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Abstract

Enhancing low light videos, which consists of denois-

ing and brightness adjustment, is an intriguing but knotty

problem. Under low light condition, due to high sensitivity

camera setting, commonly negligible noises become obvi-

ous and severely deteriorate the captured videos. To re-

cover high quality videos, a mass of image/video denois-

ing/enhancing algorithms are proposed, most of which fol-

low a set of simple assumptions about the statistic charac-

ters of camera noise, e.g., independent and identically dis-

tributed (i.i.d.), white, additive, Gaussian, Poisson or mix-

ture noises. However, the practical noise under high sen-

sitivity setting in real captured videos is complex and inac-

curate to model with these assumptions. In this paper, we

explore the physical origins of the practical high sensitivity

noise in digital cameras, model them mathematically, and

propose to enhance the low light videos based on the noise

model by using an LSTM-based neural network. Specifi-

cally, we generate the training data with the proposed noise

model and train the network with the dark noisy video as

input and clear-bright video as output. Extensive compar-

isons on both synthetic and real captured low light videos

with the state-of-the-art methods are conducted to demon-

strate the effectiveness of the proposed method.

1. Introduction

Under extremely low light conditions, high ISO set-

ting is commonly adopted for capturing videos. However,

with a high sensitivity, the dynamic streak noise (DSN),

color channel heterogeneous and clipping effect, which are

commonly negligible, become significant and deteriorate

the quality of captured videos dramatically. For example,

Fig. 1(a) is a real-captured high ISO image in low light en-

vironment, and Fig. 1(b) is the corresponding clear image

under sufficient light condition, deteriorated with common

Gaussian noise model. The noise distribution in Fig. 1(a) is

obviously different than that in Fig. 1(b), including dynamic

streak noise (Fig. 1(c)), color heterogenous (Fig. 1(d)) and

(c) Dynamic streak noise (d) Channel heterogeneous (e) Clipping effect

(a) Real captured noisy image (b) Synthetic noisy image

Figure 1. Characteristic of noise distribution in low-light imaging.

(a) Video frame captured by Canon 5D mark III with ISO 25600

under low light condition. (b) Video frame synthsized with i.i.d.

AWGN of approximately equal noise variance. (c) The dark field

frame of Canon 5D mark III, with obvious horizontal streak noise,

changing from frame to frame. (d) Intensity histograms of differ-

ent color channels of a certain line, showing color heterogeneous

among channels. (e) The intensity histogram of a low light image,

with observed clipping effect.

clipping effect (Fig. 1(e)).

In this paper, we explore the physical origin of the high

sensitivity noise of both rolling and global shutter cameras,

propose a novel noise model for handling the high sen-

sitivity noise (i.e. dynamic streak noise, color heteroge-

neous, and clipping effect) in low light imaging, and build

the estimation methods for estimating the model parameters

of practical cameras. With the calibrated high sensitivity

noise model, we generate the training dataset that could pre-

ciously simulate the real acquisition process of videos un-

der low light environments, and train a LSTM-based video

denoising network for enhancing the low light videos. We

thoroughly evaluate the proposed method on both synthetic

and real-captured videos and demonstrate the superiority of

the proposed method via comparing with the state-of-the-art

methods. In all, the main contributions of this paper are:

• We propose a practical high sensitivity noise model

based on the capturing process and the hardware char-

acteristic of sensor, which could accurately model the

4111



complex noises in the low-light imaging scenario.

• We propose the estimation method for the high sensi-

tivity noise model, and synthesize the noisy/enhanced

training dataset in low light environment that could

well-approximate the practical capturing process.

• We develop an LSTM-based video enhancing neu-

ral network and demonstrate the effectiveness of our

method on both synthetic and real captured videos.

2. Related Work

Noise modeling. In the past decades, plenty of methods are

proposed to denoise images/videos, such as nonlocal self-

similarity [2, 6], sparse representation [6, 12, 16, 23] and

Markov random field [11, 21]. Most of them are built on

a simple noise model, i.e., the independent and identically

distributed (i.i.d.) additive white Gaussion noise (AWGN).

To describe the noise more precisely, a set of complex

noise models have been proposed. Liu et al. [13] extend the

AWGN assumption by exploring the relationship between

noise level and image brightness. Zhu et al. [26] model

the pixel-wise noise with mixture of Gaussian distribution

(MoG), which can approximate large varieties of continu-

ous distributions. Mäkitalo and Foi [18] use the mixture of

Poisson and Gaussian distributions to model the pixel-wise

noise. Luisier et al. [14] as well as Mäkitalo and Foi [17]

also assume the noise follows the mixture of Poisson and

Gaussian distributions. Besides, the signal dependent Gaus-

sian distribution is studied as well [1, 7] and the noise clip-

ping effect is eliminated by reproducing the non-linear re-

sponse of the sensor. Plötz and Roth [20] utilize a similar

model and build a benchmark dataset by rectifing the noise

bias of the model. However, the specific noise characters of

practical high sensitivity noises are not explored well, lim-

iting their application for noisy images/videos captured in

extremely low light conditions.

Recently, the deep learning based methods achieve sig-

nificant progress in many image processing tasks, including

denoising as well. Chen et al. [4] directly get the training

data by capturing noisy and clean image pairs with short and

long exposures by a specific camera, so that their network

can handle the real noise of that camera at high ISO setting.

However, due to the requirement of long exposure for cap-

turing clean images (10 to 30 seconds as in the paper), this

method cannot be applied to the video denoising scenario.

Chen et al. [5] take the advantage of generative adversarial

network (GAN) to generate noisy images as training data

with the similar noise distribution of real captured image.

However, since the GAN network utilized in the paper is

locally supported, it cannot deal with DSN which has the

large scale spatial correlations.

Video denoising. Traditional video denoising methods usu-

ally take advantages of the self-similarity and redundancy

of adjacent frames, and meanwhile, incorporate motion es-

timation into processing, such as [3, 15, 23]. Maggioni et

al. [15] propose a multi-frame method (so-called VBM4D)

based on finding groups of similar patches across the entire

video sequence. Buades et al. [3] make use of motion esti-

mation algorithms and patch-based methods for denoising,

which introduce patch comparison and adapted PCA based

transform to help motion estimation and global registration.

Wen et al. [23] propose a video denoising method based on

an online tensor reconstruction scheme with a joint adaptive

sparse and low rank model.

Recently, the deep neural network has been applied in

various low level vision tasks including video denoising and

achieves impressive results. Clement et al. [9] and Milden-

hall et al. [19] propose to recover a single clear frame from

a set of frames in a burst manner. Since both of these meth-

ods assume that the image sequence is captured in a burst

mode, they could not process videos with very large mo-

tion. Xue et al. [24] propose to denoise videos using a task-

oriented flow (TOFlow) based network, which learns the

motion representation in a self-supervised and task-specific

manner, and thus can handle the large motion much better.

All of these methods are based on the traditional noise

model, i.e., AWGN, Poisson or Mixture model, which can-

not handle the noisy videos captured with large ISO setting

in low light environment.

3. High Sensitivity Noise Model
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Figure 2. Noise sources of the entire imaging process.

Fig. 2 shows the common noise sources of the entire

imaging process: 1) During the exposure time, Np photons

arrive on a pixel area. These photons generate Ne elec-

trons with a quantum efficiency rate η. Both the photon

arrival and photoelectron generation process are stochastic

processes and follow the Poisson distribution, leading to a

signal dependent Poisson noise, i.e. shot noise. 2) Due to

the character of semiconductor device, there is little electric

current generated from the random generation of electrons

and holes within the depletion region, but not caused by the

photons arrived at the pixel, leading to a signal independent

Poisson noise, a.k.a. dark current. 3) The electrons are read

out and amplified in the form of voltage or current signal,

where the readout noise is introduced.

Based on this physical process, the basic practical noise
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model taking the main types of noise into consideration is:

yi = K(Si +Di +Ri), (1)
where i is the pixel index, yi is the captured pixel value.

Si ∼ P(N i
e) denotes the shot noise and N i

e is the expected

number of photoelectrons in pixel i. Di ∼ P(Nd) denotes

the dark current and Nd is the expected number of dark cur-

rent electrons per pixel. Ri ∼ G(0, σ2

r) represents the read

noise, of Gaussian distribution, and σ2

r is the variance. K is

the system gain (unit: DN/e−), commonly assumed to be

of a uniform value over pixels and channels.

3.1. Noise Model in low-light imaging

In low light imaging, high sensitivity camera setting (i.e.

high ISO) is required and previously negligible noise be-

comes significant in the captured videos. In this section, we

model those observed high sensitivity noise and developed

a comprehensive noise model under low light condition.

Dynamic streak noise. As shown in Fig. 1(a), dynamic

streak noise (DSN) commonly becomes significant in low

light imaging, deteriorating the quality of images with hor-

izontal streaks and changing dynamically from frame to

frame. It appears in both rolling-shutter consumer cam-

eras (e.g., Canon 5D Mark III) and global-shutter consumer

cameras (e.g., Grasshopper3 GS3-U3-32S4C).

In different shutter mode, the DSN possesses slightly dif-

ferent statistical characteristics, i.e. white or colored on

the row-wise frequency domain. In another word, regard-

ing a certain column as a 1-D noise signal, it has either

equal or unequal intensity at different frequences. Specif-

ically, for the rolling shutter, since the sensor is exposed

and readout row by row, the operation sequences of rows

are sequentially delayed and the sensor has more time to

read the pixels, leading to a slower reading speed. In this

case, the 1/frequence noise (i.e., the power spectral den-

sity is inversely proportional to the frequency of the noise,

1/f for short) which often appear in relative low-frequency

circuits becomes significant and non-negligible, exhibiting

colored noise in the vertical frequency domain. In contrast,

the global shutter sensors have to read faster and thus re-

sulting in a much smaller 1/f noise, which therefore can

be neglected in our model, presenting a white vertical fre-

quency character.

According to the streak fluctuation characteristic of the

DSN, we propose to handle it by using a row-wise gain fluc-

tuation model,

Kr = K + λKr
1/f + (1− λ)Kr

white, (2)

where K is the globally constant system gain, Kr
1/f is the

1/f gain fluctuation following a colored Gaussian distribu-

tion, and Kr
white is the white gain fluctuation with the white

Gaussian distribution. λ is the weight between the 1/f and

white components. In this paper, we find that the 1/f com-

ponent dominate the DSN for rolling shutter cameras while

the white component becomes major for the global shutter

ones. Accordingly, we choose λ = 1 for rolling shutter

cameras and λ = 0 for global shutter.

Besides, since both Kr
1/f and Kr

white follow zero-mean

Gaussian distribution, the expectation of Kr is exactly K,

to facilitate the parameter estimation we rewrite Eq. 2 as

Kr = Kβr, (3)

where βr is the fluctuation factor of DSN, and equals to

either 1 + Kr
1/f/K for rolling shutter or 1 + Kr

white/K

for global shutter. Since both 1/f noise and white noise

obey to Gaussian distribution, βr follow a colored or white

Gaussian distribution G(1, σbeta) respectively.

Noise relationship between channels. Here, we propose

to model the noise relationship between channels by explor-

ing the physical characters of sensors, which takes both the

pixel uniformity and channel difference into consideration.

Specifically, most of color cameras capture three chan-

nels by covering a Color Filter Array (CFA) on a uniform

silicon sensor1, which means that all the noise sources af-

ter the photons arriving the semiconductor device should be

consistent. But considering the silicon devices has unbal-

anced responses in different color channels, many camera

amplify three channel with different gains to correct color

bias, so that we change Eq. 3 to its color channel version,

i.e., Kr
c = Kcβ

r
c .

Clipping effect. The digital sensors always have posi-

tive measurements. However, when the read noise which

follows zero-mean Gaussian distribution is considered, the

negative values may appear for very weak signals theoret-

ically, leading to a clipped noise distribution as shown in

Fig. 1(e) in practice. Mathematically, the clipping opera-

tion T (·) can be expressed by

T (x) =

{

x, if x > 0

0, otherwise.
(4)

According to the above analysis, our proposed practical

noise model in low-light conditions becomes,

yi =T (Kcβ
r
c (S

i +Di +Ri))|c∈{r,g,b}, (5)

3.2. Model parameter estimation

In the following, we will show how to estimate the pa-

rameters of our high sensitivity noise model for a real cam-

era. To facilitate the inference, we discuss the parameter es-

timation method without considering the clipping operation

first. Then, we propose a 2D look-up table based method to

correct the estimation bias caused by clipping effect.

1Note that in this paper we mainly focus on the three channel color

cameras with bayer CFA, but the method can be easily extended to other

kinds of CFAs.
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Figure 3. Parameter calibration for Canon 5D Mark III.

Calibrating βr
c . Capturing a dark field image, we have the

measurements yi = Kcβ
r
c (D

i + Ri)|c∈{r,g,b}. The expec-

tation of yi of whole image is (E[y] = KcE[β
r
c ](E[D] +

E[R]) = Kc(E[D] + E[R]), and the expectation of yi∈r of

r-th row is E[y]i∈r = Kcβ
r
c (E[D] + E[R])). Thus, by di-

viding the mean of yi in row r by the global mean of yi, i.e.,

βr
c = mean(yi∈r)/mean(yi), βr

c can be computed. Given

βr
c , we can remove the DSN from dark field image by di-

viding the measurements of each row yi∈r by βr
c , deriving

a DSN corrected measurement y′
i
= Kc(D

i+Ri)|c∈{r,g,b}

(Please note that the following calibrations are all based on

the corrected measurements). As shown in Fig. 3(a), we

calibrate the βr
c of Canon 5D Mark III, and present the his-

tograms of three color channels accordingly. According to

the shutter type of the camera, the random βr
c can be gener-

ated with either 1/f (like Canon 5D which is rolling shutter,

as shown in Fig. 3(b). Like the 1/f noise, the envelope of

the Fourier transform of βr
c presents as a descending line

in the logarithm coordinate system.) or white (for global

shutter) Gaussian distribution.

Calibrating Kc. Since Di ∼ P(Nd) and Ri ∼ G(0, σ2

r),
the expectation and variance of corrected measurement y′

can be denoted by

E[y′] = KcNd

Var[y′] = K2

c (Nd + σ2

R).
(6)

Substituting Nd with Nd = E[y′]/Kc, we have

Var[y′] = KcE[y
′] +K2

cσ
2

R. (7)

Considering the expectation of dark current Nd varies with

different exposure time, we can have two equations by ap-

plying Eq. 7 on two dark field images with different expo-

sure time, and the constant term K2

cσ
2

R can be eliminated

from the difference between them,

∆Var[y′] = Kc∆E[y′], (8)

where ∆Var[y′] = Var[y′t1 ] − Var[y′t2 ] and ∆E[y′] =
E[y′t1 ] − E[y′t2 ], in which t1, t2 denote exposure time. In

practice, by replacing E[y′] by mean(y′), and Var[y′] by

var(y′), we can derive both ∆Var[y′] and ∆E[y′] from two

dark field videos with different exposure times. By captur-

ing a set of differently exposured dark field images, we can

compute a set of points (∆E[y′],∆Var[y′]), and Kc can be

estimated by fiting a line from these points, as shown in

Fig. 3(c).

Calibrating Nd and σ2

R. Given Kc, Nd and σ2

R can be

computed easily from Eq. 6.

Figure 4. 2D look-up tables for correcting the clipping effect of

mean(·) (left) and var(·) (right).

Clipping correction by looking up tables. Further, let’s

consider the clipping operation. Obviously, mean(·) and

var(·) of a clipped variable T (x) can significantly devi-

ate from unclipped mean(x) and var(x). Generally, it is

difficult to eliminate this effect without any knowledge of

x. However, in our cases, all the random variables inside

T (·) can be divided into two components, i.e., a Poisson

component and a zero-mean Gaussian component. There-

fore, the expectation and variance of the combined distribu-

tion can describe the entire distribution sufficiently. There-

fore, we can generate a set of x with different expecta-

tions and variances, and compute two 2D table from the

clipped estimates mean(T (x)) and var(T (x)) to the real

mean(x) and var(x). Fig. 4 shows the 2D look-up table

for correcting mean(·) (left) and var(·)(right). Then, by

looking up the two 2D tables according to mean(T (x))
and var(T (x)) computed from the real data, we can de-

rive the real mean(x) and var(x) easily. Specifically, for

calibrating βr
c , mean(yi∈r) and mean(yi) are required, and

both yi∈r and yi follow mixture of Poisson and Gaussian,

can thus can be corrected by looking up the 2D table ac-

cording to mean(T (yi∈r)), var(T (yi∈r)), mean(T (yi))
and var(T (yi)). Similarly, we can correct mean(y′) and

var(y′) in Eq. 8 for calibrating Kc as well.

Training data generation. In this paper, we generate the

training data for video enhancing network according to our

practical noise model. Given the model in Eq. 5 and the pa-

rameters calibrated from a certain camera, we can generate

noisy videos from a clean video by Monte Carlo simulation.

Before that, we should first derive the expected photonelec-

tron number Ne. Given an illuminance I of a certain low

light environment, the expected number of photoelectrons

E[Ne] generated on a certain pixel can be computed by

E[Ne] =
I · Spixel

clum2radiant · Ep · η
, (9)

where Spixel is the area of a pixel, clum2radiant is the trans-

fer constant from luminous flux to radiancy, Ep is the en-
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ergy of a single photon2 and η is the quantum efficiency of

the camera. By adjusting the average value of an image to

E[Ne], we can derive the expected incoming photon num-

bers of all the image pixels. Then, we can get the noisy

image by Monte Carlo simulation according the Eq. 5.

4. Our LSTM-based Network

In this section, we present an LSTM-based video en-

hancing network which recovers the clear and bright videos

from the noisy dark ones captured by real digital cameras.

Time
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Figure 5. Our proposed LSTM-based network. The network ex-

tracts both the short-term and long-term dependencies from videos

and combines spatial-temporal information to reconstruct high

quality videos form dark noisy ones. To make the dark frame vis-

ible, we demonstrate the right half of each input frame with 5x

amplification.

Network Architecture. Fig. 5 shows an overview of the

proposed LSTM-based network. Our model takes the low-

light videos with arbitrary length as input and generates

output frames in an online manner. To simultaneously and

adaptively extract the short-term and long-term dependen-

cies from videos, we integrate a Spatio-Temporal LSTM

(ST-LSTM) unit [22] into our video denoising network. ST-

LSTM can model both spatial and temporal representations

in a unified memory cell and convey the memory both ver-

tically across layers and horizontally over states. Our net-

work consists of two strided convolutional layers and four

ST-LSTM layers. First, the convolutional layer extract fea-

tures of the input frames, and then pass the features into

2In this paper, we use the energy of Ep = hc/λ, λ = 555nm, and

clum2radiant = 683lm/w@555nm for a rough estimation.

ST-LSTM layers. Skip connection is added in the spatial

correlations. The last convolutional layer transforms the re-

constructed information into standerd RGB image format

to derive the final result. We use filters with 3 × 3 kernel

size for the 1st and 4th ST-LSTM layers, and filters with

5×5 kernel size for the 2nd and 3rd ST-LSTM layers. Each

ST-LSTM layer has 64 feature maps in our network. Zero

padding is adopted to ensure the consistence between di-

mensions of the input and output.

Loss Functions. We train the proposed LSTM-based net-

work by minimizing the whole loss defined in Eq.10 be-

tween the network output frame I and the corresponding

ground truth I∗. We define the basic loss function as the

weighted average of L2 and L1 losses. Both L2 and L1 dis-

tances focus on pixel intensity consistency, and the former

makes the output smooth while the latter keeps more de-

tails. In order to further improve the perceptual quality, we

introduce the perceptual loss Lper [8] which constrains the

difference between high-level features of I and I∗ extracted

by a pre-trained Visual Geometry Group(VGG) Network.

Besides, the total variation regularizer Ltv is added in our

loss functions as a smooth regularization term. Then, our

final loss function becomes

L=

N
∑

i=1

αL2(Ii, I
∗
i )+βL1(Ii, I

∗
i )+γLper(Ii, I

∗
i )+δLtv(Ii),

(10)
where α, β, γ and δ are hyper-parameters for the training

process, and N is the number of frames in a sequence. Here,

we set α = 5, β = 1, γ = 0.06, δ = 2 × 10−6 and N = 8
in the training process.

Training details. The network is implemented with Py-

torch. We train the network from scratch using the loss

function above and the Adam optimizer [10] under a learn-

ing rate of 1 × 10−3. We collect large number of clean

videos, and select about 900 sequences which are abundant

in moving scenes. Then, based on the practical noise model,

we generate both dark and noisy sequences from these clean

videos. Considering that each camera has a unique set of

noise parameters, we train the network with different train-

ing data for different cameras. In this paper, two represen-

tative cameras, Canon 5D Mark III and Grasshopper3 GS3-

U3-32S4C, are used to calibrate the parameters and train the

network. To guarantee the generalization performance, we

introduce a slight fluctuation in the noise parameters ran-

domly when generating the training data. The network is

trained by 8−frame sequences, and can deal with videos

with infinite frames in testing. In the training process, we

set batch size to 8 and patch size to [64, 64, 3].

5. Experiments

In this section, we conduct exhaustive comparisons, both

quantitatively and qualitatively, based on the Canon 5D
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Mark III camera. In addition, to demonstrate the feasi-

bility of proposed method, the enhancing results of videos

captured by Grasshopper3 GS3-U3-32S4C are presented as

well. The noise parameters of the camera model are cali-

brated according to Sec. 3.2 (shown in Tab. 2), and the train-

ing datasets are generated with these parameters through

Monte Carlo method respectively. The proposed network

are trained upon the training datasets and extensive exper-

imental comparisons are implemented to demonstrate the

superiority of the proposed method. Specifically, we an-

alyze the effect of the proposed noise model and the net-

work individually, demonstrate the proposed method un-

der different luminance levels and thoroughly demonstrate

the effectiveness of our method on real captured videos

over various scenes. In our experiments, we compare our

method with both representative conventional methods, i.e.

VBM4D [15], and state-of-the-art learning based methods,

i.e. FFDNet [25], KPN [19], and TOFlow [24].

First, we analysis the effect of the proposed noise model

and the proposed network individually. Limited by the pa-

per length, only part of the compairsons about the Canon

5D Mark III camera model are given here. Additional anal-

ysis about Grasshopper3 camera model and more results of

Canon camera can be found in the supplementary material.

Effect of network individually. To demonstrate the su-

periorities of the proposed network individually, we first

compare our network with VBM4D [15], FFDNet [25],

KPN [19] and TOFlow [24] upon the proposed noise model.

Note that for fair comparison, the parameters of VBM4D

[15] are choosen at the best performance and the learning

based method, i.e. FFDNet [25], KPN [19], TOFlow [24]

and our network, are trained on the same dataset and tested

on the same noisy videos. Here we introduced ‘refer’ (short

for reference) as the comparison baseline. ‘refer’ is the

scaled input video and the scaling factor is the total in-

tensity ratio of the groundtruth images over the input im-

ages. As shown in Fig. 6, at least 2dB/0.05 improvement in

PSNR/SSIM are introduced compared with the other meth-

ods. As shown in Fig. 7, the proposed network could help

to recover the videos with much higher visual quality, with

more structural details such as the animal face contour and

the sharp textures on the shoulder, and in higher color fi-

delity. As a whole, the performance improvement intro-

duced by the proposed network is demonstrated both quan-

titatively and qualitatively.

Effect of noise model. Then, to further verify the ef-

fectiveness of the proposed noise model individually, we

train the network of TOFlow [24] and our network model

Table 1. Camera settings and environment conditions applied in

the experiments.
Indoor conditions and settings

Camera ISO/Gain Exposure time Illuminance F-number

Canon 5D 25600 50ms 0.05-0.2Lux 5.6

Grasshopper3 48dB 30ms 0.01-0.03Lux 1.8

Table 2. Parameters of our practical noise model calibrated of

Canon 5D Mark III and Grasshopper3.

Parameters
Grasshopper3 Canon 5D

R G B R G B

σ2

βr

c

0.0081 0.0069 0.026 0.197 0.039 0.013

Kc 3.54 3.11 3.95 1.53 1.23 1.31

Nd 118/s 51.7/s

σ2

R
5.43 12.5

(a) (b)
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Figure 6. Quantitative comparisons on the effect of network indi-

vidually.

upon different noise models, i.e. AWGN model, mixture of

Gaussian and Poisson noise model, and the proposed noise

model. The real captured dark noisy video is denoised by

the trained network models as shown in the 1-3 th columns

in Fig. 8. Note that we capture an additional image of the

same scene with the light turned on for reference of scene

structure (Fig. 8, marked with ‘Real data with light’). With

the same network (i.e. TOFlow or our network), the results

of proposed noise model are of the best quality in terms of

much less chrominance artifacts, more structual details and

higher contrast, validating the superiorities of the proposed

noise model for enhancing videos in low light condition.

In all, we demonstrate that the superiorities of the pro-

posed method are attributed to both the proposed network

and the proposed noise model.

Performance Analysis on Synthetic Data. We test our

method on the synthetic test dataset generated with our

practical noise model, and compare it with the other state-

of-the-art algorithms. The comparisons are conducted on

six test videos generated by simulating the environment illu-

minance from 0.05 to 0.2 Lux. Since our network is trained

to recover the bright clear videos from dark noisy inputs,

the brightness of the output has been adjusted adaptively by

the network itself. For fair comparison, we add brightness

scaling of input frames and results of other methods to the

truth frames and the fidelity metrics(PSNR and SSIM) of

the other methods are computed after light enhancement.

As shown in Fig. 9, the proposed method achieves the

highest scores in both PSNR and SSIM, over all the test

videos and different luminance levels. Further scrutinizing

the comparisons among our method, TOFlow and TOFlow

with our noise model, we could find that the performance

improvement comes from both the proposed network and
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Figure 8. Comparisons on the effect of the proposed noise model. ‘Real data with light’ denotes the same scene with the light turned on

and the same camera setting parameters.
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Figure 9. Quantitative comparisons with the other methods under

different illuminance intensities.

the proposed noise model, and the improvement from the

proposed noise model are larger than from the proposed net-

work, demonstrating the importance of our noise model.

Fig. 10 presents the performance of our method on in-

dividual frames. It is obviously that the proposed method

can memory the information of previous frames and han-

dle the motion between frames well to elevate the results of

current frame. Thus at the very begining of the sequence,

the PSNR of proposed method rise frame by frame. After

about 20 frames, the curve become flat because the informa-

tion of 20 frames before cannot provide much more useful

informaiton for current frame processing.

Experiments on Real Captured Videos. As shown in

Fig. 11, we show the experimental results with both the

Canon 5D MarkIII and Grasshopper3 GS3-U3-32S4C cam-
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Figure 10. PSNR of frames enhanced by proposed method.

era models. As can be seen, the results of the other methods

lose many details on the extremely noisy region and can-

not deal with the stripe noise well in the flat region, while

our method could remove the noise effect clearly while pre-

serving the details of images well. Color bias are also ob-

viously observed in the other methods, which could proba-

bly be caused by the inaccuracy of the noise model. Since

our method utilize a more accurate noise model under low

light condition, our method could recover the images with

higher color fidelity. In all, the effectiveness of our method

is demonstrated in both cameras (including rolling shutter

and global shutter), over real captures scenes.
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Figure 11. Results on real videos captured by Canon 5D MarkIII and Grasshopper3 GS3-U3-32S4C.

6. Discussion and Conclusion

In this paper, we propose a low light video enhancing

method by exploring the high sensitivity camera noise in

low light imaging. A high sensitivity noise model and

the corresponding estimation method are proposed to gen-

erate dark-noisy/enhanced training datasets. An LSTM-

based neural network is proposed to trained upon the gen-

erated dataset and enhance the real-captured low light noisy

videos. We conduct thorough experiments and demonstrate

the effectiveness of the proposed method.

Currently, the proposed method requires to capture sev-

eral videos by the camera beforehand for noise model cal-

ibration. In the future, we will investigate how to blindly

estimate the noise parameters from input noisy videos.

Acknowledgments

We would like to acknowledge funding from NSFC

Projects 61671236, 61971465, and National Science Foun-

dation for Young Scholar of Jiangsu Province, China (Grant

No. BK20160634), and Fundamental Research Funds for

the Central Universities, China (Grant No.0210-14380128).

4118



References

[1] Lucio Azzari and Alessandro Foi. Gaussian-Cauchy mix-

ture modeling for robust signal-dependent noise estimation.

In IEEE International Conference on Acoustics, Speech and

Signal Processing, 2014. 2

[2] Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local

algorithm for image denoising. In International Conference

on Computer Vision and Pattern Recognition, 2005. 2

[3] Antoni Buades, Jose-Luis Lisani, and Marko Miladinović.
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[20] Tobias Plötz and Stefan Roth. Benchmarking denoising al-

gorithms with real photographs. In International Conference

on Computer Vision and Pattern Recognition, 2017. 2

[21] Stefan Roth and Michael J Black. Fields of experts: a frame-

work for learning image priors. International Journal of

Computer Vision, 82(2):205–229, 2009. 2

[22] Yunbo Wang, Zhifeng Gao, Mingsheng Long, Jianmin

Wang, and Philip S Yu. Predrnn++: Towards a resolution

of the deep-in-time dilemma in spatiotemporal predictive

learning. In International Conference on Machine Learning,

2018. 5

[23] Bihan Wen, Yanjun Li, Luke Pfister, and Yoram Bresler.

Joint adaptive sparsity and low-rankness on the fly: An on-

line tensor reconstruction scheme for video denoising. In

International Conference on Computer Vision, 2017. 2

[24] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and

William T Freeman. Video enhancement with task-oriented

flow. International Journal of Computer Vision, Feb 2019.

2, 6

[25] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Ffdnet: Toward

a fast and flexible solution for cnn-based image denoising.

IEEE Transactions on Image Processing, 27(9):4608–4622,

2018. 6

[26] Fengyuan Zhu, Guangyong Chen, and Pheng-Ann Heng.

From noise modeling to blind image denoising. In Interna-

tional Conference on Computer Vision and Pattern Recogin-

tion, 2016. 2

4119


