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Abstract

In this paper, we propose to guide the video caption gen-

eration with Part-of-Speech (POS) information, based on

a gated fusion of multiple representations of input videos.

We construct a novel gated fusion network, with one partic-

ularly designed cross-gating (CG) block, to effectively en-

code and fuse different types of representations, e.g., the

motion and content features of an input video. One POS

sequence generator relies on this fused representation to

predict the global syntactic structure, which is thereafter

leveraged to guide the video captioning generation and con-

trol the syntax of the generated sentence. Specifically, a

gating strategy is proposed to dynamically and adaptively

incorporate the global syntactic POS information into the

decoder for generating each word. Experimental results

on two benchmark datasets, namely MSR-VTT and MSVD,

demonstrate that the proposed model can well exploit com-

plementary information from multiple representations, re-

sulting in improved performances. Moreover, the generated

global POS information can well capture the global syntac-

tic structure of the sentence, and thus be exploited to control

the syntactic structure of the description. Such POS infor-

mation not only boosts the video captioning performance

but also improves the diversity of the generated captions.

Our code is at: https://github.com/vsislab/

Controllable_XGating.

1. Introduction

Video captioning [18, 56, 46] aims at automatically de-

scribing rich content in videos with natural language, which

is a meaningful but challenging task for bridging vision and

language. This task can be applied for high-level video un-

derstanding in a variety of practical applications, such as

visual retrieval [26, 37, 48, 24], visual question answer-

∗This work was done while Bairui Wang was a Research Intern with

Tencent AI Lab.
†Corresponding authors.
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Figure 1. The proposed model for video captioning consists of a

gated fusion network, a POS sequence generator, and a descrip-

tion generator. The gated fusion network extracts diverse features

from videos, encodes, and fuses them together to generate a more

representative video feature. Relying on the global syntactic POS

information generated from the POS sequence generator and the

fused video feature, the description generator produces one sen-

tence describing the video content.

ing [25, 9], and so on.Video captioning is related to image

captioning which describes an image with a sentence, as a

video can be regarded as a sequence of images. However,

what makes video captioning more challenging than image

captioning [12, 44, 7, 17] is not only that the input of video

captioning are multiple images, but also that video contains

richer semantics, such as spatial/temporal information, con-

tent/motion information, and even speech information. Ob-

viously, the existing approahces with one single kind fea-

ture [11, 43, 45, 46] are hard to comprehensively exploit

the semantic meaning of a video.

Recently, researches on describing videos from di-

verse representations, such as Inception ResNet V2 [38],

C3D [40], and I3D [2], have proved that multiple features

can improve the video captioning models [42, 53, 27, 28]. It

is reasonable as different features can capture video seman-

tic information from different perspectives. However, to the

best of our knowledge, the existing methods simply con-

catenate different representations together, while neglect the

relationships among them, which play an important role in

fully characterizing the video semantic meaning.

Prior video captioning methods also neglect the syntactic
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structure of a sentence during the generation process. Ana-

logic to the fact that words are the basic composition of a

sentence, the part-of-speech (POS) [10] information of each

word in a sentence is the basic structure of the grammar.

Therefore, the POS information of the generated sentence

is able to act as one prior knowledge to guide and regu-

larize the sentence generation, if it can be obtained before-

hand. Specifically, with the obtained POS information, the

decoder is aware of the POS information of the word to be

generated. As such, it may help reduce the search space of

the target word, which is believed to benefit the video cap-

tioning. Besides, the changing of POS information, which

can be seen as the prior knowledge of the description, is ex-

cepted to help generate sentence with more diverse syntax.

In order to fully exploit the relationships among differ-

ent representations and the POS information, we propose a

novel model to describe videos with POS guidance based

on the gated fusion results of multiple representations, as

shown in Fig. 1. First, a novel gated fusion network re-

lies on a particularly designed cross gating (CG) block to

mutually gate diverse features with respect to each other.

As such, we can make a comprehensive representation of

the video. One POS sequence generator relies on the fused

video representation to yield the global POS information.

Afterwards, the decoder relies on a gating strategy to dy-

namically and adaptively incorporate the generated global

syntactic POS information for generating each word.

To summarize, the contributions of this work lie in three-

fold: 1) We propose a novel video captioning model, which

relies on a gated fusion network incorporating multiple fea-

tures information together and a POS sequence generator

predicting the global syntactic POS information of the gen-

erated sentence. 2) A cross gating (CG) strategy is proposed

to effectively encode and fuse different representations. The

global syntactic POS information is adaptively and dynam-

ically incorporated into the decoder to guide the decoder to

produce more accurate description in terms of both syntax

and semantics. 3) Extensive results on benchmark datasets

indicate that the proposed fusion strategy can capture the

relationships among multiple representations and descrip-

tions with diverse syntax can be obtained by controlling the

global POS sequence.

2. Related Work

2.1. Video Captioning

Previous works on video captioning adopt temporal-

based methods [21, 15, 34, 33, 52], which define a sen-

tence template with grammar rules. The sentence is parsed

into subject, verb and object, each of which is aligned with

video content. Obviously, under the predefined template

with fixed syntactic structure, those methods are hard to

generate flexible language descriptions.

Nowadays, benefit from the success of CNN and RNN,

the sequence learning methods [42, 53, 27, 28, 8, 45, 49] are

widely used to describe video content with flexible syntactic

structure. In [43], Venugopalan et al. obtained video repre-

sentation by averaging CNN feature of each frame, which

ignored the temporal information. Compare to the average

pooling, Yao et al. and Yu et al. employed the soft attention

mechanism to dynamically summarize all frame represen-

tations [53, 54]. Recently, to exploit more semantic infor-

mation, Pan et al. modeled the semantic-level correlation

of sentence and video with a visual-semantic embedding

model [27]. To avoid the negative impact of redundant vi-

sual information, Chen et al. proposed a PickNet to choose

key frames [8].

More recently, different features can help characteriz-

ing the video semantic meaning from different perspectives.

Many existing works utilize the motion information [42],

temporal information [4, 18, 31], and even the audio infor-

mation [51] to yield competitive performance. However,

the diverse features in these works are simply concatenated

with each other, which ignores the relationship among them.

It is possible to further improve performance with a better

fusion strategy. In this paper, we design a gated fusion net-

work to dynamically learn and highlight the correlation be-

tween different features, which is expected to fully depict

and characterize the video semantic meaning.

2.2. Captioning with POS Information

To the best of our knowledge, the POS tag information

of language description has not been introduced in the video

captioning task. While in image captioning, Deshpande et

al. treated the entire POS tag sequence given by benchmark

dataset as a sample, and divided them in 1024 categories

by a k-medoids cluster [10], which limits the diversity of

POS sequence information. He et al. controlled the input of

image representations based on the predefined POS tag in-

formation of each ground-truth word [16], which can hardly

obtained in practical scenario. In contrast, we predict POS

sequence tag by tag, and embed them as a global POS fea-

ture to provide approximate global view on syntactic struc-

ture of the sentences. More importantly, the syntactic struc-

ture of description is controllable by changing the POS se-

quence manually.

3. Architecture

Given a video sequence, video captioning aims to gen-

erate a natural sentence S = {s1, s2, . . . , sn} to express

its semantic meaning, where n denotes the length of a sen-

tence. In this paper, we would like to make a full exploita-

tion of the video sequence by considering diverse video fea-

tures. Moreover, we also want to predict the syntactic infor-

mation of the generated sentence, specifically the POS in-
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Figure 2. The proposed model for video captioning consists of three components. The gated fusion network encodes and fuses multiple

video representations extracted by different CNN networks. The POS generator relies on the fused video representation to predict the

global syntactic POS information of the sentence to be generated. The decoder adaptively and dynamically incorporates the global POS

information for generating each targeting word. G© denotes the cross gating mechanism and A© denotes the soft attention mechanism.

formation C = {c1, c2, . . . , cn}, which is thereafter lever-

aged for guiding the sentence generation.

We propose one model for video captioning, realized in

an encoder-decoder architecture, which consists of a gated

fusion network, a POS sequence generator, and a descrip-

tion generator, as shown in Fig. 2. The gated fusion network

learns to exploit the relationship among different video fea-

tures to make a comprehensive understanding of the video

sequence. The POS sequence generator learns to exploit the

relationship between fused representation and POS tags of

ground-truth descriptions, and thereby predicts global POS

representation for the sentence to be generated. The de-

scription generator attentively summarizes the fused repre-

sentations and generates each word by adaptively integrat-

ing the predicted global POS representation.

3.1. Gated Fusion Network

Given the input videos, the gated fusion network first ex-

tracts different semantic representations for each frame by

multiple CNN networks. For the convenience of expres-

sion, we take the visual content feature from RGB frames

and motion feature from optical flows as examples in this

section, which are denoted as R = {r1, r2, . . . , rm} and

F = {f1, f2, . . . , fm}, respectively, where ri and fi de-

note the features for the ith frame and optical flow of the

input video, respectively. m indicates the total length of the

video. Based on the obtained representations R and F , the

gated fusion network performs in two stages. First, tem-

poral encoding of each representation is performed, respec-

tively. Afterwards, a cross gating strategy is proposed to

fuse the temporally aggregated feature together.
Temporal Encoder. Long short term memory networks
(LSTMs) are used to aggregate these representations:

h
(r)
i , z

(r)
i = LSTM

(E)
r

(

ri, h
(r)
i−1

)

,

h
(f)
i , z

(f)
i = LSTM

(E)
f

(

fi, h
(f)
i−1

)

,
(1)

where LSTM(E)
r and LSTM

(E)
f denote the LSTM units for

ℎ𝑖(𝑟) 

ℎ𝑖(𝑓) 

𝑟 𝑖  

𝑓 𝑖  … 

𝑥𝑖  

Figure 3. An illustration of cross gating strategy in the proposed

gated fusion network. The cross gating strategy strengthens the

information that is related to each other within diverse features,

and then fuses them together.
⊗

and
⊕

denote the element-wise

multiplication and addition, respectively.

the content and motion features, respectively. h
(r)
i , h

(f)
i ,

z
(r)
i and z

(f)
i are the corresponding hidden states and mem-

ory cells. With LSTM encoding, high-level content and

motion feature sequences R̂ = {h
(r)
1 , h

(r)
2 , . . . , h

(r)
m } and

F̂ = {h
(f)
1 , h

(f)
2 , . . . , h

(f)
m } are obtained.

Cross Gating. A simple concatenation of R̂ and F̂ can fuse
all the different features of a frame. However, such a fusion
strategy ignores the relationship between these features. To
take full advantage of the related semantic information, we
propose a novel cross gating strategy on different features
as illustrated in Fig. 3:

r̃i = Gating
(E)
r

(

h
(f)
i , h

(r)
i

)

,

f̃i = Gating
(E)
f

(

h
(r)
i , h

(f)
i

)

,
(2)

where r̃i and f̃i are the gated results for content and mo-
tion representations. We realize the Gating function as fol-
lows:

Gating (x, y) = σ (wx+ b) y + y, (3)

where y denotes the target feature, which is updated under

the guidance of the driver feature x. w and b are learnable

parameters, and σ is a nonlinear activation function, which

is a ReLU function in our implementation. Obviously, in
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r̃i the content information related to the motion information

has been strengthened by the proposed cross gating strategy.

And the similar process performs on f̃i, where the motion

information related to content information is strengthened.

Finally, the gated representations of content and motion
are fused together by a fully connected layer:

xi = w(E)
([

r̃i, f̃i
]

+ b(E)
)

, (4)

where [·] denotes the concatenation of inputs. xi denotes

the fused representation for each frame where both content

and motion information are included. w(E) and b(E) are the

learnable parameters.

3.2. POS Sequence Generator

In addition to natural language descriptions, the POS
of each word in sentences is also closely related to the
video content. To utilize the POS information, we design
a simple POS sequence generation network based on the
fused representations. Based on the fused feature sequence
X = {x1, x2, . . . , xm}, the POS generator predicts POS
sequence:

h
(T )
t , z

(T )
t = LSTM

(T )
([

Epos(ct−1), φt

(

X,h
(T )
t−1

)]

, h
(T )
t−1

)

,

P (ct|c<t, V ; θpos) = softmax
(

W
(T )h

(T )
t + b

(T )
)

,

(5)

where h
(T )
t and z

(T )
t are hidden state and memory cell

of POS generator. ct−1 denotes the POS tag predicted at

the previous step, Epos is an embedding matrix for POS

tags and we denote by Epos(ct−1) the embedding vector of

POS tag ct−1. θpos, W(T ) and b
(T ) denote the learnable

parameters in POS sequence encoder. P (ct|c<t, V ; θpos)
means the probability of predicting correct POS tag ct given

the previous tags c<t = {c1, c2, . . . , ct−1} and input video

V .

Please note that the symbol φt (·) in Eq. (5) denotes the
soft attention process at time step t, which yields a vector

representation φt

(

X,h
(T )
t−1

)

with different weights onX:

φt

(

X,h
(T )
t−1

)

=

m
∑

i=1

αt,ixi, (6)

where
∑m

i=1 αt,i = 1 and αt,i denotes the attention
weights computed for the ith fused representation at the tth
time step. It encourages the POS sequence encoder to select
the useful information related with the POS tag predicted at
the current step. The attentive weight α is computed by:

et,i = w
(T )⊤

tanh
(

W
(T )h

(T )
t−1 +U

(T )xi + b
(T )

)

,

αt,i = exp (et,i) /
m
∑

k=1

exp (et,i),
(7)

where w(T )⊤, W(T ), U(T ) and b
(T ) are learnable param-

eters.

When the prediction for the whole POS sequence fin-

ishes, the last hidden state ψ = h
(T )
n of the LSTM is ex-

pected to capture the global information of the POS se-

𝑥𝑖−1𝑥𝑖
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Figure 4. The architecture of the proposed description generator.

At each time step, the cross gating G© is performed on the embed-

ding vector of predicted word and the predicted global POS fea-

ture, by which the POS information related to the current word is

dynamically and adaptively incorporated. The soft attention mech-

anism dynamically summarizes the fused frame features.

quence of the generated sentence, which is further used to

guide the description generation and control the syntactic

structure to generate the sentence.

3.3. Description Generator

The description generator produces sentence description

for video based on the fused video representation X =
{x1, x2, . . . , xm} learned by the video encoder and the pre-

dicted global POS representation ψ. We employ a hierarchi-

cal decoder, which consists of a two-layer LSTM. The first

layer is fed with the generated word st−1 and the global

POS feature ψ, while the second one takes the hidden state

of first layer and an attentive summary of X as input.
When describing a video V , the word embedding vector

is updated by performing the cross gating on the global POS
feature ψ generated in Sec. 3.2:

ψ̄ = Gating
(D) (Eword(st−1), ψ) , (8)

where Eword(st−1) is the word embedding vector of the

word st−1, which is generated at the previous time step.

As such, the global POS information with respect to the

predicted word is strengthened.
Afterwards, the process of description generator is as fol-

lows:

φt(X,h
(D)
t−1) =

m
∑

i=1

βt,ixi,

h
(D1)
t , z

(D1)
t = LSTM

(D1)
(

[

Eword(st−1), ψ̄
]

, h
(D1)
t−1

)

,

h
(D2)
t , z

(D2)
t = LSTM

(D2)
([

h
(D1)
t , φt(X,h

(D)
t−1)

]

, h
(D2)
t−1

)

,

P (st|s<t, V ; θgen) = softmax
(

W
(D)
s h

(D2)
t + b

(D)
s

)

,

(9)

where LSTM with subscriptsD1 andD2 denote the LSTM

units at the first and second layers in decoder. W
(D)
s , b

(D)
s ,

and θgen denote the learnable parameters in the description
generator. Once again, we apply the soft attention on X ,
as in Eq. (7), to dynamically select the high-level fused

features, which is denoted as φt(X,h
(D)
t−1). The attentive

weights β satisfy
∑m

i=1 βt,i = 1. Please note that we use
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a hierarchical guidance consisting of h
(D1)
t from the first

layer and h
(D2)
t from the second layer to drive the attention

mechanism, which is obtained by:

e
(D)
t,i = w

(D)⊤
a tanh

(

W
(D)
a

[

h
(D1)
t−1 , h

(D2)
t−1

]

+U
(D)
a xi + b

(D)
a

)

,

βt,i = exp
(

e
(D)
t,i

)

/
m
∑

j=1

exp
(

e
(D)
t,j

)

.

(10)

3.4. Training

The proposed model is trained in two stages. We first
freeze the parameters of the description generator, and train
the POS sequence generator in a supervised way with the
purpose of obtaining accurate global POS information. The
loss function is defined as the negative log probability of
each POS sequence:

Lpos (θpos) = −
N
∑

k=1

logP
(

Ck|V k; θpos
)

, (11)

where N is the total number of training data, and the prob-
ability of one POS sequence is defined as:

P (C|V ; θpos) =

n
∏

t=1

P (ct|c<t, V ; θpos). (12)

When the POS generator converges, we predicts the
global POS information based on the POS generator for
each video sequence. Then, the video encoder and descrip-
tion generator are jointly trained by minimizing the cross-
entropy loss, which is similar to Eq. (11) and (12):

Lgen (θgen) = −
N
∑

k=1

logP
(

Sk|V k; θgen
)

, (13)

where P (S|V ; θgen) =
∏n

t=1 P (st|s<t, V ; θgen).
Besides, we intend to directly train the captioning

models guided by evaluation metrics, specifically the

CIDEr [41] in this work, instead of the cross-entropy

loss. As such an evaluation metric is discrete and non-

differentiable, we resort to the self-critical sequence train-

ing [32] to further boost the performance of the proposed

method. More details about the self-critical strategy can be

found in the supplementary material.

3.5. Inference

As the global POS information generated by the pro-

posed POS sequence generator can help improve caption-

ing performance and control the syntactic structures of the

generated descriptions, we verify our method in two ways.

First, the POS sequence generator generates global POS in-

formation without any human intervention. secondly, we

control the global POS information by changing the pre-

dicted POS tags. For example, we change one or more pre-

dicted POS tags, based on which, the corresponding global

POS information is then generated.

In both two ways, the global POS information is utilized

by the description generator to predict the captions. The

first verification is for demonstrating the performance im-

provements brought by the proposed gated fusion network

and global POS sequence guidance, while the other one

aims to present the controllablity for the syntactic structure

of the video description generation.

4. Experiments

In this section, we evaluate the proposed video cap-

tioning method on Microsoft Research video to text

(MSR-VTT) [50] and Microsoft Video Description Cor-

pus (MSVD) [3] with the widely-used metrics includ-

ing BLEU@N [29], METEOR [1], ROUGE-L [22], and

CIDEr [41]. They are denoted as B@N, M, R, and C re-

spectively, where N varies from 1 to 4. The codes for these

metrics have been released on Microsoft COCO evaluation

server [6]. We first briefly describe the datasets used for

evaluation, followed by the implementation details. After-

wards, we discuss the experiment results on video caption-

ing.

4.1. Datasets

MSR-VTT. The MSR-VTT is a large-scale dataset for

video captioning, which covers the most diverse visual con-

tents so far. It contains 10,000 video clips from 20 cate-

gories and 200,000 video-caption pairs with 29,000 unique

words in total. Each video clip corresponds to 20 English

sentence descriptions. Following the existing work, we use

the public splits for training and testing, where 6,513 for

training, 497 for validation, and 2,990 for testing.

MSVD. There are 1,970 short video clips collected from

YouTube, with each one depicts a single activity in 10 sec-

onds to 25 seconds. Each clip has roughly 40 English de-

scriptions. Similar to the prior work [27, 53], we take 1200

video clips for training, 100 clips for validation and 670

clips for testing.

4.2. Implementation Details

For the sentences in the benchmark datasets motioned

above, we first remove the punctuation and convert all

words into lowercase. The sentences are truncated at 28

words and tokenized. The size of word embedding size for

each word is set to 468. The POS tags of words in ground-

truth are processed by Stanford Log-linear Part-Of-Speech

Tagger [39], which are then divided into 14 categories

for training the POS sequence generator: verb(VERB),

noun(NOUN), adjective(ADJ), adverb(ADV), conjunc-

tion(CONJ), pronoun(PRON), preposition(PREP), arti-

cle(ART), auxiliary(AUX), participle(PRT), number quali-

fier(NUM), symbol(SYM), unknown(UNK) and the end-of-

sentence (EOS). Each of them also corresponds to an em-

bedding vector with 468 dimensions.
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For videos, we use TVL1-flow [30] to compute the opti-

cal flows in both horizontal and vertical directions for ad-

jacent frames. Then an Inflated 3D ConvNet (I3D) [2]

trained on Kinetics action classification dataset [19] extracts

8 1024-dimensional feature vectors representing the mo-

tion features for each continuous 64 optical flow frames.

To extract the content features, we feed static frames to

Inception-Resnet-v2 [38], which is pre-trained on ILSVRC-

2012-CLS image classification dataset [35], and obtain a

1536-dimensional feature for each frame. We also extract

the spatiotemporal features by C3D network [40]. We take

equally-spaced 30 features of a video, respectively, and pad

them with zero vectors if the number of features is less than

30.

In our model, all LSTMs have a 512-dimensional hidden

size, while the input dimension of LSTMs in video encoder

is 1536 and 1024, which are equal to the size of content

features and motion features, respectively. The input size

of LSTMs in POS sequence generator and the first layer in

description generator are set to 468 . The input size of the

second layer of description generator is 512.

During the training, the model is optimized by the

AdaDelta [55]. When no better CIDEr score appears in the

following 30 successive validations, the training stops and

the optimal model is obtained. In the testing, we use the

beam search with size 5 for the final description generation.

4.3. Performance Comparisons

In this subsection, we compare our method with

the state-of-the-art methods with multiple features on

benchmark datasets, including SA [53], M3 [47],

v2t navigator [18], Aalto [36], VideoLab [31], MA-

LSTM [51], M&M-TGM [4], PickNet [8], LSTM-

TSAIV [28], SibNet [23], MGSA [5], and SCN-

LSTM [14], most of which fuse different features by simply

concatenating.

We first show the quantitative results on MSR-VTT in

Table 1. Since the methods use different CNN features or

combinations of features, it is hard to make an absolutely

fair comparison. Trained by cross-entropy loss, our pro-

posed method is better than most of the competing mod-

els, including PickNet trained by RL, which demonstrates

the benefits of the proposed gated fusion network as well

as the incorporated global syntactic structure POS informa-

tion. It is worth noticing that our model performs inferiorly

to M&M-TGM and v2t navigator on some metrics, such

as CIDEr and METEOR. The reason is that the features of

some modalities are of great differences with different ex-

pressive abilities. For example, the v2t navigator applies

audio (A) and topic (Ca) features providing by MSR-VTT,

while M&M-TGM use a multi-task to predict the topic (Ca)

features. These modalities can provide strong prior knowl-

edge for captioning generation, which can however not be

directly obtained by content or motion features. Better per-

formances are expected if these strong features are also

fused in our methods. Besides, same modalities are utilized

in MGSA(IR+C3D) and Ours(IR+C3D), based on which

our method performs better, mainly attributed to the pro-

posed cross gating strategy and the introduced POS infor-

mation.

We also train our model by RL, specifically the

self-critical sequence training [32], which is denoted as

Ours RL(IR+M) in Table 1. Obviously, self-critical strat-

egy generates better performances than training with the tra-

ditional cross-entropy loss on all metrics except BLEU@4.

It is reasonable as we mainly focus on optimizing the

CIDEr metric with RL. Comparing with other competing

models, Ours RL(IR+M) obtains the state-of-the-art perfor-

mances on both ROUGE-L and CIDEr, which achieve 62.1

and 53.4, respectively. The superior performances further

demonstrate the benefits of the proposed gated fusion net-

work and the incorporation of global POS information.

Besides, we also verify our work on MSVD as shown

in Table 2. Once again, our methods outperforms other

competitors, especially on CIDEr. Without self-critical,

Ours(IR+M) has obtained superior scores. When trained

with self-critical, Ours RL(IR+M) significantly improves

all the metric scores and achieves the new state-of-the-art

results on BLEU@4, METEOR, ROUGE-L and CIDEr. It

is worth noticing that SibNet(G) is an excellent method

that achieves the state-of-the-art on MSVD using only

GoogleNet feature, as additional content and semantic

branches are introduced in SibNet and significantly boost

the performances. Trained with the decoder loss alone, the

SibNet-DL(G) performs slightly inferiorly to our method.

Our model is orthogonal to SibNet, which can be incorpo-

rated into SibNet for further boosting the performances.

4.4. Ablation Studies

To demonstrate the effectiveness of the proposed com-

ponents, we design several baseline models with different

structures by removing certain components, which are listed

as follows:

• EncDec+F: This is the basic model where the video

encoder fuses diverse features as one video represen-

tation by simple concatenating.

• EncDec+CG: This model employs the proposed gated

fusion network to effectively fuse different features,

but without the POS sequence generator.

• Ours (EncDec+CG+POS): It is the proposed model,

where the gated fusion network is employed and the

global POS tag information generated by the proposed

POS sequence generator are considered for video cap-

tioning.

The ablation experimental results of aforementioned

models with different components on testing split of MSR-
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Training Strategy Model B@1 B@2 B@3 B@4 M R C

Cross-Entropy

SA(V+C3D) [50] 82.3 65.7 49.7 36.6 25.9 - -

M3(V+C3D) [47] 73.6 59.3 48.3 38.1 26.6 - -

MA-LSTM(G+C3D+A) [51] - - - 36.5 26.5 59.8 41.0

VideoLab(R-152+C3D+A+Ca) [31] - - - 39.1 27.7 60.6 44.1

v2t navigator(C3D+A+Ca) [18] - - - 42.6 28.8 61.7 46.7

M&M-TGM(IR+C3D+A) [4] - - - 44.3 29.4 - 49.3

SibNet-DL(G) [23] - - - 39.4 26.9 59.6 45.3

SibNet(G) [23] - - - 40.9 27.5 60.2 47.5

MGSA(IR+C3D) [5] - - - 42.4 27.6 - 47.5

MGSA(IR+C3D+A) [5] - - - 45.4 28.6 - 50.1

Reinforcement Learning PickNet(R-152+Ca) [8] - - - 41.3 27.7 59.8 44.1

Cross-Entropy

Ours(C3D+M) 78.5 65.3 52.6 41.2 27.7 60.9 46.7

Ours(I3D+M) 79.3 65.8 53.3 41.7 27.8 61.2 48.5

Ours(IR+C3D) 79.2 66.5 53.7 42.3 28.1 61.3 48.6

Ours(IR+I3D) 79.1 66.0 53.3 42.0 28.1 61.1 49.0

Ours(IR+M) 78.4 66.1 53.4 42.0 28.2 61.6 48.7

Reinforcement Learning Ours RL(IR+M) 81.2 67.9 53.8 41.3 28.7 62.1 53.4

Table 1. Performance comparisons with different competing models on the testing set of the MSR-VTT in terms of BLEU@1∼4, ME-

TEOR, and ROUGE-L, CIDEr scores (%). V, G, C3D, R-N, IR, I3D, A and Ca denote VGG19, GoogleNet, C3D, N-layer ResNet,

Inception ResNet-v2, I3D, Audio, and Category features, respectively. M denotes the motion features from optical flow extracted by I3D.

Model B@4 M R C

MA-LSTM(G+C3D) 52.3 33.6 - 70.4

LSTM-TSAIV (V+C3D) 52.8 33.5 - 74.0

SCN-LSTM(R-152+C3D) 50.2 33.4 - 77.0

M&M-TGM(IR+C3D+A) 48.8 34.4 - 80.5

SibNet-DL(G) 51.9 33.1 69.9 81.9

SibNet(G) 54.2 34.8 71.7 88.2

Ours(IR+M) 52.5 34.1 71.3 88.7

Ours RL(IR+M) 53.9 34.9 72.1 91.0

Table 2. Performance comparisons with different baseline methods

on the testing set of the MSVD dataset (%).

Model B@4 M R C

EncDec+F(IR+M) 39.7 26.8 59.3 45.4

EncDec+CG(IR+M) 41.7 27.9 61.0 48.4

Ours(IR+M) 42.0 28.2 61.6 48.7

EncDec+F(I3D+M) 39.7 26.6 58.8 45.1

EncDec+CG(I3D+M) 41.4 27.7 61.0 47.7

Ours(I3D+M) 41.7 27.8 61.2 48.5

Table 3. Performance comparisons with different baseline methods

on the testing set of the MSR-VTT dataset(%). Methods of the

same name but different text in the brackets indicates the same

method with different feature inputs.

VTT are shown in Table 3. We use different feature combi-

nations, e.g., (IR, M) pair and (I3D, M) pair, each of which

consists of one content and one motion features.

Compared with the basic model EncDec+F(IR+M)

that simply concatenates the features, we can observe

a significant improvement on all the evaluation metrics

by incorporating the proposed gated fusion network in

EncDec+CG(IR+M). The similar performance improve-

ments also appear in EncDec+CG(I3d+M). The better

scores on BLUE@4, METEOR, ROUGE-L and CIDEr of

EncDec+CG in Table 3 demonstrate that: 1) There exist

complicated semantic relationships between different fea-

tures, specifically the content feature and motion features,

which a simple concatenation can not capture. 2) By per-

forming the gated fusion network on the content and mo-

tion features, a more representative video feature for video

captioning can be obtained.

To further demonstrate the effectiveness of the proposed

fusion strategy, we also compare the gated fusion network

with more complex fusion algorithms, such as MCB [13],

Model B@4 M R C

MCB(IR+M) 41.2 27.5 60.6 46.3

MLB(IR+M) 41.4 27.6 60.9 47.6

Element-wise adding(IR+M) 40.2 27.0 60.2 46.3

EncDec+CG(IR+M) 41.7 27.9 61.0 48.4

Table 4. Performance comparisons with different fusion strategies

on the testing set of the MSR-VTT(%).

MLB [20], and element-wise adding, which used compact

bilinear pooling, low-rank bilinear pooling, and feature vec-

tor adding to exploit the relationship of each element in dif-

ferent modal features, respectively. The performance com-

parisons are illustrated in Table 4. The cross gating mecha-

nism enhances the relevant part of different modalities and

uses a residual structure to retain information that may not

be relevant but unique, which can not be modeled by MCB,

MLB, or element-wise adding. As such, the relationships

between different modalities can be more comprehensively

exploited to further benefit the video captioning.

Our proposed method, considering both the gated fusion

network and the global POS information, takes a further

step on the EncDec+CG and is trained by adaptively and

dynamically incorporating POS to guide the generation of

each word. As illustrated in Table 3, the proposed model

yields the highest performance on the four metrics with the

same features pair, namely IR and M. The same observa-

tions can be observed if using (I3D, M) pair as the feature

representations in Table 3, which proves that the POS in-

formation provides a global view on the potential syntac-

tic structure of its language descriptions and thereby further

improves the performance of video captioning.

4.5. Qualitative Analysis

Besides, some qualitative examples are shown in Fig. 5.

it can be observed that the proposed model, with the cross

gating strategy and incorporating global POS information,

can generate more accurate descriptions than the baseline

model. For example, in the first example our model real-

izes that it is not related to cooking and correctly predicts

the action ‘mixing’ and object ‘ingredients’ under the guid-
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EncDec+F: A person is cooking.

Ours: a woman is mixing some ingredients in a bowl.

[POS]: ART NOUN VERB VERB ART NOUN PREP ART NOUN.

GT: A woman is mixing nailpolish and putting an egg into it.

EncDec+F: People are playing baseball.

Ours: A baseball player is hitting the ball.

[POS]: ART NOUN VERB VERB ART NOUN.

GT: A baseball Player hits a ball to the back of the field

Figure 5. Visualization of some video captioning examples on the

MSR-VTT with the basic model and the proposed model. Due to

the page limit, only one ground-truth (GT) sentence is given as ref-

erence. Also we illustrate the generated POS sequence. Compared

to the base model EncDec+F, the proposed model yields more ac-

curate sentence descriptions.

ance of POS tag ‘VERB’ highlighted in red and ‘NOUN’

highlighted in green, respectively. In the second example,

compared to the general description of the EncDec+F, our

model accurately captures the detail ‘hitting the ball’, which

makes a more specific and vivid description.

Original Description:

[POS]: ART NOUN VERB VERB NOUN 

Ours: A man is explaining something.

Controlling Description: add adjectives

[POS]: ART ADJ NOUN VERB VERB ART NOUN

Ours: A man in a pink shirt is giving a presentation.

Original Description:

[POS]: ART NOUN VERB VERB ART AUX ART VERB

Ours: A person is cooking food in a pan.

Controlling Description: generate ‘THERE BE’

[POS]: ADV VERB ART NOUN VERB VERB ART NOUN

Ours: There is a woman is making a dish.

Original Description:

[POS]: ART NOUN VERB VERB AUX ART NOUN

Ours:  A group of men are playing soccer in the ground.

Controlling Description: change quantity

[POS]: NUM NOUN VERB VERB ART NOUN

Ours:  Two teams are playing a game of rugby.

Figure 6. Visualization of some video captioning examples on the

MSR-VTT by controlling the captioning generation with modify-

ing the generated POS tag sequence. The POS tags in green denote

the human modified ones, while the words in green are generated

under the guidance of the modified global POS information.

4.6. Controllable of Syntax for Video Captioning

Finally, we show the controllable of the syntactic struc-

ture for generating captions by manually modifying the gen-

erated POS tag sequence in the inference stage. For exam-

ple, when we expect an adjective on the current time step,

the predicted POS tag will be replaced by ‘ADJ’ tag man-

ually, whatever the predicted result is. The changed ‘ADJ’

tag is subsequently fed to the POS sequence generator and

the next POS tag is predicted, meanwhile the hidden state

of POS sequence generator is modified. As such, the global

POS information can be modified to control the overall syn-

tactic structure of the generated sentence.

Some examples are illustrated in Fig. 6. For the first sam-

ple, we add the ’ADJ’ in the front of the subject, so that we

can describe the event with more details. With the changed

POS information, the description generator predicts “a man

in a pink shirt”, which is in line with our expectations. In

the second sample, we would like to generate a sentence

with “there be” as the beginning. Our approach once again

meet the requirement. The most interesting thing is when

we replace the article (‘ART’) with number (‘NUM’), the

generator provides “two teams”, instead of “two men”, to

replace “a group of men”. These results demonstrate that

the proposed gated fusion network effectively and fully cap-

tures semantic meaning of the video by understanding the

relationship between different features. Therefore, even

though the global POS information is changed, it can ac-

curately generate the reliable descriptions. Meanwhile, the

global POS information can indeed control the overall syn-

tactic structure of the generated sentence. More experi-

mental results can be referred to the supplementary mate-

rial1.

5. Conclusions

In this paper, we proposed a novel model for control-

lable video captioning using a gated fusion network and a

POS sequence generator. This model can fuse diverse in-

formation with a cross-gating strategy and produce a global

syntactic structure as the guidance for addressing video cap-

tioning. The proposed model achieves competitive perfor-

mances on both MSR-VTT and MSVD datasets, which in-

dicates the superiority of our model. Moreover, the gen-

erated global POS information can be further leveraged

to control the syntactic structure of the generated caption,

thereby improving the corresponding diversity.
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