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Abstract

When describing images with natural language, descrip-

tions can be made more informative if tuned for downstream

tasks. This can be achieved by training two networks: a

“speaker” that generates sentences given an image and a

“listener” that uses them to perform a task. Unfortunately,

training multiple networks jointly to communicate, faces

two major challenges. First, the descriptions generated by

a speaker network are discrete and stochastic, making op-

timization very hard and inefficient. Second, joint training

usually causes the vocabulary used during communication

to drift and diverge from natural language.

To address these challenges, we present an effective opti-

mization technique based on partial-sampling from a multi-

nomial distribution combined with straight-through gradi-

ent updates, which we name PSST for Partial-Sampling

Straight-Through. We then show that the generated descrip-

tions can be kept close to natural by constraining them to

be similar to human descriptions. Together, this approach

creates descriptions that are both more discriminative and

more natural than previous approaches. Evaluations on the

COCO benchmark show that PSST improve the recall@10

from 60% to 86% maintaining comparable language nat-

uralness. Human evaluations show that it also increases

naturalness while keeping the discriminative power of gen-

erated captions.

1. Introduction

Describing images with natural language is a key step

for developing automated systems that communicate with

people. The complementary part of this human-machine

communication involves networks that can understand nat-

ural descriptions of images. Both of these tasks have been

studied intensively, but mostly as two separate problems,

image captioning and image retrieval. It is natural to “close

the loop” and seek to jointly train networks to cooperatively

communicate about visual content in natural language.

Figure 1: Challenges in training agents to communicate

about an image. (a) When a speaker network is trained

jointly with a listener network, the communicated language

may drift away from natural language, unless constrained,

yielding language that no longer maps to standard English

terms. (b): When the two network agents are trained sep-

arately, descriptions become less specific, because agents

cannot expect the other side to “understand” subtleties. (c):

Training both networks jointly while keeping communica-

tion close to natural language can yield descriptions that are

more discriminative while maintaining intelligibility.

Training multiple networks to communicate has been

studied in the context of visual dialogues [11, 12]. There,

a sequence of sentences is passed back-and-forth between

learning agents. Here, we take a step back and focus on a

single transmission between a “speaker network” and a “lis-

tener network”. We seek to develop the building blocks of

trainable communication by training both speaker and lis-

tener to communicate effectively with natural language.

What should be the properties of such natural commu-

nication? Good visual descriptions should obey two com-

peting objectives. First, a description should be natural

and fluent, using well-formed and meaningful sentences, so

they can be communicated to people. Second, a description

should be image-specific and informative, capturing the rel-
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evant elements of an image that make it unique. Aiming to

address these two objectives, several studies trained models

that consists of a speaker and a listener networks [9, 30, 31]

with corresponding losses to achieve both goals.

Unfortunately, training a speaker network together with

a listener network faces multiple challenges, primarily

language-drift and optimization. First, when the listener

and speaker can tune their communication, the resulting

language typically drifts away, losing its original seman-

tic meaning and becoming confusing when communicated

to people. For instance, networks may assign a new mean-

ing (blue) to a common word (red), or code highly specific

information within a single symbol (“field” means “giraffes

near a tree”) [24].

Second, training end-to-end speaker-listener systems re-

quires to optimize through an intermediate communicating

layer which is discrete and stochastic. Standard backpropa-

gation of gradients cannot be applied to such layers [4] and

alternative methods are often complex or slow to converge

[38, 44]. Because of these limitations, previous discrimi-

natie captioning approaches like in [31, 39] avoided end-to-

end training or obtained limited quality captions [9].

The current paper addresses these two challenges. First,

we show that keeping the discriminative captions close to

human-generated captions, is sufficient for maintaining flu-

ent and well-formed language while providing enough flex-

ibility such that captions are discriminative. Second, we

develop a new effective optimization procedure for jointly

training a cooperative speaker-listener network. It is based

on partial-sampling from a multinomial distribution com-

bined with straight-through (ST) gradient updates, which

we name PSST for Partial-Sampling Straight-through. It

can be applied to a multinomial model or with ST Gumbel

Softmax. PSST is very simple to implement and robustly

outperformed all baselines it was compared with.

This paper makes the following novel contributions (1)

A new and simple partial-sampling procedure for optimiz-

ing through discrete stochastic layers, directly applicable to

generating discriminative language. (2) New state-of-the-

art results on MS COCO discriminative captioning, improv-

ing recall from ∼60% to ∼86% for similar naturalness eval-

uated using CIDEr and human evaluation. (3) Systematic

evaluation of all the leading approaches for optimization

through stochastic layers, using a unified captioning bench-

mark. (4) An evaluation scheme that explicitly quantifies

the full curve of naturalness-vs-discriminability, instead of

a one-dimensional metric.

2. Discriminative captioning

In our setup of discriminative captioning, two networks

cooperate to communicate the content of a given image

(Figure 1). The first network, the speaker, is given an im-

age and produces a series of discrete tokens that describe

the image in natural language. Each token is represented

by a 1-hot vector from a predefined vocabulary. The second

network, the listener, takes this series of tokens and uses it

to find the input image among a set of distractor images.

In this setup, the speaker network is trained to focus on

the unique features of an image that would allow the listener

to detect it among distractors. Unlike [21, 39], the distractor

images are not available to the speaker as an explicit con-

text. Importantly, The two networks share a common goal:

communicate such that the listener identifies the image that

the speaker described. Their interaction therefore defines

a cooperative game, which is fundamentally different from

GAN-based adversarial approaches [9].

We address this task by training the speaker network

(parametrized by φ) jointly with the listener network

(parametrized by θ). When considering the objective func-

tion of this joint optimization, it must contain two com-

plementing components. First, as a discriminability loss

ldisc, the objective contains the loss suffered by the listener

when detecting the target image I among distractors using

the produced sentence w. Second, since natural language is

far from optimal for this task, the networks can find other

communication schemes that drift away from natural lan-

guage. To keep the communication interpretable to people,

we add a second component to the objective, a naturalness

loss lnat. It is aimed to ensure that the produced sentence w

is natural, by keeping it similar to human-created captions

for that image I . Together, the optimization problem is

min
φ,θ

λldisc(w, I) + (1− λ)lnat(w). (1)

Here φ are the parameters of the speaker network and θ are

the parameters of the listener network. For the naturalness

loss, we use CIDEr [40], lnat(w) = −CIDEr(w). For

the discriminative loss ldisc, we use the sum of two hinge

losses: one for selecting the correct image among a batch

of distractor images, and a second for selecting the correct

caption among a batch distractor captions as in [13]:

ldisc(w, I) = max [0, 1− Φθ(w, I) + Φθ(w
′, I)] (2)

+max [0, 1− Φθ(w, I) + Φθ(w, I ′)] ,

where w
′ is the hardest negative caption among candidate

captions, I ′ is the hardest negative image and Φ is the cosine

similarity over the embedding of the image and captions.

Instead of fixing a single value of λ, we compute the full

curve that captures the trade-off between discriminative and

natural descriptions, obtained by optimizing the model with

varying values of λ.

3. Related work

Image captioning has been studied intensively since

encoder-decoder models were introduced [45], aiming to

make captions more natural, diverse and distinctive.
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Naturalness. Several efforts to improve caption natu-

ralness use conditional GANs, since using the adversarial

discriminator alleviates the obstacle of defining a language-

naturalness loss [7, 9, 37]. As an alternative to trained

losses, information theory can also be used to select descrip-

tion terms that are natural [6].

Diversity. Several techniques were designed to im-

prove the diversity of captions generated for a given im-

age [8, 27, 37, 42]. [8] used a hierarchical compositional

model over captions, [27] used a discriminator that com-

pares a human-generated, unrelated and generated captions

and [43] suggested a metric to evaluate captions diversity.

Discriminability. Generating captions that describe an

image in a distinct way is key for effective captioning. Such

captions allow discriminating an image from other simi-

lar images. Also, early captioning models suffered from

poor generalization, often producing over-generic captions,

and making captions more discriminative may alleviate that

problem. In [39, 2], distractor images were used at infer-

ence time to create a distinctive caption. [19] recently de-

scribed a dataset that contains pairs of closely similar im-

ages, that can be used as hard-negatives for evaluating im-

age retrieval tasks. In [10] captions are made more dis-

tinct using contrastive learning, where the estimated con-

ditional probability for caption-image pair is required to be

higher than the reference model to positive pair and lower

for negative pair. [30] trained a discriminative captioning

model with REINFORCE over CIDEr rewards, using a self-

retrieval module to select hard negatives and CIDEr reward.

Most relevant to the current paper is [31]. They use a pre-

trained listener network to increase discriminate power of

captions. However, to avoid language drift, the listener was

kept fixed, rather than trained jointly with the speaker.

Several studies characterized the (non-human-readable)

languages that are learned when agents communicate in vi-

sual tasks [5, 24, 25, 26]. The current paper purposefully

focuses on keeping the language close to natural, rather than

study properties or emergent language.

4. Optimizing discrete stochastic layers

Joint training of two networks communicating through a

language layer is equivalent to training a network that has

an intermediate layer that is discrete and stochastic. We first

define formally the learning setup and then describe existing

optimization approaches for this setup.

In our model (Figure 2), caption generation is treated as

a stochastic process. At each step, t = 0, . . . , T the caption

generator (the speaker) outputs a distribution over a vocabu-

lary of words pφ(wt|I, w0, ..., wt−1). This distribution de-

pends on the input image I and the previous terms in the

sentence and is parametrized by the deterministic parame-

ters φ. We therefore treat the output of the speaker network

sφ(I) as a random sequence W with a distribution pφ(w|I)

over all word sequences w. From that distribution, one spe-

cific sequence is sampled and passed to the listener. Given

this sampled word sequence w = w0, . . . , wT , the listener

network, parametrized by θ, makes a prediction ŷ = fθ(w)
= fθ(sφ(I)) and suffers a loss l(y, ŷ; θ). Our goal is to prop-

agate the gradient of that loss, first to update the parameters

of the listener θ and then through the stochastic layer to up-

date the parameters of the speaker φ.

Training the parameters of the listener network poses

no special problems. The function fθ implemented by the

listener is deterministic and differentiable (almost every-

where), hence gradients of the losses can be propagated in

the standard way. This is also true for propagating the gradi-

ents back through the sequence of terms in a sentence using

standard “back-propagation through time”.

Unfortunately, for the speaker network, parameter tun-

ing is harder because this network emits discrete terms

in a stochastic way, making the speaker network non-

differentiable. Computation in stochastic neural networks

can be formalized using stochastic-computation graphs

(SCGs) [36]. In our case, we view the computation graph as

including a single stochastic computing node, correspond-

ing to the random sequence W . We think about the listener

network as providing the speaker with a loss lθ(w) for ev-

ery (sampled) sentence w. Our goal is to minimize the

expected loss minφ L(θ, φ)) = minφ Eφ(w) [lθ(w)] . The

gradient of this objective w.r.t. the speaker parameters φ is

∇φ

∫
pφ(w)lθ(w)dw =

∫
∇φpφ(w)lθ(w)dw. Since this

gradient does not have a form of an expectation, it cannot

be directly estimated efficiently by sampling.

Before describing our approach to estimate these gradi-

ents, we briefly describe the two main existing approaches

to this problem: Score-function estimators and Straight-

through Gumbel softmax.

Score-function estimators [14, 15], and specifically the

REINFORCE algorithm [44], are often described in the con-

text of reinforcement learning. There, an agent aims to max-

imize its reward by choosing the best action for a given state

according to a policy. In our context, the state is determined

by the input image and the preceding words, the actions cor-

respond to the set of words that can be emitted at a given

time step, and the reward is (minus) the loss imposed by the

listener. REINFORCE yields an unbiased estimator of the

gradient, but its variance tends to be large. Several variance

reduction techniques were proposed [16, 17, 33, 38]. but

due to their complexity, their adoption is still limited.

ST Gumbel Softmax [20, 32], the second main approach

to optimize the stochastic discrete layer, consists of three

components. (1) To handle stochasticity, the computation

graph is reparameterized, allowing to propagate gradients

through deterministic paths [23, 32, 35]. (2) A Gumbel max

process is used for sampling from a pre-determined distri-
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Figure 2: The model architecture. The speaker network and the listener networks are trained jointly, by passing gradients

through the text layer. The loss contains two components that are linearly weighted with a hyper parameter tuned on a

validation set. Naturalness loss: A measure of agreement between a generated caption and a set of predefined, ground-truth

captions for that image, using a CIDEr score. Those captions need not be discriminative. Discriminative loss: Measures

how well a listener can identify the input image among a set of 127 randomly-chosen distractor images.

bution and the Gumbel distribution [18] is relaxed using a

Gumbel softmax [20]. (3) A “straight-through trick” (ST)

[4] is used: In the backward pass, gradients are computed

as if the full continuous distribution was passed. In the for-

ward pass, tokens are sampled from that distribution. More

details about these methods for the current context are given

in our arXiv report [41].

5. Partially-sampled straight-through

For image captioning, using straight-through with Gum-

bel softmax approach, as described above, suffers from high

variance and bias.

The variance is high because the forward pass is

stochastic. At each step, the speaker computes the proba-

bility distribution pφ(w) over the vocabulary V of terms to

be emitted, then draws and emits a single term. This adds

inherent variance and conveys less information per sample

than passing the full continuous distribution. The added

variance hurts optimization because presenting the same in-

put to the network leads to different estimates of the gra-

dients. It can be viewed as adding noise to the loss, or as

training with noisy labels, which hurts convergence to good

minima. The effect of this variance on generated captions

is demonstrated in rows 2-3 of Figures 4b,c.

Furthermore, the ST estimator is also biased, because

the estimates of the gradients are computed as if the full dis-

tribution was passed. It would have been preferable to pass

the full distribution without sampling, but unfortunately, at

test time we must produce discrete word selections to gen-

erate specific sentences.

We propose a simple-to-implement procedure we call

partial-sampling straight-through (PSST). During training,

we pass the full continuous distribution for a fraction ρ of

the terms and pass a sampled one-hot for the remaining

1 − ρ. More formally, at each step, the speaker computes

the probability distribution pφ(wt) over the vocabulary V

of terms to be emitted. Then, we randomly draw a binary

value. With probability ρ, the speaker passes the full multi-

nomial distribution pφ(wt). With probability 1-ρ, it samples

a value from that distribution and emits the 1-hot vector cor-

responding to that term.

As a result, for ρ of the terms, the stochastic and discrete

units are practically replaced by a deterministic continuous

variable, In the extreme case of ρ = 0, the speaker always

operates as a sampler, and optimization can be viewed as a

multinomial version of the binary ST estimator of [4]. In the

other extreme case of ρ = 1, the speaker operates as a de-

terministic mapper, and outputs a set of dense multinomial

distributions.

This approach has several advantages. First, for ρ of

the terms, the estimator of the gradient is exact, because

computation is deterministic, therefore reducing the over-

all bias and variance of gradient estimation. At the same

time, for 1 − ρ of training images, the downstream listener

network does experiences stochastic variations, with terms

represented as 1-hot vectors, and learns to classify them cor-

rectly. This allows it to correctly handle one-hot samples

that are observed during the test phase. We find empirically

that this approach is highly effective and robust with respect

to the value of ρ.

Partial sampling takes advantage of the cooperative na-

ture of the speaker-listener relations. Unlike GAN training

(e.g. [9]), where the generator works hard not to reveal any

information that may give away its generated captions, the

speaker in cooperative games has an explicit aims to convey

as much information as possible to the listener. Specifically,
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during training, it is allowed to represent generated captions

as continuous distributions, which look very different than

human-created captions, and would be easily discriminated

by GANs. More generally, the fundamental differences in

the “game matrix” of communicating agents, cooperative

vs competitive, are important to consider when developing

joint optimization schemes.

The above discussion describes how we optimize

ldisc(w) with PSST Multinomial. Unforuntately, to op-

timize lnat(w), one cannot use PSST because CIDEr re-

quires sparse descriptors as input. Instead, one can use any

of the standard methods described in Section 4. In prac-

tice, we used REINFORCE because preliminary experiments

showed that its performance was comparable to the other

approaches.

6. Experiments

We evaluate our approach with two image captioning

benchmark datasets: COCO [29] and Flickr30k [46], and

compared to seven baselines.

6.1 Datasets. COCO has ∼123K images annotated with 5

human-generated captions. For a fair comparison with pre-

vious work, we used the same data split as in [31, 39], as-

signing ∼113K, 5K and 5K images for training, validation

and test splits, and using 9487 words [31].

Flickr30K has ∼31K images, annotated with 5 human-

generated captions for a total of ∼159K captions. We used

the split of [22] assigning 29K, ∼1K and 1K images for

train, validation and test splits. The vocabulary contains

words that appeared more than 5 times in the annotated cap-

tions, with a total of 7K words. Captions were clipped to a

maximum length of 16.

6.2 Compared Methods. (1) PSST MULTINOMIAL. The

method of section 5. (2) ST MULTINOMIAL. As (1) with

ρ = 0 (always sampling) (3) LUO et al. 2018 [31]. Speaker

was trained using REINFORCE and a “frozen” pre-trained

listener. (4) REINFORCE [44]. The speaker and listener

were trained alternately. (5) ST GUMBEL SOFTMAX [20].

During back-propagation gradients flow through the noisy

distribution of Gumbel softmax. During forward pass, to-

kens are sampled from that distribution. (6) ST Gum-

bel softmax where the temperature was annealed using the

schedule and hyper parameters of [20], τ=max(0.5, e−rt).
(7) SR-PL [30]. As (3) but using unlabeled data to be part

of the mini batch as hard negatives. (8) PSST GUMBEL

SOFTMAX. Similar to PSST Multinomial, but applying par-

tial sampling to the Gumbel-softmax distribution. (9) G-

GAN [9]. A conditional GAN with a generator trained with

policy gradient and early feedback.

6.3 Implementation details are provided [41]. In general,

we followed previously-published evaluation protocols and

used published hyper parameters whenever available. Our

code is available at http://github.com/vgilad/

CooperativeImageCaptioning.

6.4 Automated evaluation metrics.

Naturalness of generated captions was quantified by stan-

dard linguistic metrics: CIDEr [40], BLEU4 [34], ME-

TEOR [3], ROUGH [28] and SPICE [1].

Discriminability of generated captions was quantified by

the recall of the listener network. Specifically, at test time,

given an input image, the listener receives four inputs: the

caption generated by the speaker, the input image, 4999 dis-

tractor captions and 4999 distractor images. The listener

ranks all images based on their compatibility with the cap-

tion (measured using the cosine similarity between the im-

age representation and the caption). Based on this ranking,

we compute the recall@K, the average detection rate at the

top K. Namely, an image is considered detected if the score

of the input image is ranked within the top-K scores. We

report below recall@1, @5 and @10.

Balancing discriminability with naturalness. During train-

ing, we trade-off discriminability vs naturalness by testing

multiple values of the parameter λ of Eq. 1, specifically λ

in {10, 5, 2.5, 1.6, 1, 0.5}×10−3 (values are small to offset

the different scales of the two losses in Eq. 1).

7. Results

We first evaluate the naturalness and discriminability of

PSST on COCO. Figure 3 depicts recall@10 as a func-

tion of five naturalness scores: CIDEr, BLEU4, METEOR,

ROUGE and SPICE. For each method, we trained a series

of models, each with a different value of the trade-off pa-

rameter λ (the weight of ldisc in Eq. 1). With high values

of λ, models generate captions that are more discrimina-

tive, at the expense language quality, while models trained

with low λ generate highly natural captions but with lower

discriminability. The values of language metrics are pro-

vided in Table 1, for a fixed recall value. PSST Multinomial

achieved best scores across all five metrics. Values of Re-

call for a fixed CIDEr value are reported in Table 2. Here as

well, PSST Multinomial outperforms other approaches.

The effect of joint training and of partial sampling are

both significant. All methods that train networks jointly

consistently improve over separate training (red curve).

Broadly speaking, all three methods, REINFORCE, ST Gum-

bel softmax and ST Multinomial achieve comparable scores

for high naturalness (BLEU4> 0.3 or CIDEr>1.1). Sec-

ond, PSST Multinomial (blue curve) provides a significant

further improvement over all baselines. The underlying rea-

son for this improvement is that baseline approaches have

high variance because instead of deterministically transmit-

ting the full distribution over words, they sample a single

word from the distribution and transmit it. In PSST, a frac-
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(a) (b) (c)

(d) (e) (f)

Figure 3: Discriminability-Naturalness curves for COCO. (a-e) Each panel traces recall@10 as a function of naturalness,

as evaluated using five language metrics: (a) BLEU4 (b) CIDEr (c) METEOR (d) ROUGE (e) SPICE. Within each panel,

each curve corresponds to an optimization method. Markers on each curve correspond to models trained with different values

of the trade-off parameter λ. (f) The effect of partial sampling rate (ρ) on recall rate. Recall was extracted from panel (b)

by interpolation and selecting scores for CIDEr=1.22. Partial sampling (0<ρ< 1) is superior to full- or zero- sampling.

tion ρ of steps are deterministic, passing the full distribution

as a vector. For those steps, PSST variance is zero, hence

PSST reduces the variance by a factor of ρ. Similarly, PSST

zeros the bias when it passes the full distribution without

sampling, and therefore also cuts the bias by a factor of ρ.

Recall@5=80% C B M R S

REINFORCE 0.902 0.251 0.247 0.505 0.189

ST Gumbel Softmax 1.087 0.288 0.253 0.528 0.187

ST Multinomial 1.106 0.300 0.259 0.542 0.194

PSST Gumbel Softmax (ours) 1.109 0.320 0.263 0.541 0.205

PSST Multinomial (ours) 1.119 0.322 0.264 0.544 0.206

Table 1: Naturalness for a fixed recall rate on

COCO. CIDEr, BLEU4, METEOR, ROUGE, SPICE, for

R@5=80%. Compared methods without joint training are

not shown in this table because their best recall was much

lower: R@5=72 for [31], R@5=66.4 for [30].

Figure 3f illustrates the effect of the sampling-ratio pa-

rameter ρ, for PSST Multinomial and PSST Gumbel soft-

max. For a fair comparisons, we fixed the CIDEr score

at a given value (the maximal value that overlaps all

CIDEr=1.2 R@1 R@5 R@10

G-Gan [9] (CIDEr=0.795) 14.3 40.1 55.8

Luo et al. 2018 [31] 20.5 49.1 64.0

Gumbel Temperature Annealing 24.2 56.3 70.9

REINFORCE 31.3 67.0 80.5

ST Gumbel Softmax 31.8 67.3 80.6

ST Multinomial 31.9 67.9 81.8

SR-PL [30] (CIDEr=1.17) 33.0 66.4 80.1

PSST Gumbel Softmax (ours) 37.6 73.0 85.7

PSST Multinomial (ours) 38.1 74.2 86.3

Table 2: Recall for a fixed CIDEr on COCO, comparing

recall for fixed values CIDEr, as extracted from Figure 3.

The metrics are reported on a high CIDEr operating point,

showing the strong effect of joint training and the superior-

ity of our approach. For both PSST methods, ρ = 0.25 was

used. SR-PL [30] used the Karpathy split and CIDEr=1.17.

G-Gan [9] used COCO validation split and CIDEr=0.795.

variants), and report the recall@10 on the interpolated

discriminability-naturalness curve of Figure 3. For both

methods models with ρ = 0 or 1 gave significantly lower
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R@1 R@5 R@10

Separate vs joint training

(CIDEr=1.13)

Luo et al. 2018 [31] 27.7 60.1 74.6

Frozen Speaker (Luo) 32.6 67.8 81.8

Frozen Speaker (MLE) 19.3 46.9 61.3

REINFORCE 38.9 74.0 86.2

PSST Gumbel Softmax (ours) 45.0 78.8 89.4

PSST Multinomial (ours) 45.3 79.4 89.9

With human captions

PSST Multinomial 21.3 46.9 59.3

Listener trained on GT 25.4 53.9 66.8

Table 3: Ablation study. Top: The top section com-

pares the recall of three separate-training baselines, with

three joint-training baselines (last three rows). Recall met-

rics are reported at comparable operating points on the

discriminative-vs-natural curves, all at CIDEr=1.13. Bot-

tom: Recall values on the validation split, obtained when

ablating the speaker network. Feeding human-generated

(GT) captions to a listener trained with PSST ρ = 0.25
(top) or training a listener with GT captions (bottom).

results then models with ρ between 0.25 to 0.75. This is

consistent with the idea that using ρ < 1 (some sampling)

is necessary for exposing the listener to sparse inputs, so it

does not suffer a catastrophic domain shift at test time.

7.1. Ablation study

Comparison with separate training. To quantify the

benefit of joint training, we evaluate several separate-

training procedure. The top section in Table 3 shows the

recall obtained with 2-step training: The speaker model is

trained first either (1) as in [31]; (2) training the model

of [31] for another 150 epochs; (3) using MLE. It is then

kept “frozen” while the listener is trained. We used a lower

CIDEr than Table 2, because some baselines did not reach

higher CIDEr. PSST is again better for this regime.

Testing listeners with human-generated (GT) cap-

tions. The bottom section of Table 3 reports the recall of

two models tested with human-generated captions, reveal-

ing limitations of the model. First, a listener trained with

speaker-generated captions, perform substantially worse

when tested with human-generated captions. Even-though

human-generated captions are discriminative and people

captured the discriminative signals (Table 5 left), the lis-

tener fails to use them properly, because it is over-tuned to

the speaker-generated ones. Second, training a listener with

GT captions performs worse than joint training. Here, the

listener fails to learn to capture the discriminative signals in

human-generated captions.

7.2. Qualitative results

To get better insight into the captions created by our sys-

tem, we compare their quality in several ways. First, Fig-

ure 4a illustrates the effect of the trade-off parameter λ on

the discriminability and naturalness of generated captions.

We then evaluate the benefits of joint training and partial

sampling, by comparing PSST Multinomial to ST multino-

mial (always sampling) and to REINFORCE (separate train-

ing). We compare them in two ways. Figure 4b compares

caption naturalness at similar recall values and Figure 4c

compares discriminability at similar CIDEr values. See de-

tails in the caption of Figure 4, and more examples in [41]

7.3. Evaluations on Flickr30

We evaluated PSST and baselines on Flickr30K. This

dataset was never used during the development of the

method, and evaluations were made after the experiments

on COCO were completed. Table 4 lists the naturalness

metrics for a fixed recall (90%) on this dataset. PSST is

comparable or better than other joint-training approaches.

Recall@5=90% C B M R S

REINFORCE 0.431 0.173 0.188 0.435 0.129

ST-Gumbel SM 0.484 0.213 0.188 0.455 0.125

ST Multinomial 0.478 0.212 0.188 0.452 0.124

PSST Gumbel Softmax (ours) 0.485 0.207 0.188 0.447 0.126

PSST Multinomial (ours) 0.488 0.213 0.190 0.448 0.129

Table 4: Evaluation on Flickr30K. Language quality

metrics CIDEr, BLEU4, METEOR, ROUGE, SPICE for

R@5=90%. Only methods that reached 90% recall are

shown.

7.4. Human evaluations

We evaluated the discriminability and naturalness of

various models in a 2-alternative-forced-choice experiment

with Amazon Mechanical Turk raters.

Table 5 (left) compares the discriminability of generated

captions, for models that share a similar automated natural-

ness (CIDEr ≈ 1.22). Raters were presented with gener-

ated caption of the tested model along with a couple of im-

ages: the correct image, from which the caption was gen-

erated, and a second, distractor image, that was selected

by [31] to be similar to the target. Raters were asked to

choose which image is best described by the caption. This

task was designed to measure caption discriminative power,

regardless of its naturalness, hence we compared models

having similar CIDEr but varying recall@10 levels. Re-

sults suggest that PSST Multinomial allows raters to detect

the correct image slightly better. Table 5(right) compares

the naturalness of generated captions, for models that share
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1. a cat laying on top 
wooden chair in a 
wooden chair

2. a cat laying on top of 
a wooden chair 

3. a cat laying on to of 
a chair 

1. a black white sink
and a sink in a 
bathroom

2. a white bathroom with 
a sink and a mirror

3. a bathroom with a 
sink and a mirror

1. a teddy bear sitting 
bookshelf bookshelf
books

2. a teddy bear sitting in 
a library of books

3. a teddy bear sitting in 
front of  a shelf

1    1.6

1    3.1

4    2.0

1. �✁✂✄ ☎✆✝✞✟✠✡☛☞✌✍✎ ✏ ✑ 0.010

2. ✒✓✔✕ ✖✗✘✙✚✛✜✢✣✤✥✦ ✧ ★ 0.0025

3. ✩✪✫✬ ✭✮✯✰✱✲✳✴✵✶✷✸ ✹ ✺ 0.0005
(a)

1    1.0

6    1.8

19   2.0

1    0.9

1    1.6

1    2.0

Rank CIDEr

2    1.0

2    1.2

2    1.2

1. two people sitting on 
a boat in a water in 
the water

2. a man and a woman 
sitting in a boat in the 
water

3. two people sitting on 
a boat in the water

1. a person taking a sub-
way train at a sub-way
station with a sub-way

2. a group of people is 
standing in a train 
station

3. a group of people 
standing in a train 
station

1    1.1

4    1.3

4    1.3

Rank CIDEr

1. a pizza with a pizza 
sitting on a wooden

2. a pizza sitting on top 
of a on a

3. a pizza sitting on top 
of a wooden table

4    1.0

1    1.2

2    1.3

(b)
1. REINFORCE

2. Multinomial ST

3. PSST Multinomial

21   0.6

6     0.6

7     0.8

1. a airplane is sitting 
on the runway at an 
airport

2. an airplane is on the 
runway at an airport

3. a white airplane is 
sitting on a runway

1. a man standing on a 
beach with a surfboard

2. a man standing on the 
beach with a surfboard

3. a young man standing 
on the beach with a 
surfboard

22   1.2

8     1.2

5     1.2

1. a living room with a 
couch and a television

2. a living room with a 
large and a television 

3. a living room with a 
large couch and a 
television

16   0.6

12   0.7

8    0.6

Rank CIDEr

(c)
1. REINFORCE

2. Multinomial ST

3. PSST Multinomial

Figure 4: Qualitative examples. Red text highlight problematic wording; green text highlights correct grammar with addi-

tional discriminative information. Low CIDEr scores are often due to repetitions and missing nouns. (a) The parameter λ

trade-offs discriminability with naturalness. All captions were created using PSST Multinomial, but with varying values

of λ. The top-row caption (high λ = 0.01), yields more discriminative captions; bottom-row captions (low λ), produce more

natural sentences. (b) The optimization method affects naturalness. Captions were created using (1) REINFORCE, (2) ST

multinomial (3) PSST Multinomial. For each method, λ was chosen to produce a similar recall@10 rate ≈ 80%, yielding

mean CIDEr scores of 1.017, 1.209, 1.229 respectively. These examples demonstrate that for this fixed recall, models with

higher CIDEr tend to produce more natural captions. To provide “typical” images, we selected images with captions whose

CIDEr scores was close to the mean CIDEr of each method and at the same time where ranked high. (c) The optimization

method affects discriminability. For each method, λ was chosen to produce CIDEr ≈ 1.2, yielding an average image

retrieval rank of 20, 9, 8 respectively. The examples demonstrate that for a fixed CIDEr score, models with better image

retrieval rank tend to produce more discriminative captions. More examples in [41].

a similar automated discriminability (recall@10≈ 80%).

Raters found that PSST Multinomial captions were signifi-

cantly more natural than the reference model and competing

model.

8. Conclusion

This paper addresses the problem of building deep mod-

els that communicate about their perceived world using

human-readable language. We find that training networks

jointly while keeping captions similar to human-generated

captions, improves both the discriminatibility of captions

and their naturalness. Both are further improved using a

partial sampling technique, which allows networks to pass

more information during training. This optimization ap-

proach reduces the variance and bias of gradient estimators,

allowing networks to converge to better solutions.

This work can be extended in several natural ways, in-

cluding having the speaker network and listener network

communicate across several rounds (visual dialogues), or

introducing communication between multiple agents. We

expect our approach to contribute to systems that commu-

nicate with people about their perceived environment.

Method Accuracy Naturalness

Luo 2018 [31] 72% -9%

ST Multinomial 69% reference

PSST Multinomial (ours) 75% +20%

Human 85% -

Table 5: Human rater evaluation: (a) Discriminative

power. Accuracy is computed by asking raters to tell a

target image from a distractor image based on a caption.

Reported are accuracy of the majority votes among 5 raters

over 300 images. (b) Naturalness is computed by asking

raters to rank two captions for using proper English, with

the image they describe. Raters were instructed to pay at-

tention to incoherent singular-plural terms, repeating terms

and broken sentences. One caption was generated by ST-

multinomial and the second from the evaluated model. All

three models were selected to have comparable discrim-

inability, specifically, a recall@10 of ≈ 80%.
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