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Abstract

In this paper, we study fast training of adversarially ro-

bust models. From the analyses of the state-of-the-art de-

fense method, i.e., the multi-step adversarial training [34],

we hypothesize that the gradient magnitude links to the

model robustness. Motivated by this, we propose to per-

turb both the image and the label during training, which we

call Bilateral Adversarial Training (BAT). To generate the

adversarial label, we derive an closed-form heuristic solu-

tion. To generate the adversarial image, we use one-step

targeted attack with the target label being the most con-

fusing class. In the experiment, we first show that random

start and the most confusing target attack effectively pre-

vent the label leaking and gradient masking problem. Then

coupled with the adversarial label part, our model signif-

icantly improves the state-of-the-art results. For example,

against PGD100 white-box attack with cross-entropy loss,

on CIFAR10, we achieve 63.7% versus 47.2%; on SVHN,

we achieve 59.1% versus 42.1%. At last, the experiment

on the very (computationally) challenging ImageNet dataset

further demonstrates the effectiveness of our fast method.

1. Introduction

Deep learning has achieved great success in many vi-

sual recognition tasks in computer vision. However, deep

neural networks are extremely vulnerable to adversarial at-

tacks [50]. Specifically, the network is easily fooled to

make wrong predictions in the face of adversarial exam-

ples, which are adversarially manipulated images by adding

small and imperceptible perturbations. This poses a great

danger to deploying real-world machine learning systems.

Therefore, training an adversarially robust model is of great

value towards commercialized AI technology.

In the recent years, many approaches have been pro-

posed to defend against adversarial examples. As demon-

strated by [1], multi-step adversarial training [34] is cur-

rently the best defense method. Specifically, adversarial

training solves a minimax (saddle point) problem. The inner

maximization generates adversarial examples by multi-step

projected gradient descent (PGD), which are then used in

the outer minimization to optimize the network parameters.

To understand the working mechanism of the multi-step

adversarial training, we first perform two diagnostic exper-

iments on CIFAR10. The first experiment is to test a seem-

ingly correct assumption: using stronger adversarial attacks

during training will lead to more robust models. To this end,

we compare two adversarially trained models, which only

differ in the hyper-parameters of the inner maximization:

1) the default setting in [34], denoted by PGD7-2, where

the number of iterations is 7 and the step size is 2 pixels; 2)

a model trained using a weaker attack, denoted by PGD2-8,

where the number of iteration is 2 and the step size is 8 pix-

els. We observe that PGD2-8 is largely as robust as PGD7-2

under different white-box attacks, even though PGD2-8 at-

tack is weaker than PGD7-2 attack. This result leads us to

hypothesize that robustness may not be achieved by simply

fitting sufficient adversarial examples during training, and

to re-consider if there is more essential ingredients that di-

rectly relate to network robustness. With this in mind, we

conduct the second experiment where we compare the gra-

dient magnitude of both undefended models and adversari-

ally trained models. We observe that the gradient magnitude

of adversarially trained models is much smaller than that of

the undefended models. Intuitively speaking, if the gradient

(with respect to input images) becomes extremely small, the

gradient-based adversarial attacks are likely to fail no matter

how many iterations are used. This inspires us that gradient

magnitude may directly link to model robustness.

Based on the above observations, in order to achieve ad-

versarial robustness, we would like a model to satisfy the

following two conditions: 1) low loss (zero-order condi-

tion); 2) small gradient magnitude (first-order condition).

To this end, in this paper, we propose a formulation to

achieve these two conditions by perturbing both input im-

ages and labels during training, which we call Bilateral Ad-

versarial Training (BAT). As for generating the adversarial

image, we adopt one-step PGD which speeds up the train-
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ing by multiple times compared to [34]. In order to avoid

the troublesome label leaking and gradient masking prob-

lem often induced by one-step PGD [29, 51], we do the fol-

lowing: 1) using targeted attack with the target label being

the most confusing class; 2) adding random uniform noise

to the original image as initialization, i.e., random start as

in [34]. As for generating the adversarial label, we derive a

formula to perturb the groundtruth label (in the form of one-

hot vector) based on the gradient with respect to input label

(i.e., the negative logarithm probability). As a special case,

this solution reduces to label smoothing when the gradient

of non-groundtruth classes are equal.

In the experiment, we first empirically demonstrate that

random start and the MC targeted attack are very effec-

tive at avoiding label leaking and gradient masking prob-

lem. The model trained by using these two techniques

alone can achieve similar robustness as multi-step adver-

sarially trained models in [34]. Next, after adding adver-

sarial label part, our model significantly improves the state-

of-the-art results in [34]. In order for rigorous robustness

evaluation, we use the strong white-box attacks such as

PGD100 and PGD1000 with both cross-entropy loss and

margin-based loss. For example, against PGD100 under

cross-entropy loss, on CIFAR10, we achieve 63.7% ver-

sus 47.2%; on SVHN, we achieve 59.1% versus 42.1%. At

last, we apply our fast method to the very challenging Ima-

geNet dataset. Our model is successfully trained using only

8 GPUs, compared with 53 GPUs [26] and 128 GPUs [55].

Compared with the recent state-of-the-art [55], our model is

better on clean images and against non-targeted attacks, but

worse against randomly targeted attacks, using an order-of-

magnitude less computational resources.

In summary, our contribution is threefold. First, we em-

pirically show that small gradient magnitude may improve

the adversarial robustness. Second, we propose a fast ad-

versarial training method called BAT, which perturbs both

the image and the label. Third, our method significantly

improves the state-of-the-art results on several datasets.

2. Related Work

2.1. Adversarial Attacks

Adversarial examples have long been studied in machine

learning [12, 23, 3, 4]. In the time of modern deep learning,

[50] first pointed out that CNNs are vulnerable to adver-

sarial examples, and proposed a box-constrained L-BFGS

method to compute them. Later on, [19] proposed the fast

gradient sign method (FGSM) to efficiently generate adver-

sarial examples. FGSM was then extended to an iterative

version in [28], which showed that adversarial examples can

exist in the physical world. In [38], the authors proposed

DeepFool to compute the adversarial perturbations, and de-

fine and quantify the robustness of classifiers. In [7], the

famous CW attack was proposed, which used the margin-

based loss, and applied change-of-variables to remove the

constraint. In spite of being very slow, CW attack is cur-

rently one of the strongest attacks. Later [9] modified the

loss function in [7] by applying elastic net regularization.

There are some works devoted to improving the trans-

ferability of adversarial examples, which leads to stronger

black-box attacks. [33] proposed to compute the adversar-

ial perturbation by attacking an ensemble of networks si-

multaneously, and demonstrated improved transferability.

In [40], the authors assumed a scenario where the attack-

ers have access to the prediction results of a few examples.

They then trained a substitute/surrogate model based on the

limited number of examples, and generate adversarial ex-

amples using the substitute model. [15] demonstrated that

momentum-based iterative attacks achieve better transfer-

ability. There are some works proposing zeroth-order at-

tacks, i.e., using the logit to generate the attacks [52, 10].

Besides, [5] proposed the boundary attack, which is based

on the final model decision, instead of the gradient or logit.

In addition to image classification, adversarial examples

were also studied in many other tasks, including object de-

tection [54], semantic segmentation [54, 37], speech recog-

nition [11], image captioning [8], deep reinforcement learn-

ing [24, 42]. Besides the additive perturbation model, [17]

studied how to generate adversarial examples under rotation

and translation. [18] studied physically adversarial example

in the context of detecting stop sign in real world. Another

interesting topic is given by [2], where the authors synthe-

sized robust adversarial examples in 3D.

2.2. Adversarial Defenses

In recent years, many methods have been proposed to

defend against adversarial examples. One line of research

is on detecting adversarial examples, such as [36, 35]. But

later [6] showed that their CW attack is able to bypass most

detection methods. Another line of research tries to break

the special structure in adversarial perturbation by random

or non-differentiable operations [53, 20, 48, 46, 31, 43, 32].

Recently, [1] showed that many existing defense methods

relied on gradient masking, which leads to a false sense of

robustness against adversarial attacks. Besides, gradient-

based regularization [25, 45] and nearest neighbor [16] have

been demonstrated to improve robustness.

Adversarial training [19, 29, 51, 34, 47, 44, 55, 57] is

currently the best defense method against adversarial at-

tacks. [29] first scaled up adversarial training to ImageNet

dataset, where the authors used one-step least likely tar-

geted attack to generate adversarial examples during train-

ing. Later in [51], the authors pointed out that such adver-

sarially trained models suffer from gradient masking, and

proposed ensemble adversarial training, which augmented

the training data with perturbations computed from a set of
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held-out models. [34] demonstrated that multi-step adver-

sarial training is very effective at achieving robustness, and

also managed to avoid the gradient masking problem. Ac-

cording to [1], this is currently the best defense method.

3. Motivation

In this section, we empirically analyze two aspects of the

multi-step adversarial training method in [34]: 1) if more it-

erations in the inner maximization improves the robustness,

and 2) the gradient magnitude of both undefended models

and adversarially trained models. The experiments are con-

ducted on CIFAR10. Based on the analyses, we hypothesize

that making the loss surface locally flat (i.e., small local gra-

dient magnitude) helps achieve better robustness. The pro-

posed algorithm will then be given in the next section.

3.1. Background

We first give a short description of the adversarial train-

ing method in [34]. This method achieves the currently

best adversarial robustness according to [1]. Specifically,

it solves the following saddle point (minimax) problem

min
θ

{E(x,y)∼D[ max
x′∈Sx

L(x′, y; θ)]}. (1)

Here (x, y) denotes the original data point, x′ denotes the

adversarially perturbed image, L(·) denotes the loss func-

tion, and ǫx denotes the perturbation budget. The feasible

region Sx is defined as 1

Sx = {z | z ∈ B(x, ǫx) ∩ [−1.0, 1.0]n}, (2)

where B(x, ǫx),{z | ‖z− x‖∞ ≤ ǫx} denotes the ℓ∞-ball

with center x and radius ǫx. In the following, for the sake of

notational simplicity, without loss of generality, we present

the formulation based on a single sample. The outer mini-

mization is minimizing the cross-entropy loss as in the stan-

dard classification. The inner maximization corresponds to

the adversarial attack. In order to better explore the solution

in B(x, ǫx), [34] uses random start before taking a number

of PGD steps, i.e.,

x0 ∼ B(x, ǫx), (3)

xt+1 = ΠSx

(

xt + ǫx · sign
(

∇xL(x
t, y; θ)

))

. (4)

The original image x is at first randomly (uniform) per-

turbed to some point x0 in B(x, ǫx) as in (3), and then goes

through several PGD steps as in (4). The ΠSx
(·) operator

projects the input into the feasible region Sx.

3.2. Analyses

Do more iterations help? We first examine if more iter-

ations in inner maximization help improve the robustness.

1In implementation, we rescale all images with pixel values in [-1, 1].

Acc.(%) clean FGSM PGD2-8 PGD7-2 PGD20-2 PGD100-2

PGD7-2 88.0 57.0 53.0 51.2 47.6 47.2

PGD2-8 88.2 56.9 53.2 50.5 46.7 46.2

Table 1: Comparison between the model in [34] (top) and

an adversarially trained model using a weaker attack during

training (bottom). They achieve similar robustness.

undefended adversarially trained

all correct wrong all correct wrong

min 3.0e-32 3.0e-32 264.1 2.6e-26 2.6e-26 0.2

mean 395.0 23.6 7.4e3 3.8 0.4 28.9

max 4.5e4 7.0e3 4.5e4 236.2 85.9 236.2

Table 2: The minimal, average, and maximal value of gra-

dient magnitude of the test images on CIFAR10. Overall

Adversarially trained models have much smaller gradient

magnitude than undefended models. All models are trained

using the same regularization, epoch, learning rate, etc.

To this end, we compare two adversarially trained models

with different hyper-parameters for generating the adver-

sarial examples during training. The first one is the default

in [34], denoted by PGD7-2, which uses 7 steps of PGD,

and step size is 2.0. The second one is a seemingly weaker

variant, denoted by PGD2-8, meaning only 2 steps of PGD

are used and step size is 8.0. As in [34], the perturbation

budget is 8.0 in training and evaluation, and random start is

used. From Table 1, we see that PGD2-8 performs roughly

the same as PGD7-2, against PGD attacks with different

steps (strength). This result leads us to hypothesize that us-

ing stronger attacks during training may not necessarily lead

to more robust models.

Gradient magnitude of adversarially trained models.

Next we examine the gradient magnitude of the undefended

models and adversarially trained models. We consider three

collections of all test images in CIFAR10, and for each col-

lection we compute the minimal, average, and maximal of

gradient magnitude, i.e., ‖∇xL(x, y; θ)‖
2
2. The three col-

lections are: 1) entire images, denoted by “all”, 2) cor-

rectly predicted images, denoted by “correct”, 3) wrongly

predicted images, denoted by “wrong”. The numbers are

shown in Table 2. First we see that for any collection, the

gradient magnitude of undefended model is much larger

than that of adversarially trained model. Also, for each

model, the gradient magnitude of correctly predicted im-

ages is much smaller than that of wrongly predicted images.

3.3. Hypothesis

From the above analyses, we hypothesize that small gra-

dient magnitude directly links to the adversarial robust-

ness. Intuitively speaking, if the loss surface is locally “flat”

around the data points, the model is hard to attack, no mat-
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ter how many steps are used. This hypothesis is aligned

with [32] where they call it local Lipschitz. Note that there

are papers [22, 14] studying the possible relationship be-

tween the flatness of loss surface and the generalization of

the model. In this paper, we simply use gradient magnitude

to measure the “flatness”. A rigorous treatment is beyond

the scope of the current paper and left as future work.

A straightforward idea to reduce the gradient magnitude

is to augment the loss function with some form of gradi-

ent regularization during training, e.g., [45, 25]. However,

the key problem of this idea is that training requires the

computation of second-order derivatives, which becomes

extremely slow and expensive for large-scale networks.

4. Formulation

In this section, in order to improve the adversarial ro-

bustness, we propose Bilateral Adversarial Training (BAT),

which simultaneously perturbs both the image and the label

during adversarial training.

We first approximately relate the general adversarial

training framework to small gradient magnitude. Let

x, x′ denote the original and the slightly perturbed im-

age, and y, y′ denote the original and the slightly perturbed

groundtruth (in the form of a probability distribution lying

in the probability simplex). Let L(·) denote the loss func-

tion. The first-order Taylor expansion of the loss is

L(x′, y′; θ) ≈L(x, y; θ)

+∇xL(x, y; θ) · (x
′ − x)

+∇yL(x, y; θ) · (y
′ − y).

(5)

We use the perturbation budget constraint in ℓ∞-norm, i.e.,

‖x′ − x‖∞ ≤ ǫx, ‖y
′ − y‖∞ ≤ ǫy. (6)

By Holder’s inequality, from (5) we can approximately have

the upper bound

L(x′, y′; θ) ≤L(x, y; θ)

+ ǫx‖∇xL(x, y; θ)‖1

+ ǫy‖∇yL(x, y; θ)‖1.

(7)

Intuitively speaking, adversarial training, by minimiz-

ing L(x′, y′; θ), translates to 1) minimizing L(x, y; θ) and

2) minimizing the gradient magnitude ‖∇xL(x, y; θ)‖1 and

‖∇yL(x, y; θ)‖1. The second point explains the results in

Table 2. Note that the first point makes the network pre-

dict the correct class, and the second point makes it difficult

to generate adversarial examples for gradient-based attacks,

because the gradient magnitude becomes very small.

The above formulation does not specify how to gener-

ate x′, y′. Mathematically, the optimization problem can be

written as

max
x′∈Sx,y′∈Sy

L(x′, y′; θ). (8)

Here Sx is defined by (2), and Sy is defined as

Sy = {z | z ∈ B(y, ǫy), z ≥ 0,
∑

izi = 1}. (9)

The final formulation for adversarial training is as follows

min
θ

[

max
x′∈Sx,y′∈Sy

L(x′, y′; θ)
]

, (10)

where (x, y)∼D. Our simple strategy to solve (10) is to

decompose it into two separate sub-problems, and optimize

over x′ or y′ conditioned on the other respectively. After ob-

taining x′, y′, we use them in place of the original x, y as the

training data points and optimize over θ. In other words, the

training batch only contains adversarially perturbed images.

In the next two subsections, we will describe the solution to

each sub-problem respectively.

4.1. Generating Adversarial Labels

We first study how to compute the adversarial label y′

given the original data point x, y. We need to solve

max
y′∈Sy

L(x, y′; θ). (11)

Here the original groundtruth y is a one-hot vector, i.e.,

yc=1 and yk=0, k 6=c. We use k to denote the class index

and c to denote the groundtruth class. The most straightfor-

ward idea is to use the one-step PGD

y′ = ΠSy

(

y + α∇yL(x, y; θ)
)

, (12)

∇yk
L(x, y; θ) = − log(pk). (13)

Here the ΠSy
(·) operator projects the input into the feasible

region Sy . Basically it ensures that the adversarial label y′

is 1) in B(y, ǫy) and 2) in the probability simplex. Next we

propose a heuristic solution to achieve both. In the follow-

ing, we will use some short notations.

vk = ∇yk
L(x, y; θ), vMC = min

k 6=c
vk, vLL = max

k 6=c
vk.

Here “MC” (most confusing) corresponds to the non-

grountruth class with the highest probability, and “LL”

(least likely) corresponds to the non-grountruth class with

the lowest probability. The idea is that we decrease yc
from 1 to 1− ǫy , and distribute ǫy to other non-groundtruth

classes. The share for each class is based on their respective

gradient ∇yk
L(x, y; θ), while the share for the MC class

(i.e., y′MC) is set to be very small. This way, we can obtain

y′k =
ǫy

n− 1
·

vk − vMC + γ
∑

k 6=c vk

n−1 − vMC + γ
, k 6= c. (14)

Here γ is a very small value, e.g., 0.01. Please refer to the

supplementary material for another heuristic solution and

the comparison. It is easy to see that if the gradient of
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non-groundtruth classes are equal, the second multiplicative

term becomes 1 and we then obtain

y′k =
ǫy

n− 1
, k 6= c. (15)

This is exactly the label smoothing [49]. In other words,

label smoothing can be thought of as an adversarial pertur-

bation of the groundtruth label.

Note that ǫy controls the perturbation budget of y. We

are interested in finding the largest ǫy that leads to the most

adversarially perturbed label. The idea is that we want to

keep the probability of the groundtruth class (i.e., y′c) at

least β times larger than the maximal probability over non-

groundtruth classes (i.e., y′LL). Mathematically, we want

y′c ≥ β ·max
k 6=c

y′k. (16)

Solving for the following equation

1− ǫy ≥
βǫy

n− 1
·

vLL − vMC + γ
∑

k 6=c vk

n−1 − vMC + γ
, (17)

we obtain

ǫy ≤
1

1 + β
n−1

vLL−vMC+γ
∑

k 6=c vk
n−1

−vMC+γ

. (18)

Next we consider two extreme cases.

1) The probabilities of non-groundtruth classes are

evenly distributed, i.e., label smoothing. In this case, vLL =
vMC . Then we have

ǫy =
1

1 + β
n−1

. (19)

Take CIFAR10 for example (n= 10). We have ǫy=0.1,

β=81, or ǫy=0.5, β=9, or ǫy=0.9, β=1.

2) The probabilities of non-groundtruth classes are cen-

tered on one class. In this case, vLL =
∑

k 6=cvk, vMC =0.

Then we have

ǫy =
1

1 + β vLL+γ
vLL+(n−1)γ

≈
1

1 + β
. (20)

Note that γ is usually very small, e.g. γ=0.01.

We can see that given the multiplier β, the range of per-

turbation budget ǫy is

ǫy ∈ (
1

1 + β
,

1

1 + β
n−1

]. (21)

Note that we only need to specify a proper β. As a special

case, β = ∞ corresponds to the original one-hot label.

4.2. Generating Adversarial Images

Next we study how to compute the adversarial image x′

given the original data point x, y. Mathematically, we need

to solve the problem

max
x′∈Sx

L(x′, y; θ). (22)

This is the adversarial attack problem. For non-targeted at-

tacks, we directly maximize (22). The downside of using

non-targeted attacks is label leaking [29]. This is because

during training the model implicitly learns to infer the true

label from the adversarial perturbation (gradient). In other

words, the model smartly finds a shortcut (degenerate min-

imum [51]) towards the local optima. A more general and

severe problem is gradient masking [41]. It refers to the

fact that the loss surface of the model is very jagged, and

so it becomes harder for the attackers to find good gradient

during the iterative attack. As demonstrated in [1], gradient

masking (a.k.a. gradient obfuscation) gives a false sense of

robustness, and the model gets broken in the face of strong

attacks with large number of iterations.

Recently, two techniques were proposed to reduce or

avoid gradient masking problem: 1) using multi-step

PGD [34]; 2) using an ensemble of models to generate ad-

versarial examples [51]. However, the effectiveness comes

with expensive time cost [34] or memory cost [51]. Since

one of our design consideration is speed, in this paper,

we focus on two simple techniques: 1) using targeted at-

tack [29]; 2) adding random noise as in Eq. (3) [51, 34].

As for targeted attack, in [29], the authors used the Least

Likely (LL) class as the targeted class, i.e.,

y′ = argmaxŷ 6=yL(x, ŷ; θ). (23)

Differently, here in this paper, we use the Most Confusing

(MC) class as the targeted class, i.e.,

y′ = argminŷ 6=yL(x, ŷ; θ). (24)

In order for fast training, we use one-step PGD (in the

experiment on the difficult ImageNet we use two-step).

Note that the update equations (3) and (4) are for non-

targeted attacks. For targeted attacks, we simply replace

the groundtruth label y by the targeted label y′, and also re-

place the plus sign by the minus sign, in order to minimize

the loss with respect to the targeted label.

5. Experiments

Dataset and Network. In the experiment, we use CI-

FAR10 [27], and SVHN [39] and the large-scale Ima-

geNet [13]. We do not use MNIST [30] because it is

not a good testbed due to the near-binary nature of the

images [51]. For CIFAR10 and SVHN, we use Wide
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ResNet [56] (WRN-28-10). For ImageNet, we use ResNet

family [21]. Most of the diagnostic experiments are con-

ducted on CIFAR10, because it is currently the most com-

monly used dataset for adversarial training.

Evaluation. Based on the amount of knowledge that at-

tackers have, there are several types of attacks: i) Gradient-

based (white-box), where the attackers have full knowledge

of the model (structure, parameters); ii) Score(logit)-based,

where the attackers know the score/logit vector of the model

(e.g. SPSA [52], ZOO [10]); iii) Decision-based, where the

attackers only know the predicted class (e.g. boundary at-

tack [5]). Note that the more information the attackers have,

the stronger the adversarial attacks will be. In the experi-

ment we use the strongest gradient-based white-box attacks.

For CIFAR10 and SVHN, we follow the evaluation setup

in [34]. Specifically, the test perturbation budget is 8 pix-

els. In order to use strong attacks to evaluate the model ro-

bustness, we 1) always use non-targeted attack, and 2) drop

random start for one-step PGD attack (i.e. FGSM), and use

random start for multi-step PGD attack. Also, for one-step

attack, the step size is the perturbation budget (i.e., 8 pix-

els), and for multi-step attack, the step size is 2 pixels.

For ImageNet, we follow the evaluation setup in [26, 55].

Specifically, the test perturbation budget is 16 pixels. We

use the non-targeted attack, and the targeted attack where

the label is randomly selected. The step size is 1 pixel, ex-

pect for PGD10 attack where the step size is 1.6 pixel.

Implementation Details. For CIFAR10 and SVHN, we

largely follow the released code in [34]. The learning rate

schedule is [0.1, 0.01, 0.001] for CIFAR and [0.01, 0.001,

0.0001] for SVHN. For the short training, the decay epoch

schedule is [60, 90, 100]. And for the long training, the

epoch schedule [100, 150, 200]. In all the tables, the mod-

els of long training are postfixed by “+”. For ImageNet,

we use the Tensorpack package and perform distributed ad-

versarial training with 8 GPUs. We largely follow the code

for distributed training ResNet models on ImageNet. The

learning rate schedule is [0.1, 0.01, 0.001, 0.0001], and the

decay epoch schedule is [30, 60, 90, 100]. For ResNet50,

the training takes about 2 days on a DGX machine. We plan

to release the code and models after this work is published.

5.1. Random Start and MC Targeted Attack

In this subsection, we demonstrate that for one-step ad-

versarial training, random start and MC targeted attack are

effective at preventing label leaking and gradient masking

problem. This diagnostic experiment is conducted on CI-

FAR10. To this end, we evaluate three different ways of

generating adversarial examples during training: FGSM at-

tack, LL targeted attack, and MC targeted attack. For each

option, we perform one-step adversarial training with or

without random start. This leads to six adversarially trained

Acc.(%) clean
FGSM CE7

black
w.o. RS RS w.o. RS RS

FGSM 55.2 99.1 68.6 0.0 0.0 56.2

R-FGSM 89.8 55.8 63.6 46.4 48.0 88.0

LL 92.6 97.9 86.2 0.0 0.0 80.9

R-LL 91.4 46.6 56.6 34.1 36.0 88.2

MC 86.4 70.7 73.0 37.6 40.3 84.3

R-MC 89.9 62.6 70.2 46.8 48.4 87.1

Table 3: The classification accuracy of one-step adversarially

trained models, using different attacks, and, with or without ran-

dom start. The models trained using random start are prefixed with

“R-”. We see that random start and MC targeted attack are effec-

tive at preventing label leaking and gradient masking problem.

Acc.(%)
FGSM MC LL

w.o. RS RS w.o. RS RS w.o. RS RS

R-FGSM 55.8 63.6 55.4 63.6 75.5 79.8

R-LL 46.6 56.6 44.0 55.6 70.7 76.4

R-MC 62.6 70.2 63.9 71.3 80.1 83.8

Table 4: The classification accuracy of three attacks, i.e., FGSM

attack, LL targeted attack and MC targeted attack, with or with-

out random start. The rows correspond to different adversari-

ally trained models. We see that MC targeted attack has similar

strength as FGSM attack, and both are much stronger than LL tar-

geted attack.

models in total. The perturbation budget is 8 pixels in train-

ing. The results are shown in Table 3. The rows correspond

to different models, where the prefix “R” means that ran-

dom start is used. The columns correspond to non-targeted

attacks using one-step (FGSM) or 7-step (CE7, CE is short

for Cross-Entropy), with or without random start (denoted

by “RS”). The last column corresponds to the black-box

attack using the undefended model and FGSM attack (w.o.

RS). Firstly we see that the target models trained by FGSM

and LL suffer badly from the label leaking problem because

the accuracy against FGSM attack is even higher than the

clean accuracy. But this is just false robustness and the ac-

curacy drops to zero under CE7 attacks. Next, after apply-

ing random start, R-FGSM and R-LL become quite robust,

demonstrating random start helps the model avoid the label

leaking problem during adversarial training. Lastly, we see

that the model R-MC performs the best, while R-LL per-

forms the worst, against FGSM and CE7 attacks.

We hypothesize that the adversarially trained mode by

one-step LL targeted attack is weak, because the LL tar-

geted attack is weak by itself. Table 4 shows the strength

of these three attacks using one-step PGD. The rows corre-

spond to different models trained using random start. The

columns correspond to three attacks with or without random

start. We see that MC targeted attack is roughly as strong as

FGSM attack, and both of them are much stronger than LL
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Acc.(%) clean FGSM CE7 CE20

R-FGSM 89.8 55.8 48.0 42.9

R-FGSM-LS (ǫy = 0.5) 89.1 62.0 54.6 49.0

R-MC 89.9 62.6 48.4 43.4

R-MC-LS (ǫy = 0.5) 91.1 70.6 59.2 53.3

R-MC-LS+ (ǫy = 0.5) 91.8 71.4 62.7 55.9

R-MC-LA (β = 9) 90.7 69.6 59.9 55.3

R-MC-LA+ (β = 9) 91.2 70.7 63.0 57.8

Madry [34] 87.3 56.1 50.0 45.8

Madry* 88.0 57.0 51.2 47.6

Madry-LA 86.8 63.4 57.8 53.2

Madry-LA+ 87.5 65.9 61.3 57.5

Table 5: The classification accuracy of R-MC-LA models and

variants under various white-box attacks on CIFAR10.

targeted attack. This is probably because it is usually hard to

slightly manipulate the original image so that it becomes a

visually very different class. Therefore, we argue for using

MC targeted attack during adversarial training because 1) it

is much stronger that LL targeted attack; 2) FGSM attack

risks label leaking and gradient masking problem.

We briefly summarize the role of random start. In train-

ing, it effectively prevents the label leaking and gradient

masking problem, but in attack, it weakens the strength for

one-step PGD attack (shown in Table 4). As we will show

later, random start has very little effect for multi-step PGD

attack, especially when the number of steps becomes large.

5.2. CIFAR10 Dataset

In this subsection, we report results against white-box

attacks on CIFAR10 [27] dataset. It has 10 classes, 50K

training images (5K per class) and 10K test images. As

summarized above, to generate adversarial images, we use

random start and MC targeted attack (the perturbation bud-

get is 8 pixels). To generate adversarial labels, we use (18)

to compute the budget ǫy and (14) to compute the adversar-

ially perturbed labels y′. The resulting model is denoted as

R-MC-LA where LA stands for label adversary. We also ex-

periment with label smoothing (LS for short), a special case

of adversarial label, and denote this model by R-MC-LS.

Our baseline is the mult-step adversarial training method

by [34]. We report the original numbers in their paper, de-

noted by Madry, and also report the numbers by our repro-

duced model, denoted by Madry*. The accuracy against

various steps of PGD attacks is given in Table 5. We see that

perturbing labels during training significantly improves the

robustness over the baseline. Label smoothing (R-MC-LS)

works pretty well, and label adversary (R-MC-LA) is even

better. Besides, we also apply label adversary to the multi-

step adversarial training. We see that the resulting mod-

els, denoted by Madry-LA and Madry-LA+, significantly

improves the original version, further verifying the effec-
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Figure 1: The classification accuracy of the proposed R-MC-LA

models against white-box PGD attacks of different number of it-

erations on CIFAR10. The models are trained by using different

perturbation budget. We use β = 9.

Acc.(%) clean CE20 CW20 CE100 CW100 CW200

R-MC-LA (ǫx = 8) 90.8 54.6 53.7 52.9 51.9 51.7

R-MC-LA+ (ǫx = 8) 91.0 57.5 56.2 55.2 53.8 53.6

R-MC-LA (ǫx = 4) 93.0 63.1 61.5 60.1 58.0 57.6

R-MC-LA+ (ǫx = 4) 92.9 66.9 64.2 63.7 60.7 60.3

Madry* 88.0 47.6 48.6 47.2 48.1 48.1

Table 6: The classification accuracy of the proposed R-MC-LA

models under various white-box attacks on CIFAR10. To rule

out randomness, the numbers are averaged over 3 independently

trained models. We use β = 9.

tiveness of label adversary. Interestingly, R-MC-LA(+) per-

forms even better than Madry-LA(+). Lastly, we observe

that longer training is helpful to all models.

5.2.1 Different Perturbation Budgets during Training

Next we study whether using larger perturbation budget

during training leads to more robust models. We train mod-

els using the budget ǫx∈{1, 2, 4, 8, 12} pixels during train-

ing, and we use 8 pixels for evaluation. Figure 1 shows the

classification accuracy with respect to the number of steps

in PGD attack. Firstly we observe the general trend that as

the number of steps increases, the accuracy drops quickly

and then plateaus. Secondly, we find that big budget (i.e.,

ǫx = 12) or small budget (i.e., ǫx = 1) lead to less robust

models. Interestingly, we see that the model trained using

ǫx=4 achieves the best robustness. The exact numbers are

given in Table 6. Note that to rule out randomness, the num-

bers are averaged over 3 independently trained models. We

also test the attacks using the margin-based CW loss [7].

For example, CW200 attack means using CW loss and 200

steps PGD. We notice that 1) the baseline model [34] per-

forms similarly against either (cross-entropy-based) CE at-
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Acc.(%) clean
Undefended another R-MC-LA

FGSM CE20 FGSM CE20

R-MC-LA 90.7 87.8 88.8 74.4 71.0

R-MC-LA+ 91.2 88.5 89.9 74.6 74.4

Table 7: The classification accuracy of R-MC-LA models

against black-box attacks on CIFAR10. We use β = 9.

Acc.(%) clean FGSM CE20 CE100 CW100

R-MC-LA (ǫx = 8) 94.1 66.9 46.7 42.0 40.9

R-MC-LA+ (ǫx = 8) 94.1 69.8 53.9 50.3 48.9

R-MC-LA (ǫx = 4) 95.7 72.6 54.4 47.2 45.7

R-MC-LA+ (ǫx = 4) 95.5 74.2 63.0 59.1 58.5

Madry* 91.8 61.0 43.2 42.1 43.4

Table 8: The classification accuracy of R-MC-LA models

under various white-box attacks on SVHN. The models are

trained using different perturbation budget. We use β=9.

tack or (margin-based) CW attack; 2) CW attack is more

effective than CE attack when attacking our models (R-MC-

LA). Furthermore, we evaluate our best model, R-MC-LA+

(ǫx =4), against 1000-step PGD attacks using CE loss and

CW loss. The accuracy is 61.4% for CE and 59.3% for CW,

which is very close to that against 200-step PGD attack.

5.2.2 Black-box Attack Evaluation

We next evaluate our R-MC-LA models against black-box

attacks. We use two models to generate the adversarial ex-

amples: the undefended model and another randomly ini-

tialized R-MC-LA model. All the models are trained using

ǫx = 8. The results are shown in Table 7. We see that at-

tacks generated by R-MC-LA model are stronger than those

by undefended model, because two independently trained

R-MC-LA models share inherent structure. Besides, we see

that all the black-box attacks are weaker than white-box at-

tacks (by comparing the accuracy), demonstrating that our

models do not suffer from the gradient masking problem.

5.3. SVHN Dataset

The SVHN [39] is a 10-way house number classifica-

tion dataset. It contains 73257 training images, and 26032

test images. We don’t use the additional training images.

The results against white-box attacks are shown in Table 8.

Similar to CIFAR10, we see that our models significantly

outperform the state-of-the-art results on clean images and

against PGD attacks of various strength.

5.4. ImageNet Dataset

The ImageNet dataset has 1.28 million training images

with 1000 classes. We use the validation set with 50K im-

ages for evaluation. To the best of our knowledge, up to

Acc.(%) clean CE10-nt CE100-nt CE10-rd CE100-rd

R-MC-LA-R50 58.9 14.9 4.0 45.8 24.5

R-MC-LA-R101 61.9 18.0 6.3 45.8 26.0

R-MC-LA-R152 63.9 19.8 7.4 46.5 26.6

[26]-IncepV3 72.0 NA NA 27.9 NA

[55]-R152 62.3 17.1 7.3 52.5 41.7

Table 9: The classification accuracy of R-MC-LA models

under various white-box attacks on ImageNet. We use β=
100. The budget is 16 pixels in training and evaluation.

now, there are only two papers that have applied multi-step

adversarial training on ImageNet, because it is very com-

putationally expensive. Specifically, the prior art [26] used

53 P100 GPUs and the recent paper [55] used 128 V100

GPUs. We train our models on a DGX machine with only

8 GPUs and it takes us about 2 days. For fair comparison,

we use 16 pixels as test perturbation budget. In our experi-

ment, we find that, using one-step attack during training (in

this case step size is 16 pixels) suffers severely from label

leaking and gradient masking. We also observe the similar

problem on CIFAR10 and SVHN, when training with large

budgets, e.g., 12 or 16. In order to make our method work

for the 16-pixel evaluation setup, we use two-step MC tar-

geted attack (in this case the step size become 8 pixels). In

the experiment, we find that training without label adver-

sary performs very bad, further demonstrating the effective-

ness of label adversary. In evaluation, we use both the non-

targeted attack and the targeted attack where the target label

is uniformly randomly selected. Note that the non-targeted

attack is much stronger than the randomly targeted attack,

so we believe using both will lead to a more reliable robust-

ness evaluation. Table 9 shows the top-1 accuracy of our

method and two baseline methods, where the non-targeted

attack is denoted by “nt”, and the randomly targeted attack

is denoted by “rd”. We can see that our methods signifi-

cantly outperform the prior art [26] against CE10-rd attack.

Compared with the recent work [55], our models are better

on clean accuracy and against non-targeted attacks, but are

worse against randomly targeted attacks. We hypothesize

that this may be because that the models in [55] are trained

using randomly targeted attack (same as test), and, they are

using an-order-of-magnitude more computational resources

(30-step PGD during adversarial training).

6. Conclusion

In this paper, we proposed to use the adversarial image

and the adversarial label during adversarial training. The

adversarial image was generated by one-step or two-step

MC targeted attack. The adversarial label was computed

by an close-form formula. Comprehensive experiments on

CIFAR10, SVHN and ImageNet, against various white-box

attacks, demonstrate the effectiveness of our method.
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