments, jointly

learning classification and mask prediction results in better

classification accuracy in noisy scenarios.

Furthermore, we also introduce BGA-DGCNN, which is

a background-aware network based on DGCNN [42]. We

apply the same concept as BGA-PN++ that jointly predicts

both classification and segmentation, where the last fully

connected layer of the classification branch is used as input to

the segmentation branch. Our experimental results show that

our bga model is adaptive to different network architectures.

5.2. Evaluation

We evaluate our network on both our dataset and Model-

Net40. Table 9 shows a comparison between our network

1594



set abstraction 1

set abstraction 2

set abstraction 3

feature vector  

FC 512

FC 256

class vector  

input cloud  

FC 𝒞
class prediction  

⊕

feature propagation 1

feature propagation 2

feature propagation 3

mask vector  

FC 128

FC 2

mask prediction  

Classification branchSegmentation branch

Figure 6. Our proposed network.

Figure 7. Sample objects and their corresponding predicted masks

from the test set of PB T50 RS by our BGA-PN++. Note that color

on point clouds is for visualization purposes, but the input to the

networks are (x, y, z) coordinates only.

and existing ones on our hardest variant PB T50 RS and

ModelNet40 respectively. Our BGA models, BGA-PN++

and BGA-DGCNN, both outperform their vanilla counter-

parts with BGA-PN++ achieving the best performance on

our PB T50 RS. On ModelNet40, our BGA-PN++ improves

upon PointNet++ by almost 5% (with 52.6% of accuracy),

while our BGA-DGCNN achieves the top performance of

56.5%. Note that, in this evaluation all methods were trained

on our i.e. PB T50 RS. As shown, our BGA models gains

improvements in both ModelNet40 and our dataset.

In addition, we also evaluated the segmentation perfor-

mance of our network. Experimental results showed that

our BGA-PN++ performed at 77.6% and 71.0%, while our

BGA-DGCNN achieved 78.5% and 74.3% of segmentation

accuracy on our PB T50 RS and ModelNet40, respectively.

We visualize some of the object masks predicted by our

BGA-PN++ in Figure 7. It can be seen that our proposed

network is able to mask out the background fairly accurately.

Ours ModelNet40

OA mAcc OA mAcc

3DmFV [2] 63.0 58.1 51.5 52.2

PointNet [30] 68.2 63.4 50.9 52.7

SpiderCNN [44] 73.7 69.8 46.6 48.8

PointNet++ [32] 77.9 75.4 47.4 45.9

DGCNN [42] 78.1 73.6 54.7 54.9

PointCNN [25] 78.5 75.1 49.2 44.6

BGA-PN++ (ours) 80.2 77.5 52.6 50.6

BGA-DGCNN (ours) 79.9 75.7 56.5 57.6

Table 9. Overall and average class accuracy in % on our PB T50 RS

and on ModelNet40. Training is done on our PB T50 RS.

(a) Wrongly classified bed (b) Correctly classified display

Input Output Input Output

Figure 8. Sample segmentation results of our BGA-PN++ on Mod-

elNet40. Background and foreground are marked in orange and

blue, respectively.

5.3. Discussion and Limitation

While both BGA models demonstrate good performance,

we found that DGCNN-based networks generalizes well

between real and CAD data, e.g., when being trained on

real and tested on CAD data (Table 9) and vice versa (Table

3). Moreover, Table 3 also show that the same is true for

DGCNN-based models on the synthetic to real case. More

investigations on the DGCNN architecture could lead to

models that generalize better and bridge the gap between

synthetic and real data.

Our proposed BGA is not without limitation. In general,

it requires object masks and background to be included in

the data. Fig. 8-(a) shows a fail case of our method when

evaluating on a background-free ModelNet40 object.

6. Conclusion
This paper revisits state-of-the-art object classification

methods on point cloud data. We found that existing meth-

ods were successful with synthetic data but failed on realistic

data. To prove this, we built a new real-world object dataset

containing ∼ 15, 000 objects in 15 categories. Compared

with current datasets, our dataset offers more practical chal-

lenges including background occurrence, object partiality,

and different deformation variants. We benchmarked exist-

ing methods on our new dataset, discussed issues, identified

open problems, and suggested possible solutions. We also

proposed a new point cloud network to classify objects with

background. Experimental results showed the advance of

our method on both synthetic and real-world object datasets.
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