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Abstract

In this work, we present a framework to measure and

mitigate intrinsic biases with respect to protected variables

–such as gender– in visual recognition tasks. We show

that trained models significantly amplify the association

of target labels with gender beyond what one would ex-

pect from biased datasets. Surprisingly, we show that even

when datasets are balanced such that each label co-occurs

equally with each gender, learned models amplify the asso-

ciation between labels and gender, as much as if data had

not been balanced! To mitigate this, we adopt an adversar-

ial approach to remove unwanted features corresponding to

protected variables from intermediate representations in a

deep neural network – and provide a detailed analysis of

its effectiveness. Experiments on two datasets: the COCO

dataset (objects), and the imSitu dataset (actions), show

reductions in gender bias amplification while maintaining

most of the accuracy of the original models.

1. Introduction

While visual recognition systems have made great

progress toward practical applications, they are also sensi-

tive to spurious correlations and often depend on these erro-

neous associations. When such systems are used on images

containing people, they risk amplifying societal stereotypes

by over associating protected attributes such as gender, race

or age with target predictions, such as object or action la-

bels. Known negative outcomes have included representa-

tion harms (e.g., male software engineers are being over-

represented in image search results [11]), harms of oppor-

tunity, (e.g., facial recognition is not as effective for people

with different skin tones [3]), to life-threatening situations

(e.g., recognition rates of pedestrians in autonomous vehi-

cles are not equally accurate for all groups of people [32]).

In this paper we study gender bias amplification: the ef-
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Figure 1. On the top we illustrate our newly introduced concept

of Dataset Leakage which measures the extent to which gender

–or more generally a protected variable– can be inferred from ran-

domly perturbed ground-truth labels. On the bottom we illustrate

our concept of Model Leakage which measures the extent to which

gender can be inferred from the outputs of a model. A model am-

plifies bias if model leakage exceeds dataset leakage.

fect that trained models exaggerate gender stereotypes that

are present in the training data. We focus on the tasks of

recognizing objects in the COCO dataset [16] and actions

in the imSitu dataset [36], where training resources exhibit

gender skew and models trained on these datasets exhibit

bias amplification [39].1 In an effort to more broadly char-

acterize bias amplification, we generalize existing measures

of bias amplification. Instead of measuring the similarity

between training data and model prediction distributions,

we compare the predictability of gender from ground truth

labels (dataset leakage, Figure 1 on the top) and model pre-

dictions (model leakage, Figure 1 on the bottom). Each of

these measures is computed using a classifier that is trained

1For example women are represented as cooking twice as often as men

in imSitu, but after models are trained and evaluated on similarly dis-

tributed data, they predict cooking for women three times as often as men.
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Figure 2. In our bias mitigation approach, we learn a task-specific

model with an adversarial loss that removes features correspond-

ing to a protected variable from an intermediate representation in

the model – here we illustrate our pipeline to visualize the removal

of features in image space through an auto-encoder network.

to predict gender from either ground truth labels or models

predictions. We say a model exhibits bias amplification if

it leaks more information about gender than a classifier of

equivalent accuracy whose errors are only due to chance.

Our new leakage measures significantly expand the types

of questions we can ask about bias amplification. While

previously it was shown that models amplify bias when

they are required to predict gender alongside target vari-

ables [39], our empirical findings indicate that when models

are not trained to predict gender, they also amplify gender

bias. Surprisingly, we find that if we additionally balance

training data such that each gender co-occurs equally with

each target variable, models amplify gender bias as much as

in unbalanced data! This strongly argues that naive attempts

to control for protected attributes when collecting datasets

will be ineffective in preventing bias amplification.

We posit that models amplify biases in the data balanced

setting because there are many gender-correlated but unla-

beled features that cannot be balanced directly. For example

in a dataset with equal number of images showing men and

women cooking, if children are unlabeled but co-occur with

the cooking action, a model could associate the presence of

children with cooking. Since children co-occur with women

more often than men across all images, a model could label

women as cooking more often than we expect from a bal-

anced distribution, thus amplifying gender bias.

To mitigate such unlabeled spurious correlations, we

adopt an adversarial debiasing approach [34, 2, 38, 6]. Our

goal is to preserve as much task specific information as pos-

sible while eliminating gender cues either directly in the im-

age or intermediate convolutional representations used for

classification. As seen in Figure 2, models are trained ad-

versarially to trade off a task-specific loss while trying to

create a representation from which it is not possible to pre-

dict gender. For example, in Figure 3 in the bottom right

image, our method is able to hide regions that indicate the

gender of the main entity while leaving enough information

to determine that she is weight lifting.

Figure 3. Images after adversarial removal of gender when applied

to the image space. The objective was to preserve information

about objects and verbs, e.g. scissors, banana (COCO) or vaulting,

lifting (imSitu) while removing gender correlated features.

Evaluation of our adversarial debiased models show that

they are able to make significantly better trade-offs between

task accuracy and bias amplification than other methods.

We consider strong baselines that include masking or blur-

ring out entities by having access to ground truth mask an-

notations for people in the images. We also propose a base-

line that simply adds noise to intermediate representations

– thus reducing the ability to predict gender from features,

but often at a significant compromise in task accuracy. Of

all methods considered, only adversarial debiasing provided

a better trade-off compared to randomizing model predic-

tions, and we were able to reduce bias amplification by 53-

67% while only sacrificing 1.2 - 2.2 points in accuracy.

2. Related Work

Recently, researchers have demonstrated that machine

learning models tend to replicate societal biases present in

training datasets. Concerns have been raised for applica-

tions such as recommender systems [35], credit score pre-

diction [9], online news [24], and others [11] and in re-

sponse various approaches have been proposed to mitigate

bias [1, 10]. However, most previous work deals with issues

of resource allocation [5, 7] where the focus is on calibrat-

ing predictions. Furthermore, works in this domain often

assume protected variables are explicitly specified as fea-

tures, making the goal of calibration more clearly defined.

However in visual recognition, representations for protected

attributes are automatically inferred from raw data.

There are also works addressing biases in images [25,

39, 27, 3, 20, 4]. Zhao et al [39] reduces bias in struc-

tured prediction models where gender is one of the target

variables. Burns et al [4] attempts to calibrate gender pre-

dictions of a captioning system by modifying the input im-

age. In contrast, our work focuses on models that are not

aimed at predicting gender, which is a more common sce-

nario. Calibration methods would not be effective to debias

5311



in our proposed setup, as gender is not one of the outputs.

Our work is motivated by previous efforts on adversarial

debiasing in various other tasks and domains [38, 2, 34, 6,

40, 8]. We provide further details about this family of meth-

ods in the body of the paper, and adopt this framework for

debiasing the intermediate results of deep neural networks.

Our work advances the understanding of this area by explor-

ing what parts of deep representations are the most effective

to debias under this approach, and we are the first to propose

a way to visualize such debiased representations.

Issues of dataset bias have been addressed in the past

the computer vision community [30, 12, 29]. Torralba and

Efros [30] showed that it was possible to identify the source

dataset given image samples for a wide range of standard

datasets, and [12] addresses this issue by learning shared pa-

rameters across datasets. More recently, Tommasi et al [29]

provided a fresher perspective on this issue using deep

learning models. There are strong connections with these

prior works when dataset source is to be taken as a pro-

tected variable. Our notion of bias is more closely related

to the notion of bias used in the fairness in machine learning

literature, where there is protected variable (e.g. gender) for

which we want to learn unbiased representations (e.g. [37]).

In terms of evaluation, researchers have proposed differ-

ent measurements for quantifying fairness [9, 15, 5]. In con-

trast, we try to reduce bias in the feature space. We adopt

and further develop the idea of leakage as an evaluation cri-

teria, as proposed by Elazar and Goldberg [6] to debias text

representations. We significantly expand the leakage for-

mulation and propose dataset leakage, and model leakage

as measures of bias in learned representations.

Building models under fairness objectives is also related

to feature disentangling methods [28, 22, 17, 18, 19]. How-

ever, most research in this domain has focused on facial

analysis – where there is generally more well aligned fea-

tures. This general area of work is also related to efforts in

building privacy preserving methods [31, 26, 33, 13], where

the objective is to obfuscate the input while still being able

to perform a recognition task. In contrast, in fairness meth-

ods, there is no requirement to obfuscate the inputs, and in

particular the method proposed in this paper is most effec-

tive when applied to intermediate feature representations.

3. Leakage and Amplification

Many problems in computer vision inadvertently re-

veal demographic information in images. For example, in

COCO, images of plates contain significantly more women

than men. If a model predicts that a plate is in the image, we

can infer there is likely a woman as well. We refer to this

notion as leakage. In this section, we present formal defini-

tions of leakage for a dataset and models, and a measure for

quantifying bias amplification as summarized in Figure 1.

Dataset Leakage: Given an annotated dataset D contain-

ing instances (Xi, Yi, gi), where Xi is an image annotated

with a set of task-specific labels Yi (e.g., objects), and a pro-

tected attribute gi (e.g., the image contains a male/female

person)2, we say that a particular annotation Yi leaks in-

formation about gi if there exists a function f such that

gi ≈ f(Yi). We refer to this f as an attacker as it tries

to reverse engineer information about protected attributes in

the input image Xi only from its task-specific labels Yi. To

measure leakage across a dataset, we train such an attacker

and evaluate it on held out data. The performance of the

attacker, the fraction of instances in D that leak information

about gi through Yi, yields an estimate of leakage:

λD =
1

|D|

∑

(Yi,gi)∈D
1[f(Yi) == gi],

where 1[·] is the indicator function. We extend this defini-

tion of leakage to assess how much gender is revealed at

different levels of accuracy, where errors are due entirely to

chance. We define dataset leakage at a performance a by

perturbing ground truth labels, with some function r(Yi, a),
such that the overall accuracy of the changed labels with

respect to the ground truth achieves an accuracy a:

λD(a) =
1

|D|

∑

(Yi,gi)∈D
1[f(r(Yi, a)) == gi],

This allows us to measure the leakage of a model whose

performance is a and whose mistakes cannot be attributed

to systematic bias. Across all experiments, we use F1 as the

performance measure, and λD = λD(1.0), by definition.

Model Leakage: Similar to dataset leakage, we would like

to measure the degree a model, M produces predictions,

Ŷi = M(Xi), that leak information about the protected

variable gi. We define model leakage as the percentage of

examples in D that leak information about gi through Ŷi.

To measure prediction leakage, we train a different attacker

on Ŷi to extract information about gi:

λM (a) =
1

|D|

∑

(Ŷi,gi)∈D
1[f(Ŷi) == gi)],

where f is a attacker function trained to predict gender from

the outputs of model M which has an accuracy score a.

Bias Amplification: Formally, we define the bias ampli-

fication of a model p, as the difference between the model

leakage and the dataset leakage at the same accuracy a.

∆ = λM (a)− λD(a) (1)

Note that λD(a) measures the leakage of an ideal model

which achieves a performance level a but only makes mis-

takes randomly, not due to systematic bias. A model with ∆

2In this paper, we assume gender as binary due to the available annota-

tions, but the work could be extended to non-binary, as well as a broader

set of protected attributes, such as race or age.
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larger than zero leaks more information about gender than

we would expect even from simply accomplishing the task

defined by the dataset. This represents a type of amplifi-

cation on the reliance on protected attributes to accomplish

the prediction task. In Eq. (1), a could be any performance

measurement but we use F1 score throughout our experi-

ments. We show later in Section 4 that all models we evalu-

ated leak more information than we would expect and even

leak information when the dataset does not.

Creating an Attacker: Ideally, the attacker should be a

Bayes optimal classifier, which makes the best possible pre-

diction of g using Y . However, in practice, we need to train

a model to do prediction for every model, and we use a deep

neural network to do so. Yet, we are not guaranteed to ob-

tain the best possible function for mapping y to g. Thus, it is

important to consider the reported leakage as a lower bound

on true leakage. In practice, we find that we can robustly

estimate f (see Section 4: Attacker Learning is Robust).

4. Bias Analysis

In this section we summarize our findings that both im-

Situ and COCO leak information about gender. We show

that models trained on these datasets leak more informa-

tion than would be expected (1) when models are required

to predict gender through a structured predictor that jointly

predicts labels and gender, (2) when models are required to

predict only labels, and (3) even when not predicting gender

and datasets were balanced such that each gender co-occurs

equally with target labels. Table 1 summarizes our results.

4.1. Experiment Setup

We consider two tasks: (1) multi-label classification in

the COCO dataset [16], including the prediction of gender,

and (2) imSitu activity recognition, a multi-classification

task for people related activities.

Datasets: We follow the setup of existing work for study-

ing bias in COCO and imSitu [39], deriving gender labels

from captions and “agent” annotations respectively. For the

purpose of analysis, we exclude “person” category and only

use images containing people. We have 22826, 5367, 5473
and 24301, 7730, 7669 images in the training, validation

and testing set for COCO and imSitu respectively.

Models: For both object and activity recognition, we use

a standard ResNet-50 pretrained on Imagenet (ILSVRC) as

the underlying model by replacing the last linear layer. We

also consider the Conditional Random Field (CRF) based

model in [39] when predicting gender jointly with target

variables. Attackers are a 4-layer multi-layer perceptron

(MLP) with BatchNorm and LeakyReLU in between.

Metrics: We use mAP, or the mean across categories of the

area under the precision-recall curve, and F1 score for both

tasks by using the discrete output predictions of the model.

Computing Leakage: Model leakage is predicted from

pre-activation logits while dataset leakage is predicted from

binary labels. Attackers are trained and evaluated with an

equal amount images of men and women.

Training Details: All models are developed and evaluated

on the same dev and test sets from the original split. We

optimize using Adam [14] with a learning rate of 10−4 and

a minibatch size of 32 to train the linear layers for classi-

fication. We then fine-tune the model with a learning rate

of 5 × 10−6. We train all attackers for 100 epochs with a

learning rate of 5 × 10−5 and a batch size of 128, keeping

the snapshot that performs best on the dev set.

4.2. Results

Dataset Leakage: Dataset leakage measures the degree to

which ground truth labels can be used to estimate gender.

The rows corresponding to “original CRF” in Table 1 sum-

marize dataset leakage in imSitu and COCO (λD). Both

datasets leak information: the gender of a main entity in the

image is extractable from ground truth annotations 67.72%

and 68.26% for COCO and imSitu, respectively.

Bias Amplification: Bias amplification (∆) captures how

much more information is leaked than what we expect

from a similar model which makes mistakes entirely due to

chance. Dataset leakage needs to be calibrated with respect

to model performance for computing bias amplification. To

do so, we randomly flip ground truth labels to reach various

levels of accuracy. Figure 4 shows dataset leakage at differ-

ent performance levels in COCO and imSitu. The relation-

ship between F1 and leakage is roughly linear. In Table 1,

we report adjusted leakage for models at appropriate levels

(λD(F1)). Finally, bias amplification (∆) can be computed

by taking the difference between adjusted dataset leakage

(λD(F1)) and model leakage (λM (F1)).
Models trained on standard splits of both COCO and im-

Situ that jointly predict gender and target labels (the origi-

nal rows in Table 1), all leak significantly more gender in-

formation than we would expect by chance. Surprisingly,

imSitu is more gender balanced than COCO but actually

leaks significantly more information than models trained on

COCO. When models are no longer required to predict gen-

der, they leak less information than before but still more

than we would expect (the no gender rows in Table 1).

Alternative Data Splits: It is possible to construct datasets

which leak less through subsampling. We obtain splits more

balanced in male and female co-occurrences with labels by

imposing the constraint that neither gender occurs more fre-

quently with any output label by a ratio greater than α:

∀y : 1/α < #(m, y)/#(w, y) < α, (2)

where #(m, y) and #(w, y) are the number of occurrences

of men with label y and of women with label y respectively.

Enforcing this constraint in imSitu is trivial because each
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Statistics Leakage Performance

dataset split #men #women λD λM (F1) λD(F1) ∆ mAP F1

COCO [16]

original CRF 16, 225 6, 601 67.72± 0.31 73.20± 0.59 60.35 12.85 57.77 52.52
no gender 16, 225 6, 601 67.72± 0.31 70.46± 0.36 60.53 9.93 58.23 53.75
(α = 3) 10, 876 6, 598 62.00± 0.98 67.78± 0.29 57.50 10.28 57.04 52.60
(α = 2) 8, 885 6, 588 56.77± 1.45 64.45± 0.56 54.72 9.73 56.21 51.95
(α = 1) 3, 078 3, 078 53.15± 1.10 63.22± 1.11 52.85 10.37 48.23 42.89

imSitu [36]

original CRF 14, 199 10, 102 68.26± 0.31 78.43± 0.26 56.58 21.85 41.83 40.75
no gender 14, 199 10, 102 68.26± 0.31 76.93± 0.20 56.46 20.47 41.02 40.11
(α = 3) 11, 613 9, 530 68.11± 0.55 75.79± 0.49 55.98 19.81 39.20 37.64
(α = 2) 10, 265 8, 884 68.15± 0.32 75.46± 0.32 55.74 19.72 37.53 36.41
(α = 1) 7, 342 7, 342 53.99± 0.69 74.83± 0.34 53.20 21.63 34.63 33.94

Table 1. In this table we show for different splits in COCO and imSitu, (1) λD , dataset leakage or the accuracy obtained by predicting

gender from ground truth annotations, showing that our data balancing approach successfully achieves significantly reducing this type of

leakage (2) λM (F1), model leakage or the accuracy obtained by a model trained to predict gender on the outputs of a model trained on the

target task, the last two columns show the mAP and F1 score of the model, and (3) λD(F1), dataset leakage at a certain performance leverl,

or the leakage of a model with access to ground truth annotations but with added noise so that its accuracy matches that of a model trained

on this data, i.e. same F1 as shown in the last column. (4) ∆, bias amplification, the difference between model leakage and dataset leakage

at the same performance level, indicating how much more leakage the model is exhibiting over chance.
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Figure 4. Dataset leakage in COCO and imSitu as function of F1

score. Ground truth labels were randomly flipped to simulate a

method that performs at different levels of F1 score. We refer

to this accuracy adjusted leakage as λD(F1)), or the amount we

would expect a method to leak given its performance level.

image is only annotated with one verb: we simply sample

the over-represented gender to pass the above constraints.

For COCO, we heuristically enforce this constraint since

each image contains multiple object annotations. We try

to make every object satisfy this constraint one at a time,

removing images having less objects. We iterate through all

objects until this process converges and all objects satisfy

the constraint. We create splits for α ∈ {3, 2, 1}.3

Table 1 rows α = {3, 2, 1} summarize results for re-

balancing data with respect to gender. As we expect, de-

creasing values of α yields smaller datasets with less dataset

leakage but worse predictors because there is less data. Yet

model leakage does not reduce as quickly as dataset leak-

age, resulting in nearly no change in bias amplification. In

fact, when there is nearly no dataset leakage, models still

leak information. Likely this is because it is impossible to

balance unlabeled co-occurring features with gender (e.g.

COCO only has annotations for 80 objects) and the models

3Practically satisfying α = 1 is in-feasible, but our heuristic is able to

find a set where α = 1.08.

Attacker λM

1 layer , ———- , all data 68.82± 0.35
2 layer , 100 dim , all data 70.83± 0.58
2 layer , 300 dim , all data 71.03± 0.52
4 layer , 300 dim , all data 70.46± 0.36

4 layer , 300 dim , 75% data 69.93± 0.51
4 layer , 300 dim , 50% data 69.89± 0.98
4 layer , 300 dim , 25% data 68.54± 1.10

Table 2. Varying attacker architecture and training data when es-

timating model leakage on the original COCO. The leakage esti-

mate is robust to significant changes, showing that estimation of

leakage with our adversaries is largely easy and stable.

still rely on these features to make predictions. In summary,

balancing the co-occurance of gender and target labels

does not reduce bias amplification in a meaningful way.

Attacker Learning is Robust: Measuring leakage relies

on being able to consistently estimate an attacker. To verify

that leakage estimates are robust to different architectures

and data settings on the attacker side, we conduct an abla-

tion study in Table 2. We vary the attacker architecture and

the amount of training data to measure model leakage (λM ).

Except an attacker with 1-layer, none of the others vary in

their estimation of leakage by more than 2 points.

5. Adversarial Debiasing

In this section we show the effectiveness of a method

for reducing leakage through training with an auxiliary ad-

versarial loss which effectively removes gender information

from intermediate representations. We additionally propose

a way to visualize the effects of this approach on the input

space, to inspect the type of information being removed.
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5.1. Method Overview

We propose a simple formulation for reducing the

amount of leakage in a model, summarized in Figure 2.

We hypothesize that models leak extra information about

protected attributes because the underlying representation

is overly sensitive to features related to those attributes. As

such, we encourage models to build representations from

which protected attributes can not be predicted.

Our methods rely on the construction of a critic, c, which

attempts to predict protected information from an interme-

diate representation, hi for a given image Xi, of a predictor,

p. The critic attempts to minimize a loss over the amount of

information it can extract:

∑

(hi,gi)∈D
Lc(c(hi), gi),

while the predictor tries to minimize its loss over the task

specific predictions while increasing the critic’s loss:

Lp =
∑

(Xi,hi,Yi)∈D
[L(p(Xi), Yi)− λLc(c(hi), gi)].

In both cases, L is the cross-entropy loss, and when optimiz-

ing Lp we do not update c, and trade-off task performance

with sensitivity to protected attributes with λ.

We also experiment with optimizing the adversarial loss

on the input feature space by leveraging an encoder-decoder

model that auto-encodes the input image Xi. In order to ac-

complish this goal, we add an additional loss with a weight

parameter β to the predictor as follows:

Lp =
∑

i

[

β|Xi − X̂i|ℓ1+L(p(X̂i), Yi)−λLc(c(X̂i), gi)
]

Where X̂i = Mi · Xi, which is the original image

element-wise multiplied with a mask Mi generated by an

encoder-decoder bottleneck network with input Xi. So the

first term is encouraging the mask to maintain the informa-

tion in the original image, the second term is trying to obtain

correct task-specific predictions from the masked input, and

the third term is adversarially trying to obscure gender by

modifying the mask. This is similar to the proposed exper-

iment in Palacio et al [21] where instead, the outputs of an

autoencoder are directly fed to a convolutional neural net-

work trained to recognize objects in order to interpret the

patterns learned by the network. In contrast, our objective

is to visualize what the adversary learned to obfuscate while

trying to preserve accurate results.

5.2. Implementation Details

We first train the classification layers (linear classifiers)

with 10−4 as learning rate and a batch size of 32 until the

performance plateaus. We then incorporate the adversarial

loss, and fine-tune the model end-to-end using a learning

rate 5×10−6. Before activating the adversarial loss, we first

train the gender classification branch so that its gradients

provide useful guidance for feature removal during adver-

sarial training. In every batch, we sample the same amount

of male and female images for training this adversary.

5.3. Models

Adversarial Methods We consider three different types

of adversaries which try to remove leakage at different

stages in a ResNet-50 classification network.

• adv @ image, or removing gender information directly

at the image. We use U-Net [23] as our encoder-decoder

network to predict a mask Mi. The original image is

point-wise multiplied with this mask and then fed to two

branches. The first branch is a ResNet-18 which attempts

to detect gender (the adversary) and the second branch is

a ResNet-50 for classifying the target categories.

• adv @ conv4, removes gender information from an inter-

mediate hidden representation of ResNet-50 (on the 4th

convolutional block). We use an adversary with 3 convo-

lutional layers and 4 linear layers.

• adv @ conv5, removes gender information from the final

convolutional layer of ResNet-50. We use a linear adver-

sary which takes as input a vectorized form of the output

feature map and uses a 4-layer MLP for classification.

Baselines: We consider several alternatives to adversarial

training to reduce leakage, including some that have access

to face detectors and ground truth segment annotations.

• Original: The basic recognition model, trained on the

original data, without any debiasing attempt.

• Randomization: Adding Gaussian noise at increasing

magnitudes to the pre-classification embedding layer of

the original model. We expect larger noise to reduce

more leakage while preventing the model from effec-

tively classifying images.

• Alternative Datasets: We also consider constructing al-

ternative data splits through downsampling approaches

that reduce dataset leakage. We refer to this alternative

data splits as α = 1, 2, 3, as defined in section 4.2.

• Blur: Consists of blurring people in images when ground

truth segments are available (COCO only).

• Blackout - Face: Consists of blacking out the faces in

the images using a face detector.

• Blackout - Segm: Consists of blacking out people in im-

ages when ground truth segments are available (COCO

only). This aggressively removes features such as skin

and clothing. It may also obscure objects with which peo-

ple are closely interacting with.

• Blackout - Box: Consists of blacking out people using

ground truth bounding boxes (COCO and imSitu). This

removes large regions of the image around people, likely

removing many objects and body pose cues.
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Figure 5. Bias amplification as a function of F1 score on COCO object classification and imSitu action recognition. Models in the top

left have low leakage and high F1 score. The blue dashed line indicates bias and performance of adding progressively more noise to the

original model representation. Our adversarial methods (circled) are the ones which make a better trade-off between performance and bias

amplification than randomization and other baselines.

Leakage Performance

λM (F1) λD(F1) ∆ mAP F1

original CRF 73.20 60.35 12.85 57.77 52.53
CRF + RBA 73.31 60.16 13.15 56.46 51.28
CRF + adv 65.00 60.19 4.81 56.68 51.48

Table 3. Model Leakage and performance trade-offs for RBA (Re-

ducing Bias Amplification, proposed in [39]) and our adversarial

training methods. We adopt the CRF based model [39] to predict

COCO objects as well as the gender. Our method reduces more

than 60% bias amplification while RBA fails to do so.

Leakage Performance

λM (F1) λD(F1) ∆ mAP F1

original 70.46 60.53 9.93 58.23 53.75

blackout-face 69.53 60.24 9.29 55.93 51.81
blur-segm 68.19 59.99 8.20 55.06 50.26
blackout-segm 65.72 59.76 5.96 53.78 48.72
blackout-box 64.00 58.71 5.29 47.42 41.81
adv @ image 68.49 60.47 8.02 56.14 52.82
adv @ conv4 66.66 60.12 6.54 55.18 51.08
adv @ conv5 64.92 60.35 4.57 56.35 52.54

(α = 1) 63.22 52.85 10.37 48.23 42.89
adv @ conv5 54.91 52.40 2.51 43.71 38.98

Table 4. Model leakage and performance trade-offs for different

baselines (rows 1-5) and our adversarial training methods (rows 6-

8) on COCO object classification. Our methods make significantly

better trade-offs than baselines, even improving on methods which

use ground truth detection and segmentation. Applying adversarial

training on balanced dataset reaches lowest model leakage (54.91)

and bias amplification (2.51).

5.4. Quantitative Results

Table 4 and Table 5 summarize our results. Adversari-

ally trained methods offer significantly better trade-offs be-

tween leakage and performance than any other method. We

are able to reduce model leakage by over 53% and 67% on

Leakage Performance

λM (F1) λD(F1) ∆ mAP F1

original 76.93 56.46 20.47 41.02 40.11

blackout-face 75.69 55.91 19.78 38.22 37.29
blackout-box 63.14 53.06 10.08 21.76 22.75
adv @ image 71.32 55.83 15.49 36.90 36.88
adv @ conv4 72.39 56.15 16.24 38.81 38.35
adv @ conv5 62.65 56.02 6.63 38.91 37.85

(α = 1) 74.83 53.20 21.63 34.63 33.94
adv @ conv5 57.49 52.85 4.64 30.78 30.37

Table 5. Model leakage and performance trade-offs for different

baselines (rows 1-3) and our adversarial training methods (rows 4-

6) on imSitu activity recognition. Our methods make significantly

better trade-offs than baselines. Applying adversarial training on

balanced dataset reaches lowest model leakage (57.49) and bias

amplification (4.64).

COCO and imSitu respectively, while suffering only 1.21

and 2.26 F1 score degradation. Furthermore, no one class

disproportionately suffers after our method (See Figure 7).

We also compare our method with RBA [39], a debiasing

algorithm proposed to maintain the similarity between the

training data and model predictions. As shown in Table 3,

the original CRF model predicts gender and objects, RBA

fails to have reduce bias amplification. Figure 5 further

highlights that our methods are making extremely favorable

trade-offs between leakage and performance, even when

compared to methods that blur, black-out, or completely

remove people from the images using ground truth seg-

ment annotations. Adversarial training is the only method

that consistently improves upon simply adding noise to the

model representation before prediction (the blue curves).

5.5. Qualitative Results

While adversarial removal works best when applied to

representations in intermediate convolutional layers. In or-

5316



COCO Results imSitu Results 

Figure 6. Images after adversarial removal of gender in image space by using a U-Net based autoencoder as inputs to the recognition model.

While people are clearly being obscured from the image, the model selectively chooses to obscure only parts that would reveal gender such

as faces but tries to keep information that is useful to recognize objects or verbs. 1st row: WWWM MMWW; 2nd row: MWWW WMWW;

3rd row: MMMW MMWM; 4th row: MMMW WWMM. W: woman; M: man.

Figure 7. Performance change of every object/verb. X axis: F1

score before debiasing. Y axis: F1 score after debiasing. Across

two datasets, most of objects/verbs are very close to the solid line

(y = x), showing that no one class is disproportionately affected.

der to obtain interpretable results, we apply gender removal

in the image space and show results in Fig. 6. In some in-

stances our method removes the entire person, in some in-

stances only the face, in other cases clothing, and garments

that might be strongly associated with gender. Our approach

learns to selectively obscure pixels enough to make gender

prediction hard but leaving sufficient information to pre-

dict other things, especially objects that need to be recog-

nized such as frisbee, bench, ski, as well as actions such as

cooking, biking, etc. This is in contrast to our strong base-

lines that remove the entire person instances using ground-

truth segmentation masks. A more sensible compromise is

learned through the adversarial removal of gender without

the need for segment-level supervision.

6. Conclusion

We introduced dataset leakage, and model leakage as

measures of the encoded bias with respect to a protected

variable in either datasets or trained models. We demon-

strated that models amplify the biases in existing datasets

for tasks that are not related to gender recognition. More-

over, we show that balanced datasets do not lead to unbi-

ased predictions and that more fundamental changes in vi-

sual recognition models are nedeed. We also demonstrated

an adversarial approach for the removal of features associ-

ated with a protected variable from the intermediate repre-

sentations learned by a convolutional neural network. Our

approach is superior to applying various forms of random

perturbations in the representations, and to applying im-

age manipulations that have access to significant privileged

information such as people segments. We expect that the

setup, methods, and results in this paper will be useful for

further studies of representation bias in computer vision.
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