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Abstract

Machine learning models trained in one domain perform

poorly in the other domains due to the existence of domain

shift. Domain adaptation techniques solve this problem by

training transferable models from the label-rich source do-

main to the label-scarce target domain. Unfortunately, a

majority of the existing domain adaptation techniques rely

on the availability of target-domain data, and thus limit

their applications to a small community across few com-

puter vision problems. In this paper, we tackle the challeng-

ing zero-shot domain adaptation (ZSDA) problem, where

target-domain data is non-available in the training stage.

For this purpose, we propose conditional coupled gener-

ative adversarial networks (CoCoGAN) by extending the

coupled generative adversarial networks (CoGAN) into a

conditioning model. Compared with the existing state of

the arts, our proposed CoCoGAN is able to capture the

joint distribution of dual-domain samples in two different

tasks, i.e. the relevant task (RT) and an irrelevant task

(IRT). We train CoCoGAN with both source-domain sam-

ples in RT and dual-domain samples in IRT to complete

the domain adaptation. While the former provide high-level

concepts of the non-available target-domain data, the latter

carry the sharing correlation between the two domains in

RT and IRT. To train CoCoGAN in the absence of target-

domain data for RT, we propose a new supervisory signal,

i.e. the alignment between representations across tasks. Ex-

tensive experiments carried out demonstrate that our pro-

posed CoCoGAN outperforms existing state of the arts in

image classifications.

1. Introduction

Most machine learning techniques assume that the train-

ing and testing data are from the same domain and follow

the same distribution. In the real world, however, data sam-

ples often originate from different domains. For example,

the image of an object can be captured by either a RGB sen-

sor or a depth sensor. Though the data in two domains may

share the high-level concepts, they are significantly differ-

ent from each other due to the existence of domain shift. As

a result, the models learned in one domain perform poorly

in the other [15]. Domain adaptation aims to overcome

this problem by learning transferable knowledge from the

source domain to the target domain.

In general, domain adaptation techniques assume that

the labels of data samples are shared by the source do-

main and the target domain [7]. Under such an assump-

tion, many different strategies can be made applicable for

domain adaptation. Motivated by the theoretical analysis

[2], some researchers reduce the domain divergence and

improve the performance in target domain either by mini-

mizing the discrepancy of representations between domains

[44, 28, 29] or by adversarial training [10, 41, 43, 38, 27].

Self-ensembling techniques are proposed to obtain consis-

tent predictions in two different domains [24, 8, 42]. The

encoder-decoder frameworks are also reported in the litera-

ture for many domain adaptation tasks [4, 13].

Although the above methods are successful in various

tasks, none of them is applicable in zero-shot domain adap-

tation (ZSDA) cases where the target-domain data for the

task of interest are non-available. A typical ZSDA example

is the personalization procedure of a spam filter before the

user start to use the email system, where the target-domain

represents a unique distribution of emails received by the

user. In present, the challenging ZSDA receives increasing

attentions over recent years, and the existing methods either

learn domain-invariant features [33, 12, 26, 35] or represent

the unseen target domain parametrically [52, 23].

To achieve more effective ZSDA, we propose a new

method to learn target-domain models not only based on

the source-domain samples for the task of interest, but also

gain supervision from the dual-domain samples in an irrel-

evant task. For simplicity, we denote the relevant task (task

of interest) as RT and the irrelevant task as IRT. We also de-

note the source-domain sample set as Xr
s in RT and Xir

s in
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Figure 1. Illustration of an example of ZSDA task, where the RT

and IRT are letter image analysis and digit image analysis, respec-

tively. The source domain consists of gray-scale images and the

target domain consists of color images. We first impose the align-

ment in the source domain based on the available data, then use

the alignment in the target domain to guide the training procedure

so that CoCoGAN can search the data space to generate proper

target-domain samples of RT.

IRT. Similarly, we use Xr
t and Xir

t to represent the target-

domain sample set in RT and IRT, respectively. In this work,

we assume that the transformation from the source domain

to the target domain is shared by both RT and IRT. Math-

ematically, if Xr
t = Tr(X

r
s ) and Xir

t = Tir(X
ir
s ), we as-

sume Tr = Tir. Thus, while the high-level concepts of

the non-available Xr
t are carried by Xr

s , the correlation be-

tween two domains can be learned in IRT where the dual-

domain samples are available. Fig. 1 illustrates an example

of ZSDA, where the source domain consists of gray-scale

images and the target domain consists of color images (ob-

tained using the method in [9]). The RT and IRT are letter

image analysis and digit image analysis, respectively.

Our conditional coupled generative adversarial network

(CoCoGAN) captures the joint distribution of dual-domain

samples in both RT and IRT by extending the coupled gen-

erative adversarial networks (CoGAN) [27] into a condi-

tional model with a binary conditioning variable. The pro-

posed CoCoGAN consists of two GANs, i.e. GANs for the

source domain and GANt for the target domain. The diffi-

culty in training the CoCoGAN for a ZSDA task lies in the

non-availability of Xr
t . Consequently, the GANt tends to

be biased towards IRT in the target domain. We solve this

problem by introducing a new supervisory signal, i.e. the

alignment between sample representations across tasks in a

given domain. Based on the conjugation between the two

branches in CoCoGAN, we impose representation align-

ment in source domain based on the available data, and ex-

pect that the representations of the generated Xr
t are aligned

with the representations of the available Xir
t in target do-

main, as shown in Fig. 1. Specifically, we search the target

domain by updating the parameter of GANt to generate a

proper non-available Xr
t as such that their representations

are indistinguishable from the representations of the avail-

able Xir
t .

We highlight our contributions in three-folds. Firstly, we

propose a new network structure, i.e. CoCoGAN, by ex-

tending the CoGAN into a conditioning model. The pro-

posed CoCoGAN is able to capture the joint distribution of

data samples in two different tasks. Secondly, we propose a

method to train the CoCoGAN for ZSDA tasks by introduc-

ing representation alignment across tasks as the supervisory

signal. Thirdly, in comparison with the work [35], our new

method solves the ZSDA tasks without relying on the corre-

spondences between samples in the IRT, and thus has more

potential applications.

2. Related Work

Domain shift refers to the fact that data samples follow

different distributions across domains. As a result, a so-

lution learned in one domain often performs poorly in an-

other. Domain adaptation techniques solve this problem by

learning transferable solutions from a label-rich source do-

main to a label-scarce target domain, and achieve success

in a range of learning tasks, such as image classification

[11, 22, 32, 47, 36] and semantic segmentation [53].

The most popular strategy for domain adaptation is to

eliminate the domain shift and learn invariant features by ei-

ther minimizing a well defined criteria or adversarial learn-

ing. For fine-grained recognition, Gebru et al. [11] min-

imize a multi-task objective consisting of label prediction

loss and attribute consistent loss. Hu et al. [19] learn a deep

metric network to minimize both the distribution divergence

between domains and the marginal Fisher analysis crite-

rion. Long et al. [28] propose a deep adaptation network

to learn domain-invariant features by minimizing the max-

imum mean discrepancy (MMD) metric. Tzeng et al. [46]

introduce a domain confusion loss and an adaptation layer

to learn representations which are not only domain invariant

but also semantically meaningful. Other domain adaptation

methods also adopt the MMD metric [29, 50]. Motivated by

the success of generative adversarial networks (GAN) [14],

Tzeng et al. [45] propose a general framework, i.e. adver-

sarial discriminative domain adaptation (ADDA), to com-

bine discriminative modeling, untied weight sharing, and

a GAN loss. In order to transform data from one domain

to another in the pixel space, Bousmalis et al. [3] propose

to decouple the processes of domain adaptation and task-

3376



specific classification based on adversarial learning. Yoo

et al. [54] propose an image-conditional model for trans-

formation from source domain to target domain in semantic

level and apply it to fashion analysis tasks. Shrivastava et al.

[40] adopt GAN for simulated+unsupervised (S+U) learn-

ing to improve the realism of the generated images.

All of the above methods rely on the availability of

target-domain data in their training stages, which are fac-

tually not always the case in real-world. For example, we

may feel disappointed to see that a computer vision system

working well with an existing low-resolution camera under-

performs when it is replaced by a high-resolution camera.

Zero-shot domain adaptation (ZSDA) refers to such a task,

where the target-domain data are non-available in the train-

ing stage.

Over the past years, many methods are proposed to

tackle the ZSDA problem. Khosla et al. [20] exploit dataset

bias and learn a set of visual world weights which are com-

mon to all datasets. Later, Li et al. [25] use the neu-

ral network structure to implement the similar idea. Yang

and Hospedales [52] predict and describe the unseen target

domain by a continuous parametrized vector. Kodirov et

al. [21] solve the domain shift problem with a regularized

sparse coding framework. Kumagai and Iwata [23] intro-

duce the concept of latent domain vectors to characterize

different domains and use them to infer the models for un-

seen domains.

Researchers also propose ZSDA techniques to learn

domain-invariant features, which are applicable in not only

the source domain but also the unseen target domain. Muan-

det et al. [33] propose domain-invariant component analy-

sis (DICA) to learn an invariant transformation by maxi-

mizing the similarity between different domains. Ghifary

et al. [12] propose multi-task autoencoder (MTAE) to learn

transformation from an image to its correspondence in the

other domains, and thus obtain domain-invariant features.

Li et al. [26] propose a conditional invariant adversarial

network to minimize the discrepancy of conditional distri-

butions across domains. The work that most related with

ours is by Peng et al. [35] which learns knowledge from

the dual-domain images in an irrelevant task. However,

the work [35] relies on the correspondences between dual-

domain data samples in IRT to train the model. In contrast,

our method does not rely on such information thanks to the

capability of our CoCoGAN in capturing the joint distribu-

tion of dual-domain images.

3. Coupled Generative Adversarial Networks

The coupled generative adversarial networks (CoGAN)

[27] consists of two GANs, denoted as GAN1 and GAN2,

each of which corresponds to a domain. These two GANs

have sharing layers to deal with the high-level semantic con-

cepts, and individual layers to deal with low-level features

for different domains. This setting allows the two gener-

ators (or discriminators) to decode (or encode) the same

high-level concepts by different ways in two domains.

The CoGAN captures the joint distribution of multi-

domain images, and thus can generate tuples of images,

such as the RGB image and the depth image of the same

scene. Different from the traditional methods that learn the

joint distribution based on tuples of images, CoGAN is able

to learn the joint distribution based on the images individ-

ually drawn from marginal distributions. In other words,

the training procedure does not rely on the correspondence

between data samples in the two domains.

With GANi (i = 1, 2) consisting of generator gi and dis-

criminator fi, the training procedure of CoGAN optimizes

the following minimax objective function

max
g1,g2

min
f1,f2

V (f1, f2, g1, g2) ≡

Ex1∼px1
[− log f1(x1)] + Ez∼pz

[− log(1− f1(g1(z)))]

+Ex2∼px2
[− log f2(x2)] + Ez∼pz

[− log(1− f2(g2(z)))]

(1)

subject to two constraints:

• 1) θ
g
j
1

= θ
g
j
2

1 ≤ j ≤ sg

• 2) θ
f
n1−k

1

= θ
f
n2−k

2

0 ≤ k ≤ sf − 1

where θ
g
j

i
denotes the parameter of the jth layer in the

generator gi (i = 1, 2), θ
f
ni−k

i

denotes the parameter of

the (k + 1)th layer from the last in the discriminator fi
(i = 1, 2), and ni denotes the number of layers in the

discriminator fi. While the first constraint indicates that

the two generators have sg sharing bottom layers, the sec-

ond constraint indicates that the two discriminators have

sf sharing top layers. With these two weight-sharing con-

straints, the two GANs can deal with high-level concepts

in the same way, which is essential to learn the joint distri-

bution of data samples (i.e. px1,x2
) based on the samples

drawn individually from the marginal distributions (i.e. px1

and px2
) .

4. Approach

Motivated by the success of conditioning methods in var-

ious computer vision tasks [31, 18, 48, 34, 5, 51], we extend

CoGAN into a conditioning model and propose conditional

coupled generative adversarial networks (CoCoGAN). In

order to train the CoCoGAN when the target-domain data

for the task of interest are non-available and make it appli-

cable to ZSDA tasks, we propose a new supervisory signal,

i.e. the alignment between representations across tasks.

Our method involves two tasks, i.e. the relevant task

(RT) and the irrelevant task (IRT). For each task, the data
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Figure 2. Illustration of the proposed CoCoGAN. The CoCoGAN extends CoGAN with a binary conditioning variable c, which chooses

RT/IRT for the network to deal with. The GANs process the source-domain data and the GANt process the target-domain data. The

double-headed arrows connect the sharing layers between the two branches. We maximize the loss of RT/IRT task label classifiers to

obtain aligned representations across tasks.

are from two domains, i.e. the source domain and the tar-

get domain. Let xr
s and xr

t be the samples from the source

domain and the target domain for RT, and let xir
s and xir

t be

the samples for IRT. We also use Xr
s , Xr

t , Xir
s and Xir

t to

denote the sample sets, i.e. Xr
s = {xr

s} etc. Given Xr
s , Xir

s

and Xir
t , the ZSDA task aims to learn a machine learning

model for the non-available Xr
t .

4.1. CoCoGAN

As shown in Fig. 2, our CoCoGAN extends the CoGAN

to a conditional model by a binary conditioning variable c,

which chooses a task for the CoGAN to deal with. It deals

with data samples in IRT if c = 0 , and deals with data sam-

ples in RT if c = 1. Our CoCoGAN uses a pair of GANs

to capture the joint distribution of data samples across two

domains. Specifically, the GANs (GANt) processes source-

domain (target-domain) samples with generator gs (gt) and

discriminator fs (ft). The two generators gs and gt try to

confuse the discriminators fs and ft by synthesizing pairs

of samples that are similar to the real images as much as

possible. In Fig. 2, we use double-headed arrows to con-

nect the sharing layers, which allow us to learn the corre-

spondences between dual-domain images.

When Xr
s , Xr

t , Xir
s and Xir

t are available, we can sim-

ply optimize the following objective function to train the

CoCoGAN:

max
gs,gt

min
fs,ft

V (fs, ft, gs, gt) ≡

Exs∼pxs
[− log fs(xs, c)] + Ez∼pz

[− log(1− fs(gs(z, c)))]

+Ext∼pxt
[− log ft(xt, c)] + Ez∼pz

[− log(1− ft(gt(z, c)))]

(2)

subject to two constraints:

• 1) θ
g
j
s
= θ

g
j
t

1 ≤ j ≤ sg

• 2) θ
f
n1−k
s

= θ
f
n2−k

t

0 ≤ k ≤ sf − 1

The source-domain sample xs is drawn from the sample set

Xir
s , if c = 0; and drawn from Xr

s , if c = 1. Similarly,

the target-domain sample xt is drawn from the sample set

Xir
t , if c = 0; and drawn from Xr

t , if c = 1. Given the data

samples from two domains in the two tasks, we can easily

train the CoCoGAN to capture the joint distribution of the

dual-domain data samples.

4.2. Representation Alignment

In a ZSDA task, however, it is difficult to train the CoCo-

GAN due to the non-availability of Xr
t . If we simply opti-

mize the objective function (2) with the available data, i.e.
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Xr
s , Xir

s and Xir
t , the GANt tends to be biased towards the

IRT in the target domain and cannot well capture the distri-

bution of the non-available target-domain data inside RT. To

overcome such a problem, we propose an additional super-

visory signal to train the CoCoGAN for ZSDA tasks, i.e. the

alignment of data sample representations across tasks. In

other words, we expect the representations from two differ-

ent tasks are non-distinguishable from each other in a given

domain.

Generally, the CoCoGAN aims to discover the correla-

tion between the source domain and the target domain by

capturing the joint distribution of the dual-domain samples

for both IRT and RT. We can consider GANs and GANt

as conjugate in the two domains, as they are expected to

generate sample pairs (xs, xt) with correspondence, i.e.,

xt = T (xs). Here, T (.) is the transformation from the

source domain to the target domain. In order to gain the

ability to generate sample pairs (xs, xt) = (xs, T (xs))
with sharing high-level concepts (such as class label and

semantic attributes), the processing procedure of GANs in

the source domain and that of GANt in the target domain

should have the same semantic meanings. Thus, the repre-

sentation extraction procedures, i.e rs(.) in gs and rt(.) in

gt, should produce two representation sets with the same

semantic meaning in a given task, which is denoted as

rs(xs, c) ≃ rt(xt, c) (c = 0 or 1) in this paper. In other

words, the representation of Xir
s and that of Xir

t share the

semantic meanings in an ideal CoCoGAN, i.e.

rs(X
ir
s , c = 0) ≃ rt(T (X

ir
s ), c = 0) ≡ rt(X

ir
t , c = 0) (3)

Similarly, we also expect the representation of the non-

available Xr
t share the semantic meanings with that of Xr

s ,

i.e.

rs(X
r
s , c = 1) ≃ rt(T (X

r
s ), c = 1) ≡ rt(X

r
t , c = 1) (4)

Thus, if we explicitly align rs(X
ir
s , c = 0) and rs(X

r
s , c =

1) in the source domain, we can expect the alignment be-

tween rt(X
ir
t , c = 0) and rt(X

r
t , c = 1) in the target do-

main. In other words, if rs(.) encodes samples for two dif-

ferent tasks with the same representation space in the source

domain, then rt(.) (i.e. the conjugation of rs(.)) should

achieve the same goal in the target domain.

Based on the above analysis, we first explicitly impose

representation alignment across tasks in the source domain,

and then take the representation alignment in the target do-

main as the supervisory signal to train the CoCoGAN. In

this way, the generator gt in GANt searches in the target

domain to produce the samples whose representations are

aligned with Xir
t in the target domain.

4.3. Training

As shown in Fig. 2, we propose a binary RT/IRT task

classifier for each tasks, i.e hs(.) for the source domain and

ht(.) for the target domain, to identify the involving task

of the input. We maximize the loss of these classifiers in

order to achieve representation alignment. In other words,

we expect that the representation of a sample in RT is in-

distinguishable from that of a sample in IRT if they belong

to the same domain. Our objective functions for the tasks

classifiers are given as follows

max
hs

Ls ≡ Exs∼pxs [ℓ(hs(xs))] + Ez∼pz [ℓ(hs(gs(z, c)))] (5)

max
ht

Lt ≡ Ext∼pxt [ℓ(ht(xt))] + Ez∼pz [ℓ(ht(gt(z, c)))] (6)

The loss function ℓ(.) for the task classification (i.e.

RT/IRT) is the logistic function. Both of the two task classi-

fiers are implemented with convolutional neural networks.

In order to jointly optimize the Eq. (2), (5), and (6),

we alternatively optimize the following two objective func-

tions:

(f̂s, f̂t, ĥs, ĥt) = argmin
fs,ft,hs,ht

V (fs, ft, ĝs, ĝt)− (Ls + Lt)

(7)

(ĝs, ĝt) = argmax
gs,gt

V (f̂s, f̂t, gs, gt) (8)

While Eq. (7) updates the discriminators and the task clas-

sifiers with the fixed generators, Eq. (8) updates the gen-

erators with the fixed discriminators. With the updates in

Eq. (7), the representations are more discriminative in the

real/fake classification task and less discriminative in the

RT/IRT classification task. With the updates in Eq. (8), the

generators generate sample pairs which are more similar to

the real data samples. We use the standard stochastic gradi-

ent method to optimize both Eq. (7) and Eq. (8).

5. Experiments

5.1. Datasets

We evaluate our method on four datasets, including

MNIST [30], Fashion-MNIST [49], NIST [16], and EM-

NIST [6].

The MNIST (DM ) is proposed for handwritten digit im-

age analysis. This dataset has 60000 training and 10000

testing grayscale images. Every sample belongs to one of

the 10 classes, i.e. from 0 to 9. The image size is 28× 28.

The Fashion-MNIST (DF ) is a dataset for fashion image

analysis. It has the same size with MNIST, i.e. 60000 for

training and 10000 for testing. The image size is also 28 ×
28. The images are manually labeled by fashion experts

with one of the following 10 silhouette codes, i.e. T-shirt,

trouser, pullover, dress, coat, sandals, shirt, sneaker, bag,

and ankle boot.

NIST (DN ) is a handwritten letter image dataset. In our

experiment, we use the images of both uppercase and low-

ercase letters. In total, we have 387361 training and 23941
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Figure 3. The example images of 4 datasets and their counterparts in 3 different domains. The first row shows the original images. We use

the method in [9] to obtain the second row, a Canny detector to obtain the third row, and the negation procedure to obtain the fourth row.

testing images from 52 different classes. The image size is

128 × 128. This dataset is imbalanced and there are large

differences in the occurrence frequencies for the 52 classes.

EMNIST (DE) is an extension of NIST. To be different

from the NIST, we merge the uppercase and lowercase let-

ters to form a balanced 26-class dataset. This subset has

124800 training and 20800 testing images. The image size

is 28× 28.

All these four different datasets consist of gray-scale

images, and we consider them in the gray domain

(G–domain). In order to evaluate our method, we create

three more domains via transformations, i.e. the colored do-

main (C–domain), the edge domain (E–domain), and the

negative domain (N–domain). Firstly, we transform the

gray-scale images into color images using the method pro-

posed in [9]. For a given image I ∈ Rm×n, we randomly

crop a patch P ∈ Rm×n from a color image in BSDS500

[1], and combine them together by Ic = |I − P | in each

channel. Secondly, we transform a gray-scale image I into

an edge image Ie with a canny detector. Thirdly, we obtain

the negative of each image by In = 255 − I . Fig. 3 shows

example images in four different domains.

5.2. Implementation details

We denote our method as CoCoGAN, and compare it

with two baselines. The first baseline is ZDDA [35], which

is the only work that adopts deep learning technique for

ZSDA. To verify the effectiveness of the alignment between

representations as the supervisory signal, we take the CoCo-

GAN without any task classifier as the second baseline, and

denote it as CoCoGAN w/o T in this work.

Our CoCoGAN is implemented with convolutional neu-

ral networks and its two branches (i.e. GANs and GANt)

have the same network structure. The generator has 7 trans-

posed convolutional layers to decode the random vector z

into a realistic sample for RT if c = 1 and for IRT if c = 0.

For representation learning from the real and generated im-

ages, the discriminators have 5 convolutional layers with

stride 2, which are denoted as rs(·) in the source domain

and rt(·) in the target domain. In addition, the discrimina-

tors have two convolutional layers for fake/real classifica-

tion. Thus, both the generators and the discriminators have

7 layers. The binary classifiers, i.e. hs(·) and ht(·), use two

fully connected layers to classify rs(xs) and rt(xt) into RT

or IRT.

In the training stage, we partition the sample set of IRT

into two non-overlapping halves in each domain, i.e. Xir
s =

Xir
s1 ∪Xir

s2 and Xir
t = Xir

t1 ∪Xir
t2 , where Xir

s1 ∩Xir
s2 = ∅,

Xir
t1 ∩ Xir

t2 = ∅, Xir
t1 = T (Xir

s1), and Xir
t2 = T (Xir

s2).
We use the first half in the source domain (i.e. Xir

s1) to

train GANs and use the second half in the target domain

(i.e. Xir
t2 ) to train GANt. Thus, there is no correspondence

between the source-domain samples and the target-domain

samples. Compared with our proposed, the ZDDA [35] in-

stead needs the correspondence between data samples in the

training procedure. We use the sample set with correspon-

dence to train ZDDA, i.e. Xir
s1 ∪Xir

t1 or Xir
s2 ∪Xir

t2 .

We use the trained CoCoGAN for image classification in

the target domain of RT and obtain the classifier using the

following three steps. Firstly, we generate a set of sam-

ple pairs with correspondence (x̃r
s, x̃

r
t ) using the source-

domain generators gs and the target-domain generator gt.

Secondly, we train a label predictor Cs(x
r
s) for the source-

domain samples in RT based on the available Xr
s and their

labels, and use this predictor to obtain the sharing labels of

the generated samples, i.e. labelx̃r
t
= labelx̃r

s
= Cs(x̃

r
s).

Thirdly, we train a label classifier for the target-domain

samples in RT based on the generated samples and their la-

bels.

5.3. Results

In order to evaluate the proposed CoCoGAN, we

have five different pairs of source domain and target do-

main. On one hand, we take G–domain as the source

domain and take the other three domains as the tar-

get domain. Thus, the source and target domain pairs
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Table 1. The classification accuracies of the proposed method and the baselines with 5 different settings of (source domain, target domain)

pairs. We remove the task classifiers in both source domain and target domain from the CoCoGAN to create the baseline CoCoGAN w/o T

A. (source domain, target domain)= (G–domain,C–domain)
RT MNIST ( DM ) Fashion-MNIST (DF ) NIST (DN ) EMNIST (DE)

IRT DF DN DE DM DN DE DM DF DM DF

ZDDA 73.2 92.0 94.8 51.6 43.9 65.3 34.3 21.9 71.2 47.0

CoCoGAN w/o T 68.3 81.6 74.7 39.7 48.2 55.8 35.2 38.8 46.7 41.8

CoCoGAN 78.1 92.4 95.6 56.8 56.7 66.8 41.0 44.9 75.0 54.8

B. (source domain, target domain)= (G–domain,E–domain)
RT MNIST ( DM ) Fashion-MNIST (DF ) NIST (DN ) EMNIST (DE)

IRT DF DN DE DM DN DE DM DF DM DF

ZDDA 72.5 91.5 93.2 54.1 54.0 65.8 42.3 28.4 73.6 50.7

CoCoGAN w/o T 67.1 74.8 81.5 47.5 50.2 56.1 41.2 30.9 63.6 51.9

CoCoGAN 79.6 94.9 95.4 61.5 57.5 71.0 48.0 36.3 77.9 58.6

C. (source domain, target domain)= (G–domain,N–domain)
RT MNIST ( DM ) Fashion-MNIST (DF ) NIST (DN ) EMNIST (DE)

IRT DF DN DE DM DN DE DM DF DM DF

ZDDA 77.9 82.4 90.5 61.4 47.4 62.7 37.8 38.7 76.2 53.4

CoCoGAN w/o T 62.7 67.3 72.8 51.8 47.5 51.2 39.3 36.7 60.8 39.1

CoCoGAN 80.3 87.5 93.1 66.0 52.2 69.3 45.7 53.8 81.1 56.5

D. (source domain, target domain)= (C–domain,G–domain)
RT MNIST ( DM ) Fashion-MNIST (DF ) NIST (DN ) EMNIST (DE)

IRT DF DN DE DM DN DE DM DF DM DF

ZDDA 67.4 85.7 87.6 55.1 49.2 59.5 39.6 23.7 75.5 52.0

CoCoGAN w/o T 54.7 69.0 63.5 43.4 40.6 51.6 21.4 30.9 49.5 48.2

CoCoGAN 73.2 89.6 94.7 61.1 50.7 70.2 47.5 57.7 80.2 67.4

E. (source domain, target domain)= (N–domain,G–domain)
RT MNIST ( DM ) Fashion-MNIST (DF ) NIST (DN ) EMNIST (DE)

IRT DF DN DE DM DN DE DM DF DM DF

ZDDA 78.5 90.7 87.6 56.6 57.1 67.1 34.1 39.5 67.7 45.5

CoCoGAN w/o T 66.1 75.9 76.3 49.9 53.1 58.7 35.6 33.7 53.0 32.5

CoCoGAN 80.1 92.8 93.6 63.4 61.0 72.8 47.0 43.9 78.8 58.4

are (G–domain,C–domain), (G–domain,E–domain),
and (G–domain,N–domain). On the other hand, we

also take G–domain as the target domain and trans-

fer knowledge from the other two domains, where

the dual-domain pairs are (C–domain,G–domain) and

(N–domain,G–domain).

The four datasets in Sec. 5.1 involves three different

tasks, i.e. digit image classification, fashion image classi-

fication, and letter image classification. Given the RT, we

can take any of the other two as the IRT. The NIST and the

EMNIST share the task since both of them consist of letter

images. Thus, we do not take (NIST, EMNIST) or (EMNIST,

NIST) as valid (RT,IRT) pair in our experiments.

Tab. 1 lists the classification accuracies of different set-

tings. As seen, our method performs significantly better that

ZDDA [35]. Taking NIST classification in Tab. (1)-D as an

example, our proposed CoCoGAN outperforms ZDDA by

7.9% when the IRT is digit image analysis and by 34.0%
when the IRT is fashion image analysis. The comparative

results demonstrate that our proposed indeed obtain dis-

criminative representations from the target-domain data of

RT based on the representation extraction procedure learned

in CoCoGAN. In addition, our method has more potential

applications than ZDDA, whose performance is heavily re-

lied on the correspondence between dual-domain samples

in the IRT.

Our proposed CoCoGAN beats the baseline CoCoGAN

w/o T by 15.6% on average, indicating the effectiveness of
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Figure 4. The generated non-available target-domain images by

CoCoGAN in the C–domain, E–domain, and N–domain.

These images are in the same style with the real images.

the task label classifiers in adapting the GANt towards the

RT. Without the task label classifiers, the non-sharing layers

in both generator gt and discriminator ft are trained solely

by the samples in IRT, and thus not suitable for the non-

available target-domain data in RT. In order to make them

applicable to the target-domain data in RT, our CoCoGAN

updates the parameter of these non-sharing layers based on

the correlation between the two domains, i.e. the represen-

tation alignment across tasks in this work. It is these su-

pervisory signals that guide the generators to decode and

the discriminator to encode the low-level features of those

non-available samples properly.

Our method also beats many existing methods which

rely on the availability of the target-domain data samples

in the training procedure. Taking C–domain as the source

domain and G–domain as the target domain, our method

achieves the accuracy of 94.7% on MNIST, yet the accura-

cies of the existing techniques are: 86.7% in [39], 89.5% in

[17], and 94.2% in [37], respectively.

Table 2. Taking G–domain as the source domain, the average

overlap ratios between the generated targe-domain images and the

ones obtained by the procedure described in Sec. 5.1

A. The overlap ratios in E–domain

DM DF DN DE

CoCoGAN w/o T 0.816 0.707 0.727 0.749

CoCoGAN 0.873 0.786 0.803 0.812

B. The overlap ratios in N–domain

DM DF DN DE

CoCoGAN w/o T 0.804 0.772 0.704 0.733

CoCoGAN 0.863 0.824 0.844 0.812

In order to show the capability of the proposed CoCo-

GAN in capturing the joint distribution of dual-domain im-

ages, we visualize some generated samples in Fig. 4. We

also use the method proposed in [27] to evaluate the cor-

respondence between the generated sample pairs with three

steps. The first step generates a set of sample pairs (x̃r
s, x̃

r
t )

based on the trained CoCoGAN by changing the random

variable z. The second step produces the target-domain cor-

respondence, i.e. T (x̃r
s), for the source-domain sample x̃r

s

by using the method described in Sec. 5.1. The third step

calculates the overlap ratio between x̃r
t and T (x̃r

s). Taking

the gray-scale images as the source domain, Tab. 2 lists the

average overlap ratios in the edge domain and the negative

domain. The higher the overlap ratio, the more accurate

the correspondence between the generated sample pairs. As

generating a color image involves a random patch sampling

process, this metric becomes meaningless in color domain.

As seen in the Tab 2, our proposed CoCoGAN achieves

higher overlap ratios than the baseline CoCoGAN w/o T, in-

dicating the proposed supervisory signal improves the cor-

respondence between the dual-domain samples.

6. Conclusion

Zero-shot domain adaptation refers to the problem where

the target-domain data are not available in the training stage.

We propose a so-called CoCoGAN to solve this problem

by extending the CoGAN into a conditioning model. Es-

sentially, our CoCoGAN consists of two GANs in order

to capture the joint distribution of data samples across two

domains and two tasks. The model for the unseen target-

domain data in RT is learned based on the source-domain

data in RT and the dual-domain data in an IRT. While the

former provide the high-level concepts of the unseen target-

domain data, the latter carry the sharing correlation between

the two domains in RT and IRT. To train the CoCoGAN in

the absence of the target-domain data, we introduce a new

supervisory signal, i.e. the alignment between representa-

tions across tasks. In comparison with the existing methods

such as [35], our method does not rely on the correspon-

dences between samples in IRT, and thus has more poten-

tial applications. Extensive experiments are carried out on

four publicly available datasets, and the results validate the

effectiveness of our proposed method in generating the non-

available data samples and extracting their representations.
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Darrell, and Alexei Efros. Context encoders: Feature learn-

ing by inpainting. 2016.

[35] Kuan Chuan Peng, Ziyan Wu, and Jan Ernst. Zero-shot deep

domain adaptation. In ECCV, 2018.

[36] Fan Qi, Xiaoshan Yang, and Changsheng Xu. A unified

framework for multimodal domain adaptation. In ACM Mul-

timedia, pages 429–437, 2018.

3383



[37] Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada.

Asymmetric tri-training for unsupervised domain adaptation.

In ICML, pages 2988–2997, 2017.

[38] Swami Sankaranarayanan, Yogesh Balaji, Carlos D. Castillo,

and Rama Chellappa. Generate to adapt: Aligning domains

using generative adversarial networks. In CVPR, pages

8503–8512, 2018.

[39] Ozan Sener, Hyun Song, Ashutosh Saxena, and Silvio

Savarese. Learning transferable representations for unsuper-

vised domain adaptation. In NIPS, 2016.

[40] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh

Susskind, Wenda Wang, and Russell Webb. Learning

from simulated and unsupervised images through adversarial

training. In CVPR, pages 2242–2251, 2017.

[41] Kihyuk Sohn, Sifei Liu, Guangyu Zhong, Xiang Yu, Ming-

Hsuan Yang, and Manmohan Krishna Chandraker. Unsu-

pervised domain adaptation for face recognition in unlabeled

videos. In ICCV, 2017.

[42] Antti Tarvainen and Harri Valpola. Mean teachers are better

role models: Weight-averaged consistency targets improve

semi-supervised deep learning results. In NIPS, pages 1195–

1204. 2017.

[43] Luan Tran, Kihyuk Sohn, Xiang Yu, Xiaoming Liu, and

Manmohan Krishna Chandraker. Joint pixel and feature-

level domain adaptation in the wild. CoRR, 2018.

[44] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko.

Simultaneous deep transfer across domains and tasks. ICCV,

pages 4068–4076, 2015.

[45] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.

Adversarial discriminative domain adaptation. CVPR, pages

2962–2971, 2017.

[46] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and

Trevor Darrell. Deep domain confusion: Maximizing for

domain invariance. CoRR, abs/1412.3474, 2014.

[47] Jindong Wang, Wenjie Feng, Yiqiang Chen, Han Yu, Meiyu

Huang, and Philip S. Yu. Visual domain adaptation with

manifold embedded distribution alignment. In ACM Mul-

timedia, 2018.

[48] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,

Jan Kautz, and Bryan Catanzaro. High-resolution image syn-

thesis and semantic manipulation with conditional gans. In

CVPR, 2018.

[49] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-

mnist: a novel image dataset for benchmarking machine

learning algorithms. CoRR, abs/1708.07747, 2017.

[50] Hongliang Yan, Yukang Ding, Peihua Li, Qilong Wang,

Yong Xu, and Wangmeng Zuo. Mind the class weight bias:

Weighted maximum mean discrepancy for unsupervised do-

main adaptation. In CVPR, pages 945–954, 2017.

[51] Dingdong Yang, Seunghoon Hong, Yunseok Jang,

Tiangchen Zhao, and Honglak Lee. Diversity-sensitive

conditional generative adversarial networks. In ICLR, 2019.

[52] Yongxin Yang and Timothy Hospedales. Zero-shot domain

adaptation via kernel regression on the grassmannian. 2015.

[53] Zhang Yang, Philip David, and Boqing Gong. Curricu-

lum domain adaptation for semantic segmentation of urban

scenes. In ICCV, 2017.

[54] Donggeun Yoo, Namil Kim, Sunggyun Park, Anthony S.

Paek, and In-So Kweon. Pixel-level domain transfer. In

ECCV, 2016.

3384


